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Abstract— High-speed backbones are continually affected by feature space has a strong impact on the performance of
network anomalies generated by a wide range of sources, from gur algorithm and determines what type of anomalies can be

malicious denial-of-service attacks and viruses to harmies large  yatected. However. we consider that this identificatiorcess
data transfers and accidental equipment failures. Differat types . h ) b ’ t th del ificati
of anomaly affect the network in different ways, and it is difficult IS much more robust than model specinication.

to know a priori how a potential anomaly will exhibit itself in
traffic statistics. In this paper we describe an online, segential, A. Related Work

anomaly detection algorithm, suitable for use with multivaiate Our work builds most closely on the series of works by
data. The proposed algorithm is based on the kernel version | sxhina et al. in [1], [2], [6]. They demonstrate the intims

of the celebrated recursive least squares algorithm. It assnes low-di . lity of network fi d the hiah tiatl

no model for network traffic or anomalies, and constructs and ow |menS|0na}|y Or network Tiows, an € high spatia an
adapts a d|ct|0nary of features that approx|ma’[e|y Spans tle temporal covariance structure betWeen the ﬂOWS [6] Lah”‘]
subspace of normal network behaviour. The algorithm raisesan et al. [1], [2] used the technique of Principal Component
alarm immediately upon encountering a deviation fromthe nam.  Analysis (PCA) to separate the space occupied by a set
Through comparison with existing block-based off-line mehods o traffic measurements/metrics into two disjoint subspace

based upon Principal Component Analysis, we demonstrate Ht corresponding to normal and anomalous behavior, resgdgtiv
our online algorithm is equally effective but has much faste P g '

time-to-detection and lower computational complexity. They signal an anomaly when the magnitude of the projection
onto the residual, anomalous subspace exceeds a PCA Q-
l. INTRODUCTION statistic threshold [1]. The PCA subspace method was shown

Network traffic is often seen to exhibit sudden deviatiort® be more effective than EWMA and Fourier approaches in
from normal behavior. Some of these aberrations are owiagtomatic diagnosis of anomalies [1], and hence forms the
to malicious network attacks such as Denial-Of-Service basis of comparison for our work.
viruses, whereas others are the result of equipment failure Lakhina et al. [6] also suggested an online formulation
and accidental outages [1]. Network operators need to ke abf the PCA-based detection algorithm. This involved using
to diagnose anomalous behavior in a timely manner, in ordersliding window implementation to identify the normal and
to facilitate a fast response and prevent such occurrenghei anomalous subspaces based on a previous block of time.
future. Most prior work in anomaly detection has used bloclour proposed recursive approach is a better alternative for
based methods, which are only suitable for offline applicaj online applications than straightforward extensions tocki
requiring waits of up to hours before alerts occur [1]-[4based methods. The variation in the structure of multivaria
We suggest an alternative approach and propose an onlimetwork traffic statistics over time is non-negligible. The
recursive algorithm that detects anomalies in multivariaPCA-based detection algorithm is extremely sensitive ® th
network-wide data within minutes. proper determination of the PCA Q-statistic threshold. We

Anomalies have historically been seen to span a wide rangglemented a sliding window version of PCA and observed
of types and classes, and each class may indicate its peesdhat although the anomalous and normal subspaces remained
on raw statistics in a different manner [1], [2]. Developingelevant over time, using stale measurements to calcuiate t
widely-applicable definitions or models of normal networlPCA Q-statistic threshold resulted in an unacceptable mumb
behaviour and anomalies is very difficult [5]. Our algorithnof false positives.
learns the behavior of normal traffic, and autonomously tedap Much of the other previous work on on-line network
to shifts in the structure of normality itself. We consideet anomaly detection has been based on network traffic mod-
absence of any parametric model to be a crucial feature. Téle [3], [7]. Brutlag uses as an extension of the Holt-Wister
disadvantage of a model is that it imposes limitations dorecasting algorithm, which supports incremental mogel u
the applicability of an algorithm. Even subtle changes i@ thdating via exponential smoothing [3]. His algorithm defines
nature of network traffic can render the model inappropriate “violation” as an observation that falls outside an in&rv
We readily admit that the choice of traffic measurement arfd confidence band), and identifies a “failure” (an anomaly)



when the number of violations within an observation window Il. BACKGROUND
exceeds a threshold. Hajji uses a Gaussian mixture model, a0 kernel Recursive Least Squares

develops an algorithm based on a stochastic approximationl_he recursive least squares algorithm is a popular method
of the Expectation-Maximization (EM) algorithm to obtain

estimates of the model parameters [7]. of obtaining linear predictors of a data sequence [12]. It is

; . suitable for on-line learning scenarios as it observestingm-

One of the few examples of real-time anomaly detectlor| . .
: . . . s sequentially and has modest storage and computational

that is not based on an a priori model is the time-bas : o .

. . ; . requirements. It does not need to store historical data tand i

inductive learning machine approach of Teng et al. [8]. The . . L .

inductive learning machine constructs a set of rules based computational cost per time-step is independent of time.

