
Multivariate Online Anomaly Detection Using
Kernel Recursive Least Squares

Tarem Ahmed and Mark Coates
Department of Electrical and Computer Engineering

McGill University
Montreal, QC, Canada

Email: tarem.ahmed@mail.mcgill.ca, coates@ece.mcgill.ca

Anukool Lakhina
Department of Computer Science

Boston University
Boston, MA, United States
Email: anukool@cs.bu.edu

Abstract— High-speed backbones are continually affected by
network anomalies generated by a wide range of sources, from
malicious denial-of-service attacks and viruses to harmless large
data transfers and accidental equipment failures. Different types
of anomaly affect the network in different ways, and it is difficult
to know a priori how a potential anomaly will exhibit itself in
traffic statistics. In this paper we describe an online, sequential,
anomaly detection algorithm, suitable for use with multivariate
data. The proposed algorithm is based on the kernel version
of the celebrated recursive least squares algorithm. It assumes
no model for network traffic or anomalies, and constructs and
adapts a dictionary of features that approximately spans the
subspace of normal network behaviour. The algorithm raisesan
alarm immediately upon encountering a deviation from the norm.
Through comparison with existing block-based off-line methods
based upon Principal Component Analysis, we demonstrate that
our online algorithm is equally effective but has much faster
time-to-detection and lower computational complexity.

I. I NTRODUCTION

Network traffic is often seen to exhibit sudden deviations
from normal behavior. Some of these aberrations are owing
to malicious network attacks such as Denial-Of-Service or
viruses, whereas others are the result of equipment failures
and accidental outages [1]. Network operators need to be able
to diagnose anomalous behavior in a timely manner, in order
to facilitate a fast response and prevent such occurrences in the
future. Most prior work in anomaly detection has used block-
based methods, which are only suitable for offline applications,
requiring waits of up to hours before alerts occur [1]–[4].
We suggest an alternative approach and propose an online,
recursive algorithm that detects anomalies in multivariate
network-wide data within minutes.

Anomalies have historically been seen to span a wide range
of types and classes, and each class may indicate its presence
on raw statistics in a different manner [1], [2]. Developing
widely-applicable definitions or models of normal network
behaviour and anomalies is very difficult [5]. Our algorithm
learns the behavior of normal traffic, and autonomously adapts
to shifts in the structure of normality itself. We consider the
absence of any parametric model to be a crucial feature. The
disadvantage of a model is that it imposes limitations on
the applicability of an algorithm. Even subtle changes in the
nature of network traffic can render the model inappropriate.
We readily admit that the choice of traffic measurement and

feature space has a strong impact on the performance of
our algorithm and determines what type of anomalies can be
detected. However, we consider that this identification process
is much more robust than model specification.

A. Related Work

Our work builds most closely on the series of works by
Lakhina et al. in [1], [2], [6]. They demonstrate the intrinsic
low-dimensionality of network flows, and the high spatial and
temporal covariance structure between the flows [6]. Lakhina
et al. [1], [2] used the technique of Principal Component
Analysis (PCA) to separate the space occupied by a set
of traffic measurements/metrics into two disjoint subspaces,
corresponding to normal and anomalous behavior, respectively.
They signal an anomaly when the magnitude of the projection
onto the residual, anomalous subspace exceeds a PCA Q-
statistic threshold [1]. The PCA subspace method was shown
to be more effective than EWMA and Fourier approaches in
automatic diagnosis of anomalies [1], and hence forms the
basis of comparison for our work.

Lakhina et al. [6] also suggested an online formulation
of the PCA-based detection algorithm. This involved using
a sliding window implementation to identify the normal and
anomalous subspaces based on a previous block of time.
Our proposed recursive approach is a better alternative for
online applications than straightforward extensions to block-
based methods. The variation in the structure of multivariate
network traffic statistics over time is non-negligible. The
PCA-based detection algorithm is extremely sensitive to the
proper determination of the PCA Q-statistic threshold. We
implemented a sliding window version of PCA and observed
that although the anomalous and normal subspaces remained
relevant over time, using stale measurements to calculate the
PCA Q-statistic threshold resulted in an unacceptable number
of false positives.

