 |
[1] A. Lakhina, M. Crovella and C. Diot,
Diagnosing network-wide traffic anomalies, in Proc. ACM SIGCOMM,
Portland, OR, Aug.
2004.
[2] A. Lakhina, M. Crovella and C. Diot,
Mining
anomalies using traffic feature distributions, in Proc. ACM SIGCOMM,
Philadelphia, PA,
Aug. 2005.
[3] Y. Engel, S. Mannor and R. Meir,
The kernel
recursive least squares algorithm, IEEE Trans. Signal Proc., vol. 52,
no. 8, pp 2275--2285, Aug. 2004.
[4] B. Schölkopf and A. Smola, Learning with Kernels, MIT Press:
Cambridge, MA, Dec.
2001.
[5] A. Muñoz and J. Moguerza, Estimation of High-Density Regions Using
One-Class Neighbor Machines, IEEE Trans. Pattern Anal. Machine Intell., vol.
28, no. 3, pp 476--480, Mar. 2006.
[6] T. Ahmed and M. Coates,
Multivariate online anomaly detection using kernel recursive least squares,
technical report, Department of Electrical and Computer Engineering, McGill
University, Montreal, QC, Canada, Aug. 2006. |
|