INAUCtV ng ! ) ucts u POOU  wermel machines use a kernel mapping function to produce

usage patterns. The detection algorithm detects a dematH)

: : on-linear and non-parametric learning algorithms [13jeT
when the premise of a rule occurs but the conclusion of thg P g a9 [13]

: . ea behind kernel machines is that a suitable kernel fancti
rule does not follow. The learning algorithm presented ih [%Nhen applied to a pair of input data vectors, may be inteegret
is computationally intensive and the results are prelimjina |

as an inner product in a high dimensional Hilbert space known
There does not appear to have been further development f{jclhe feature space [11]. This allows inner products in the

this work, and the paper has had more influence in the fieﬁl hture space (inner products of theature vectois to be

of intrusion detection [9], [10]. computed without explicit knowledge of the feature vectors

B. Contribution themselves, by simply evaluating the kernel function:

The following are the primary contributions of this paper: kernel(xi, ;) = (¢(xi), $(x;)) (1)

1) We describe a new recursive, learning approach to p#fherex;, x; denote input vectors, angl represents the map-
forming anomaly detection. In this approach there is n@ng onto the feature space.
need to specify a model for normal network behaviour Popular kernel functions include the Gaussian kernel with

. _ 2
or anomalies. The user must simply identify a featureariance o%: kernel(x1,x2) = exp{—%} and the
space in which “normal” traffic measurements or metrigsolynomial kernel of degreé kernel(xi,x2) = (a(x1,%x2)+

display clustering behaviour. b)¢ [13]. A special case of the polynomial kernel is the linear
2) We develop a sequential, real-time anomaly detecti&ernel:
algorithm that incrementally constructs and maintains a kernel(xy,x2) = (X1,X2). (2)

dictionary of |_nput vecto.rs.wh|ch defines the region C)I(Iote that the linear kernel is simply the inner product (dot
normal behaviour. The dictionary adapts over time to ad-

) e roduct) of its arguments.
dress changes in the structure of normal traffic, with ne . .
) . : The Kernel Recursive Least Squares (KRLS) algorithm
elements being added as the normality region expands - L .
) . ombines the principles of recursive least squares ancekern
or migrates and obsolete members being deleted. Our

extended version of the Kemel Recursive Least Squa machines, providing an efficient and non-parametric apgroa

res : . L : .
(KRLS) algorithm [11] forms the core of the algorithm for performing online data mining and anomaly diagnosise Th

. . .~ “algorithm operates on a data sequence of the form:
3) We analyze computational complexity and examine re-

lationships with minimum volume set approaches for Z = {(x1,91), (X2,Y2)5 - -+, (X¢,y1) } 3)

identification of dense regions in a feature space. . . .

4) We provide a comparative study on real data of ojyhere the input-output paitss, y:) are assumed to be inde-
proposed KRLS anomaly detection algorithm and th%endent, |dent|cglly.d|sFr|buted S‘?‘mp'es from some distion
block-based PCA detection algorithm described in [}’EY’ X). The objective is to obtain the best predicfprof y;,
which indicates that the detection performance of tha'c" Zi-1 U {3} . . .

two is approximately equivalent. In conventional recursive Iegst squares (RLS), the d|rqen3|

of the space spanned by the input samglbes xs,...,x;} is
constrained by the dimension of the input space, so cannot
grow indefinitely over time. In contrast, kernel recursieadt
This paper is Organized as follows. Section Il reviews ﬂ'&]uares (KRLS) involves a mapp|ng into a feature space of

Kernel Recursive Least Squares (KRLS) algorithm, which W@uch higher dimensionality than the input space (and plyssib

extend to form the core of our detection procedure. Sectigf infinite dimension). The dimension of the space spanned

C. Outline of Paper

II! presents the KRITS online ano_maly detec_:tion aIgorit_hnby {#(x1), d(x2), ...,d(x¢)} has the potential to increase
discussing computational complexity, the choice of alponi \ithout bound. At each timestep, the dimension will inceeas
parameters, and the relationship with minimum volume sets. t=1

Section IV presents and analyses the performance of Jljessx; satisfies(x;) = l.z ai$(x;). If the dimension

algorithm when applied to data recorded on the Abileriacreases, then the new vect_olr is providing new information
backbone network, and compares performance to the bloakd therefore adding to the predictive power, so it should
based PCA approach. Section V provides concluding remarks, included in the predictor. This leads to the dilemma that
and describes ongoing work and avenues for future researtlte predictor might require storage of a very large number



of input vectors, leading to unreasonably large memory andlgorithm 1: Outline of KRLS anomaly detection
computational requirements. 1 Set thresholdszy, vy |