Much of the other previous work on on-line network
anomaly detection has been based on network traffic mod-
els [3], [7]. Brutlag uses as an extension of the Holt-Winters
forecasting algorithm, which supports incremental model up-
dating via exponential smoothing [3]. His algorithm defines
a “violation” as an observation that falls outside an interval
(a confidence band), and identifies a “failure” (an anomaly)

when the number of violations within an observation window
exceeds a threshold. Hajji uses a Gaussian mixture model, and
develops an algorithm based on a stochastic approximation
of the Expectation-Maximization (EM) algorithm to obtain
estimates of the model parameters [7].

One of the few examples of real-time anomaly detection
that is not based on an a priori model is the time-based
inductive learning machine approach of Teng et al. [8]. The
inductive learning machine constructs a set of rules based upon
usage patterns. The detection algorithm detects a deviation
when the premise of a rule occurs but the conclusion of the
rule does not follow. The learning algorithm presented in [8]
is computationally intensive and the results are preliminary.
There does not appear to have been further development of
this work, and the paper has had more influence in the field
of intrusion detection [9], [10].

B. Contribution

The following are the primary contributions of this paper:

1) We describe a new recursive, learning approach to per-
forming anomaly detection. In this approach there is no
need to specify a model for normal network behaviour
or anomalies. The user must simply identify a feature
space in which “normal” traffic measurements or metrics
display clustering behaviour.

2) We develop a sequential, real-time anomaly detection
algorithm that incrementally constructs and maintains a
dictionary of input vectors which defines the region of
normal behaviour. The dictionary adapts over time to ad-
dress changes in the structure of normal traffic, with new
elements being added as the normality region expands
or migrates and obsolete members being deleted. Our
extended version of the Kernel Recursive Least Squares
(KRLS) algorithm [11] forms the core of the algorithm.

3) We analyze computational complexity and examine re-
lationships with minimum volume set approaches for
identification of dense regions in a feature space.

4) We provide a comparative study on real data of our
proposed KRLS anomaly detection algorithm and the
block-based PCA detection algorithm described in [1],
which indicates that the detection performance of the
two is approximately equivalent.

C. Outline of Paper

This paper is organized as follows. Section II reviews the
Kernel Recursive Least Squares (KRLS) algorithm, which we
extend to form the core of our detection procedure. Section
III presents the KRLS online anomaly detection algorithm,
discussing computational complexity, the choice of algorithm
parameters, and the relationship with minimum volume sets.
Section IV presents and analyses the performance of our
algorithm when applied to data recorded on the Abilene
backbone network, and compares performance to the block-
based PCA approach. Section V provides concluding remarks,
and describes ongoing work and avenues for future research.

II. BACKGROUND

A. Kernel Recursive Least Squares

The recursive least squares algorithm is a popular method
of obtaining linear predictors of a data sequence [12]. It is
suitable for on-line learning scenarios as it observes input sam-
ples sequentially and has modest storage and computational
requirements. It does not need to store historical data and its
computational cost per time-step is independent of time.

Kernel machines use a kernel mapping function to produce
non-linear and non-parametric learning algorithms [13]. The
idea behind kernel machines is that a suitable kernel function,
when applied to a pair of input data vectors, may be interpreted
as an inner product in a high dimensional Hilbert space known
as the feature space [11]. This allows inner products in the
feature space (inner products of thefeature vectors) to be
computed without explicit knowledge of the feature vectors
themselves, by simply evaluating the kernel function:

kernel(xi,xj) = 〈φ(xi), φ(xj)〉 (1)

wherexi,xj denote input vectors, andφ represents the map-
ping onto the feature space.

Popular kernel functions include the Gaussian kernel with
variance σ2: kernel(x1,x2) = exp{− ‖x1−x2‖

2

2σ2 } and the
polynomial kernel of degreed: kernel(x1,x2) = (a〈x1,x2〉+
b)d [13]. A special case of the polynomial kernel is the linear
kernel:

kernel(x1,x2) = 〈x1,x2〉. (2)

Note that the linear kernel is simply the inner product (dot
product) of its arguments.