In defining KRLS, Engel et al. address this problem by 5y + — 1,2,...do

imposing a minimum threshold on the amount of new infor- Data: (x¢, )
mation an input vector must provide before it is added to the  /+ Eval uate current nmeasurement */
predictor [11]. Feature vectagr(x;) is said to beapproximately 5 Compute projection errof; ;
linearly dependent on¢(x1), ¢(x2), ...,0(x¢—1)}, with if 6, > vy then
approximation threshold, if the projection errow, satisfies 5 Raise Redl Alarm ;
the following criterion: 6 else ifv, < &; < v then
i1 7 Raise Ora_mge AIarnxQ)_; _
5, = main ”Z“i b(x) — d(x)||? < v (4) 2 else‘l’emporarlly addx; to dictionaryD;
= 10 Green-lightx,, leaveD unchanged;
KRLS uses (4) to obtain aictionary of input vectors {4 endif
D = {X1,X2,..., X}, Wwherem < t, such thatp(x) = /* Process previous orange alarm */
{6(x1), 6(X2),...,0(Xm)} approximately spans the feature;  if Orange Alarmg,_,) then
space. The best predictgrof y in the feature space of the;5 Evaluate usefulness of,_, over previous’
sparse set¢(x)) can then be evaluated: measurements;
m m 14 if NOT usefulthen
§=_ ;- (d(%)), d(xe)) = Y - kernel(Xj,x¢) (5) 1 Raise Red2 Alarm.);
= = 16 Removex;_, from dictionaryD;
17 else
The weights{«;;j = 1,...,m} are learned by KRLS overig Lower Orange Alarmg;_).
time through successive minimization of prediction erriors 19 endif
the least-squares sense. 20 endif
/* Renpve obsol ete el enents * [
[1l. THE KRLS ANOMALY DETECTIONALGORITHM 21 Evaluate usefulness of each dictionary element over

previousL measurements;
Remove any useless element from dictionary
endfor

Traffic flows in backbone networks have low intrinsig,
dimensionality, and demonstrate strong spatial and teahpgy,
covariance [6]. Consider a set of multivariate “normalffia
measurementgx;;t = 1,2,...,T}. In an appropriately
chosen feature spacg, with an associated kernel function )
kernel(x;, x;), the features corresponding to the normal traf- The Algorithm
fic measurements shoudduister That is, it should be possible  Algorithm 1 provides a high-level overview of our KRLS
to describe the region occupied by the traffic features usingomaly detection algorithm. We include a more complete
a relatively small dictionary of linearly independent eksmts  description in the Appendix. The algorithm operates at each
{#(x;)}. We can construct an approximately equivalent deimestept on a traffic measurement vectoy and an associated
scription by forming a dictionary of elements selected fit scalary;. An example choice fox; is the flow vector (the
input measurementgx, }. The feature vectors correspondinghumber of packets in each source-destination flow, noreliz
to this dictionary will only form an approximately linearlyto the unit hypersphere) and fgr the total number of packets
independent basis, and therefore be somewhat redundant,ibbithe network, as recorded during the measurement interval
the dictionary can be learned on-line directly from the datd corresponding to timestep. In accordance with standard
its sizem will be much less thafl’, leading to computational KRLS [11], the algorithm begins by evaluating the erdr,in
and storage savings. projecting the arrivingk; onto the dictionary (in the feature

We use an extended version of the kernel recursive leastmain). This error measur® is then compared with two
squares (KRLS) algorithm to learn and adapt this dictionathresholds,, and vy, wherev; < vs. If §; < v, we infer
from a set of traffic measurements. The set of measuremethiat x, is sufficiently linearly dependent on (i.e. explained
contains not only “normal” traffic but also anomalous measurby) the dictionary, and represents normal trafficiif> vs,
ment vectors. We therefore require a procedure for identify we conclude that; is far away from the realm of normal
when a measurement vector is anomalous and excludingpéhavior, and immediately raise a “Red1” alarm to signal an
from the dictionary. This procedure is based on the intniticanomaly.
that an anomaly should be distant in the feature space frem th In the remaining case wherg lies betweenv; and vy,
cluster of normal traffic. Once a suitable dictionary hasnbeave infer thatx, is sufficiently linearly independent from the
trained to capture normal traffic, KRLS offers a very naturalictionary to be added, but not far enough away to be immedi-
way of assessing this distance: the projection effaof (4). ately declared an anomaly. In this case, we do the following:




temporarily expand the dictionary to include the new input The complexity using PCA over a block of data of length
vector, declare an “Orange” alarm, track the “usefulneds” ¢ is O(tR?), whereR is the number of principal components
this newly-added dictionary member for a short interim peri [1]. The key point to note here is that the complexity of PCA
(¢ timesteps), and then make a firm decision on the orangea function of time, whereas the KRLS complexity is not.
alarm.

The usefulness of the added dictionary vector is assesseoCoy
trackingkernel(x;,x;) over the time period = t+1,... ¢+ The algorithm requires the setting of a number of constant
¢. If the kernel is large (greater than a threshdjdthen¢(x;) parameters. When the algorithm commences, the dictionary
is close tog(x;). If a significant number of the kernel valueshas not been formed so there is no definition of normality. For
are large, thernx, cannot be considered anomalous; norméhis reason, every vector should be considered for addition
traffic has just migrated into a new portion of the featurecepathe dictionary, i.e., there should be no Redl alarms. During
and we should lower the orange alarm. If almost all kern#is initial training period (we us800 training samples in the
values are small, ther; is a reasonably isolated event, an@xperiments), the value o4 is set tol. In addition, we set the

Parameter Selection

should be heralded as an anomaly. We evaluate: value of/, the time allowed before a decision must be made
on an orange alarm, to be large. During the training period,
Lt we are not interested in rapid declaration of anomalies and
> U(kernel(x;,x;) < d) | > e, (6) care more that the space of normality is correctly deterchine
j=t+l By considering a larger set of vectors for determining the

wherel is the indicator function and € (0,1) is a selected usefulness_ of an |_nput vector, we improve the robustness
of the learning algorithm.

constant. If (6) evaluates true, then we turn the orangeralar During normal operation. the two parameters that have
to green (no anomaly). If not, we elevate it to a “Red2” alarm g n P ' ) P
. o the most direct effect on the detection performance are the
and remove the relevant input vectoy from the dictionary. . .
. thresholds/; andvs. Our experiments have shown that optimal
Removal of elements from the dictionary occurs when a_. .. ) !
. . o ; settings for the thresholds and v, vary for different traffic
Red?2 alarm is raised or when a dictionary element is declared , .
- etrics (such as number of packets, number of bytes, number
obsolete. The latter event occurs after a similar test to . L
- flows, or entropies of destination addresses). However,
above. We periodically perform the same check, but replace . . .
o or the same metric, the performance of a setting remains
¢ by L, a much larger number. It is important to keép . : . ;
: . . . approximately the same across widely-separated time gigerio
relatively small, because it determines the lag-time tkeetor . o .
; . In Section 1V, we analyse the performance variation obthine
anomaly is detected. On the other hand, we do not wish [0 . : )
. . . by different choices. Currently, we do not offer an automati
declare an element obsolete if a short time period occu : _
S C approach for setting the thresholds — this is an area of éutur
where no traffic lies in its vicinity. Thereforé should be X
. : : esearch. Instead, we recommend the procedure of runreéng th
relatively large, allowing short periods of obsolescence . - : .
algonthm over a training set of data with known anomalied an

be ignored. We describe in the appendix the mechanics . : .
. Sl . then setting the values to achieve an acceptable compromise
removing an element from the dictionary. This removal .
etween detection and false alarm rates.

dictionary elements, together with the use of dual thregshol . o . .
. ) . . : Experiments indicate that the algorithm performance is not
and the incorporation of exponential forgetting (see Amjben . - : .
. 2 o particularly sensitive to the choice 6fd, ¢, or L. The choice
are extensions of KRLS beyond the original version in [11]: . .
of ¢ governs a compromise between time-lag to anomaly

declaration and false alarm rate. From a practical pointexy
as statistics are often exported by network monitoring ki
Storage and complexity issues are paramount to onliegery5 minutes, a value of = 20 evaluates to undex hours.
applications. In terms of storage requirements, the maximurhe 20 input vectors usually provide more than enough data
dimensions of the variables that we have to storerare m, to assess the usefulness of a new dictionary element. Indeed
wherem represents the size of the dictionary. We also stocair experiments have shown that for almost all anomalies
onebinary L x m matrix. Our experiments have shown thathat are initially identified as orange alarms, the kerndliea
high sparsity levels are achieved in practice, and theatiaty drops immediately, similar to the example of Fig. 2(c). The
size does not grow indefinitely (30-50 elements is typical). parameterL exerts a similar influence té, but determines
The computational bottlenecks in the KRLS anomaly deteathen obsolete vectors are removed from the dictionary.igm th
tion algorithm are the matrix multiplications (see Algbrit case, there is not such a pressing motive to kesmall, since
2 in the Appendix). When no element is dropped, there ardtas not critical to remove obsolete elements immediatélg.
constant number of multiplications of an x m matrix with chooseL = 100 in the experiments, but any choice in the
an m x 1 column vector. In the rare case that an elemerdange40 — 200 results in similar performance.
is removed from the dictionary, the algorithm must perform The choice ofl determines how close the dictionary element
a multiplication of twom x m matrices. The complexity of must be to an input vector before it is considered useful and
the algorithm is thusD(m?) for every standard timestep andtherefore defines a region of usefulness in the feature space
O(m3) for timesteps when element removal occurs. The appropriate value is dependent on the kernel being used

B. Complexity Analysis



(the kernel implicitly defines a distance measure) and shot 10
lie below the long-term average kernel value of any genuil *© & il gl b da ol o o oL T
dictionary element. The choice can be made based on 10
inspection of kernel values (as depicted in Fig. 2). The wallg © 10"
of ¢ determines what fraction of input vectors must lie withiiZ 3

the region of usefulness. If an element explains more th§~§ 10°
10 percent of the data it should not be considered an anomc  10° ¢
(corresponding te = 0.9). However, if¢ is small, then setting
a slightly smaller value, e.ge,= 0.8, eliminates misses when
a number of similar anomalous events occur in succession 10

istance

Euclidea
d

if the anomaly persists over several timesteps. KRLS p o0 00 0 e 0
PCA e o o oo o o o 00 - (d)
D. Relationship with Minimum Volume Sets OCNME oo s o m  @ooa oo
i ; ; 500 1000 1500 2000
The anomaly detection algorithm we have described ¢ Timestep

fectively identifies aregion of normality that corresponds
to a high-density region of the space, i.e., it contains théo. 1. (a) KRLS projection erraf with dotted line indicating/; and dashed

o ling indicatingrs; (b) magnitude of PCA projection onto the residual subspace
vast majority of the encountered measurement vectors. It& shed line indicates PCA Q-statistic threshold); (c) ®CNsing nth
natural to compare the outcome of the KRLS approach fearest-neighbor distance & 50, dashed line indicates anomaly distance
other approaches for determining high-density regionse Oﬂi")eggd); admtij)(d%gmitior}f at fwhiCh anorlpalies gre deﬂiebzbéi) KRLS,k

: . . s , an , all as functions of time. Dataset: ilene packet-

common approach is the estimation of minimum volum&%ums fimeseries (see Section IV-A).
sets (MVSs) [13]. Given data drawn from some underlying
probability distribution, the MVS estimation problem isfiod B, Results
the minimum volume subsé of the input space such that the

probability that a test point drawn from the distributioadi In our experiments, we set, to be theflow vector at

. o timestept, normalized to the unit hypersphere. The flow vector
outsideS equals a prespecified value[13]. These sets are is defined astf), wherei — 1.2 indicates whether the

known in the MVS literature as density contour clusters. : .
~ . number of packets or IP flows is being measured. We chose
Mufioz and Moguerza propose the One-Class Neighbot . g
. . L - as the associateg} the total amount of traffic in the network:
Machine (OCNM) algorithm for estimating minimum volume

sets in [14]. The OCNM algorithm is a block-based procedure X(1: F,t) F
that provides a binary decision functioh(x;) indicating Xt = IX1:Eo| Yo = Z X(f0)-
whetherx; is a member of the MVS. The algorithm requires Y f=1

the choice of a sparsity measure (a distance funcigr)). This choice exploits clustering due to spatial correlaiom
We have implemented the OCNM algorithm for comparativieetwork traffic [6]. We also performed experiments where
purposes using the-th nearest neighbour distance as thg, was generated by concatenation of several successive
sparsity measure. Our comparison in this paper is purdlgw vectors. This choice also allows detection of anomalous
empirical (see Section 1V). departures from the usual temporal correlation observed in
“normal” network traffic [6]. We did not detect additional
temporal anomalies, so we do not report the results here.
A. Data We ran our KRLS algorithm for various combinations of the
To evaluate our algorithm, we examined performance dhresholds/; andwvs. For the results presented in this paper,
network-wide traffic datasets analyzed by Lakhina et allin [ the default settings for the dropping parameters wkte0.9
This data was collected frorml core routers in the Abilene and L = 100, the tolerance for resolving orange alarms were
backbone network for a week (December 15 to December 21 20 ande = 0.8, and pertain to the no-forgetting & 1)
2003). It comprises two multivariate timeseries, one beireg case (see Appendix). We used a linear kernel, as defined.in (2)
number of packets and the other the number of individudle implemented the OCNM algorithm using theth nearest
IP flows in each of the Abilene backbone flows (the traffineighbour distance as the sparsity measure withet to 50
entering at one core router and exiting at another), binnadd ;. = 0.98.
at 5 minute intervals. Both datasetX(") and X, are of For the dataset comprising the Abilene packet-counts time-
dimensionF' x T', whereT = 2016 is the number of timesteps series, Figs. 1(a) and 1(b) show the variationg,irobtained
and F' = 121 is the number of backbone flows. using KRLS withr; = 0.03,v2 = 0.07, and the magnitude
The anomalies in this dataset were manually identified of the energy in the residual components from PCA using
[1]. Thus we have “ground truth” anomaly annotations againgrincipal components, respectively. For PCA-based angmal
which to compare the output of our KRLS detection algorithnaletection, we use the Q-statistic threshold from [1]. Fig.
We were able to manually identifi9 different anomalies for 1(c) shows the distance measures obtained using the OCNM
the packet-counts timeseries aiddifferent anomalies for the algorithm, together with the threshold indicating the 98%
IP flow-counts timeseries. minimum volume set. The spike positions in Figs. 1(a-c)

IV. EXPERIMENTS
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Fig. 3. Detection versus false-alarm rate tradeoff as atimmof v, for
Fig. 2. Behaviour over time ofernel(X;,x:), whenX; is (top) a normal various sets of fixed/;. Dataset: Abilene packet-counts timeseries.

D member, (middle) &> member that eventually becomes obsolete, and

(bottom) an anomalou® member. In each figure, the dashed line indicates TABLE |

the usefulness threshotil Dataset: Abilene packet-counts timeseries.
DETECTION OF THE19 ANOMALIES IN THE ABILENE PACKET-COUNTS

indicate the anoma"es Signalled by KRLS, PCA and OCNM DATASET FOR VARIOUS REPRESENTATIVE SETTINGS OF; AND vg.
Fig. 1(d) compares the positions of the detected anomalies,

indicating that, for the most part, the three methods detexct vy setting | v setting || Redl | Red2 | Missed || False
same anomalous events. v =0.02 | vp =0.05 12 3 2 3
Using these settings, OCNM flagst of the 19 different v1 =0.02 | v2 =0.06 11 3 3 1
anomalies in the packet timeseries. The anomalous input vec | ¥1 =0.02 | vz =0.07 9 2 6 0
tors thus also exhibit high Euclidearth neighbour distances v1 =0.03 | vp =0.05 16 1 0 5
in the input space. One noticeable difference in the results | 1 =0.03 | v2 =0.06 13 3 1 1
of the three different algorithms occurs aroutid= 1400. v1 =0.03 | v2 =0.07 12 3 2 0
Here OCNM detects a series of anomalies, PCA indicates PCA 16 1 0

nothing abnormal, and the KRL& is unusually low for a
block of time. This is indicative of the subtle differencaghe
three approaches. The block 2 input vectors forms a small C. Detection Performance
cluster. The cluster is sufficiently numerous (and enecyéir

PCA to dedicate a principal component to it, so PCA does n

recognize it as an anomaly. KRLS signals the first vector w-counts timeseries. Note that several of these anomalie
the cluster as an orange alarm, but because there are suﬁicﬂ)%rsist over several measurement intervals. Fig. 3 i

similar vectors immediately th_ereafter, the usefulness i .the detection versus false-alarm tradeoff for the packetits
passed, and the orange alarm is rendered green. The regaiyl

tors in the clust nilar to this first tonich &aset, for various settings of andvs,.
vectors Iin e cluster are very similar to this Tirst vectom) Table | provides a breakdown of detection performance
results in the unusually lovs, values. In contrast, theth

t-neiahb dist ¢ tor in the cluist for the packet-counts dataset and Table Il presents the same
nearest-neighbour distance for every veclor In Ihe CIUSLer; \r 1, ohion for the flow-counts dataset. Most of the anoesali

Iar_ge_(rzls Iar_ger than 26, the_number of vectors in the CIUSteri?re flagged as Redl alarms. The detection rate does not
It is interesting to note that if we sét= 125 ande = 0.75, ; .
KRLS also flags an anomaly. Alternatively, if we reducé¢o monotonically increase ag decreases because does not
25 OCNM de?:laresmoneof t>r11.ese timeste yé as anomalous solely act as a detection threshold, but also determineas, in

i . . . PS a ' n?n-linear fashion, the size of the dictionary and hence the

Fig. 2 depicts the changing behaviour over time of the kerne] . i

- . o region of normality.

valueskernel(X;,x;) for three different types of dictionary
membersk;. Fig. 2(a) depicts the behaviour for a consistently
useful dictionary element; many input vectors are closéi® t
element resulting in high kernel values above the threshold
d. Sudden drops below the threshold correspond primarily

Our objective is to detect th&9 unique anomalies in the
L cket-counts timeseries, and thke unique anomalies in the

TABLE Il
DETECTION OF THE21 ANOMALIES IN THE ABILENE FLOW-COUNTS
DATASET FOR VARIOUS REPRESENTATIVE SETTINGS OF1 AND v2.

to anomalies. Fig. 2(b) shows the behaviour for a dictionary [, setting | v» setting || Redl | Red2 | Missed || False
element that gradually becomes obsolete and is eventually| ,, =0.01 | v, = 0.05 13 3 4 1
discarded. Fig. 2(c) illustrates the case of a Red2 alarre. Th [, =0.02 | v, = 0.06 13 2 5 1
kernel values drop significantly below the threshotinedi- 1 =003 | va =005 18 0 2 1
ately after this element is initially entered into the dictionary 1 =004 | vy =007 18 0 2 1
This input vector is not close to any subsequent vectorst, so i PCA 16 4 0

is flagged as an anomaly aftétimesteps.



x10" ‘ ‘ ‘ ‘ ‘ ‘ component to describing them (bottom panel of Fig. 4(b)).

ng ] The KRLS anomaly algorithm adapts over time and detects
= 1% —r(\"u" the three anomalies.
2 . o
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ V. DISCUSSION ANDFUTURE WORK
05 We have described an on-line anomaly detection algorithm
o 0.3 | based on an extended version of Kernel Recursive Least
Olg oo fredeems oo oo e k¥ X ES Squares (KRLS) that is able to detect anomalous events

850 900 950 1000 1050 1100 1150 1200

Timestep immediately and in real-time. Through analysis of datasets

o . ) recorded on the Abilene network, we have demonstrated that
(a) Top panel: Variation in number of IP flows in Abilene . . .. .
Los Angeles-Chicago backbone flow over time. Bottom panel:  the algorithm achieves similar detection performance ® th
Variation in 6; during the same time-period for, = 0.03 and most effective block-based approaches, but has a faster tim
vz = 0.07 (shown as dashed line). to-detection and lower computational complexity.
The nature of our results raises interesting questionstabou

o

glo ‘ ‘ ‘ ‘ ‘ what should be reported as an anomaly. For example, the
2 1O5M input cluster discussed in Section IV can be viewed as a
2 10 ‘ ) ‘ ‘ ‘ i large time-scale anomaly (in that the traffic is very diffare
5 from anything seen during the rest of the week). At the time-
2 510"f ‘ ‘ ‘ ‘ ‘ ] scale used for analysis in this paper (5-minute intervdls) i
2% WWWWWW persists for 26 timesteps (or two hours), rendering debatab
é”g 10° 500 1000 1200 1400 1600 1800 its labelling as anomalous. In the flow-count data set, we
Timestep observe a 20-hour period during which traffic is fundaméytal
(b) Top panel: Variation in number of IP flows in Abilene New dlﬁerem from the rest of the week. The algorithm preseinted
York-Chicago Backbone Flow over time. Bottom panel: Prijec this paper usually flags such events as orange alarms (unless
of x; onto second principal component over the same interval. the change is radical), which at least draws attention to the

Fig. 4. Example anomalies in the Abilene flow-count data é&).The traffic for fur_ther analysis, but a multiscale anomaly detec
structure of normal traffic shifts dramatically for appnmeitely 240 time steps approach might prove advantageous.
(20 hé)urS)- Tdhel*;ﬁqLSS_ %qgﬁgzlﬁfaﬁggrritgg:] ftlit?s Slel; \gltg%rsdwb;tfg: tir:;}% In this paper, we identify anomalies solely based on the
gﬁ:rtli(())naar; (;(: se?tingzg ’very high. (b) Three ano);nalies occur in the ?P flow-nature ofx;. One of our Imtlal motivations in _sglectlng K_RLS
count dataset on the New York-Chicago backbone flow. Due ¢eoREA as the core of our algorithm was to allow joint detection of
anomaly algorithm’s block-based analysis, it clusterséhegether and forms two types of anomalies. The first type would be flagged when
B e e, Tne anoaies,Jeieutd. 108 x, lay far away from the dictionary-defined normality and
for most threshold settings. the second when the KRLS prediction errgs — y:| was
unusually large. To date, we have not incorporated therlatte
type of anomaly detection because our preliminary anadidis
not indicate that it improved performance. However, furthe
We now examine two types of the anomaly in more detaitvestigation is required to determine whether it can prove
to highlight the differences in behaviour between the blockiseful for alternative choices of.
based approach of PCA and the on-line approach of KRLS.We do not currently present an automatic procedure for
In the first example, we consider a a 20-hour (240 timgetting the thresholds, andv,. Our experiments indicate that
step) period, during which the nature of the network traffioptimal settings for them vary for different traffic metribat
changes fundamentally. This is most evident in the flow-touremain similar over time for the same metric. Both superiise
data set; approximately 20 backbone flows experience st@nd unsupervised learning approaches can be adoptedrto trai
changes in behaviour. The top panel of Figure 4(a) depicthe parameters. In the supervised setting, the algoritmbea
as an example, the number of IP flows in the Abilene Lasin repeatedly over a set of training data with adjustments
Angeles-Chicago backbone flow over time. This change in the thresholds until the detection rate is maximized for
normality is too radical for the KRLS algorithm to makea specified maximum false-alarm rate. In the unsupervised
changes to its dictionary. It flags all the vectors, whichveaey  setting, a minimum volume set approach can be incorporated
similar in nature, as red alarms. In contrast, PCA dedicatts provide pseudo-labels for the data. We are also exploring
one principal component to this block of time and does ntite possibility of dynamically adjusting the thresholds.
indicate any anomalous behaviour. In the second examplel|t is interesting to consider how combinations of the three
we examine the New York-Chicago backbone flow. In thiapproaches we have discussed might perform. For example,
case, there are three sudden spikes where the number oP{PA analysis could be performed on an initial block of
flows increases dramatically (each lasting 3-6 time stees, graining data and the most significant components could be
top panel of Fig. 4(b)). The PCA-based anomaly algorithiesed as the initial KRLS dictionary members. Alternatiyely
clusters these anomalies together and dedicates a pilinctha OCNM algorithm could be applied to provide an initial

D. Anomaly Analysis



definition of the region occupied by normal traffic. Furthefactor. Our KRLS algorithm gradually disregards old data
study is required to develop a better understanding of thleough exponential forgetting, which puts time-dependen
relationships between minimum volume sets and the KRLeights on old observations, leading to a weighted least
dictionary and thresholds. squares problem. The forgetting facter must be chosen
keeping in mind that KRLS effectively uses a data window
of size ﬁ so+y is usually very close td.
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APPENDIX: ALGORITHMIC DETAILS A column of ones is appended t& to represent the new
In this appendixi we present a more detailed description @iptionary vector. The entries are set to one so that theowect
the KRLS anomaly detection algorithm. Matlab code implecannot be deemed obsolete until (approximately) L timestep
menting the algorithm, together with the datasets, is alslgl have passed. Onoe is added tdD;_1, x; becomes perfectly

at [15]. Algorithm 2 presents pseudocode. representable by the elementsZip_;, soa; = (01 ). The
Notation and DefinitionsWe use subscripts with variablesupdate equation for the covariance matix is:

enclosed in square brackets to denote a subset of the rows and 1/P,, O

columns of a matrix. ThuB\]2.5 1.5 refers to the second to fifth P, = 5 < 0T~ ) (11)

rows, and first to fifth columns, of matria. K, represents )
the m; x m; kernel matrix for the vector§(x;)}", that are The least squares weighds are:

in the dictionary at time, i.e., K;. Thus the matrix element - f{t—lptA;FYt (12)
[K]i; = kernel(%;,%;). K; ' is the inverse oK; andk;; = _ _ _
kernel(x;, x;). Py is known as the covariance matrix in RLSVhereY denotes the full history of, for timesteps =1 .
literature and equalSATA]~! where A, is the full ¢ x The recursive update equation @y in terms ofa;_; is then:

matrix of least squares coefficierds= (a1, as, . .., am,). 1~ 1 ( 1 F T = )
: . : e O¢—1 — 52 —v72 k(X)) "y
Algorithm Discussion Gy — YRl — 5 A y]t i t—1(xe) " - A
Lines 1-2 The fixed parameters of the algorithm were o (yt -7 'kt—l(Xt)T'dt—1)

discussed in Section I, with the exceptiongfthe forgetting (13)



Algorithm 2: KRLS Online Anomaly Detection

1
2
3

4

© o N o O

10
11
12
13
14
15
16
17
18
19
20

21
22

23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

Set thresholdsiy, vs ;
Choosey, d, L, I, € ;
Initialize: t =1, D = {x1}, m1 = 1, Ky = [k11],
Ki'=[Ala=£&,Pi=[1,A=[];
for t =2,3,...do
Data: (Xt,yt)
!/ Eval uate current neasurenment */

Computek;_1 (x;) using (7) ;
Seta; = Kt__ll . Et_l(xt) )
Calculate projection errof, = ki — Et_l(xt)T cag |
UpdateA using (8) ;
if 11 < d; < vy then
Raise Orange Alarnx() ;
SetD =D|Jx; anda; = ay;
ComputeK; andK ;! using (9) and (10) ;
SetA=(A 1)anda, = (0 1)";
ComputeP; anda; using (11) and (13) ;
my=my_1+1;
else
if 0; > 1» then
Raise Redl Alarm ;
endif
D, =D, 1, K, =K, 1, K —Kt 1,
my = Mi—1 ,
Computeq;, P, anda; using (14)-(16) ;
endif
/* Process previous orange alarm x/
if Orange alarmg;_,) then
Identify j such thatx; = x;_s;
if Sum([A]L_g+1;L,j) < ¢f then
Convert Orange Alarm to Red2 Alarm ;
Dr opEl erent (j) ;
else
Convert Orange Alarm to Green ;
endif
endif
/+ Renove obsolete el ements * |
if ¢t > L then
for j=1,...,m; do
if sum([A]1.,;) < eL then
Dr opEl errent (j) ;
endif
endfor
endif
endfor

Procedure Dr opEl enent ( p)

AW N P

(6]

Move pth rows & columns ofK,;, K 1 to ends ;

Setd, = 1/[Kt ]mt,mz anda, = 610[Kt ]limt—l,mt ;
Calculatef(;1 and &, using (17) and (18) ;

SetK; = [Rt]lzmtfl,lzmtflu my =my_1 — 1 and

P =10000-1,, ;

Removepth element fromD and pth column fromA; ;

Lines 17-21 These lines correspond to the case of a Redl
alarm ¢: > 1») or green-lighted traffic§ < v1). In either
case the dictionary does not change. The kernel malkix (
and its inverseKK ') remain the same. The covariance matrix
P is updated using the following equation:

1
P, = ; (Ptfl - QtatTPtq) (14)
whereq; is known as the Kalman gain in the RLS literature:
P;_
q = — =22 (15)

v+ aiPi_jay
The least-squares vectéris also updated:

&= a1 + K aq (yt — k1 (%) T 541:—1) . (16)

Lines 23-30 These lines process an orange alarm ratsed
timesteps ago. We evaluate the “usefulness” of the vegtar
by determining its positiory in the dictionary and summing
the values of thg-th column ofA for the previoud timesteps.

If the sum exceeds the threshald then we green-light the
traffic, otherwise we convert the orange alarm to a Red2 alarm
and drop elemenf from the dictionary.

Lines 32-38 These lines evaluate whether any dictionary
element has become obsolete. The test is the same as for the
orange alarm, except it is performed overtimesteps. The
sum of each column ofA measures the usefulness of the
corresponding dictionary element; if it drops beleW, the
element is removed from the dictionary.

Procedure DropElement(p) This procedure removes the
p-th element from the dictionary and makes the necessary
modifications to the variables. The first step is the re-
organization of the rows and columns Bf and K—!, such
that kernels of every other element with thth element is
associated with the last row and column Kf and K.

We then evaluate, and a,, and use them to updafi; '
according to:

= =T
~ ~ apa
K ' = [K; i, —1,10m, -1 — Z()s . (17)
P
The update equation fa¥;, is:
- - 1 3,al -a ~
= Qi — g < —pﬁf 1p > K;ay. (18)

The new optimum weight vect@r; must explain the estimate

7 using one less component. Equation (18) ensures that the
value of the last coefficient in the updatég is 0. The last
component of the updated, may_ thus be truncated, along
with the last row and column oK;'. We now delete the
pth element fromD and decremenm Recalculation of the
covariance matrixP requires full access to the historical data;
instead we choose to rest to a large constant times the
appropriately-sized identity matrix. A value ®6, 000 allows

P sufficient variation in subsequent timesteps. This leads to
faster stability of the algorithm. We have chosen a value of
10, 000 for the constant. Our experiments have shown that the
prediction component of the algorithm stabilizes withinesvf
timesteps.