The Kernel Recursive Least Squares (KRLS) algorithm
combines the principles of recursive least squares and kernel
machines, providing an efficient and non-parametric approach
for performing online data mining and anomaly diagnosis. The
algorithm operates on a data sequence of the form:

Zt = {(x1, y1), (x2, y2), . . . , (xt, yt)} (3)

where the input-output pairs(x1, y1) are assumed to be inde-
pendent, identically distributed samples from some distribution
p(Y,X). The objective is to obtain the best predictorŷt of yt,
givenZt−1

⋃

{xt}.
In conventional recursive least squares (RLS), the dimension

of the space spanned by the input samples{x1,x2, . . . ,xt} is
constrained by the dimension of the input space, so cannot
grow indefinitely over time. In contrast, kernel recursive least
squares (KRLS) involves a mapping into a feature space of
much higher dimensionality than the input space (and possibly
of infinite dimension). The dimension of the space spanned
by {φ(x1), φ(x2), . . . , φ(xt)} has the potential to increase
without bound. At each timestep, the dimension will increase

unlessxt satisfiesφ(xt) =
t−1
∑

i=1

aiφ(xi). If the dimension

increases, then the new vector is providing new information
and therefore adding to the predictive power, so it should
be included in the predictor. This leads to the dilemma that
the predictor might require storage of a very large number

of input vectors, leading to unreasonably large memory and
computational requirements.

In defining KRLS, Engel et al. address this problem by
imposing a minimum threshold on the amount of new infor-
mation an input vector must provide before it is added to the
predictor [11]. Feature vectorφ(xt) is said to beapproximately
linearly dependent on{φ(x1), φ(x2), . . . , φ(xt−1)}, with
approximation thresholdν, if the projection errorδt satisfies
the following criterion:

δt = min
a

‖
t−1
∑

i=1

ai · φ(xi) − φ(xt)‖
2 < ν. (4)

KRLS uses (4) to obtain adictionary of input vectors
D = {x̃1, x̃2, . . . , x̃m}, where m < t, such thatφ(x̃) =
{φ(x̃1), φ(x̃2), . . . , φ(x̃m)} approximately spans the feature
space. The best predictor̂y of y in the feature space of the
sparse set (φ(x̃)) can then be evaluated:

ŷ =
m
∑

j=1

αj · 〈φ(x̃j), φ(xt)〉 =
m
∑

j=1

αj · kernel(x̃j ,xt) (5)

The weights{αj ; j = 1, . . . , m} are learned by KRLS over
time through successive minimization of prediction errorsin
the least-squares sense.

III. T HE KRLS ANOMALY DETECTION ALGORITHM

Traffic flows in backbone networks have low intrinsic
dimensionality, and demonstrate strong spatial and temporal
covariance [6]. Consider a set of multivariate “normal” traffic
measurements{xt; t = 1, 2, . . . , T}. In an appropriately
chosen feature spaceF , with an associated kernel function
kernel(xi,xj), the features corresponding to the normal traf-
fic measurements shouldcluster. That is, it should be possible
to describe the region occupied by the traffic features using
a relatively small dictionary of linearly independent elements
{φ(xi)}. We can construct an approximately equivalent de-
scription by forming a dictionary of elements selected fromthe
input measurements{xt}. The feature vectors corresponding
to this dictionary will only form an approximately linearly
independent basis, and therefore be somewhat redundant, but
the dictionary can be learned on-line directly from the dataand
its sizem will be much less thanT , leading to computational
and storage savings.

We use an extended version of the kernel recursive least
squares (KRLS) algorithm to learn and adapt this dictionary
from a set of traffic measurements. The set of measurements
contains not only “normal” traffic but also anomalous measure-
ment vectors. We therefore require a procedure for identifying
when a measurement vector is anomalous and excluding it
from the dictionary. This procedure is based on the intuition
that an anomaly should be distant in the feature space from the
cluster of normal traffic. Once a suitable dictionary has been
trained to capture normal traffic, KRLS offers a very natural
way of assessing this distance: the projection errorδt of (4).

Algorithm 1 : Outline of KRLS anomaly detection

Set thresholds:ν1, ν2 ;1

for t = 1, 2, . . . do2

Data: (xt, yt)
/* Evaluate current measurement */
Compute projection errorδt ;3

if δt > ν2 then4

Raise Red1 Alarm ;5

else if ν1 < δt < ν2 then6

Raise Orange Alarm(xt) ;7

Temporarily addxt to dictionaryD;8

else9

Green-lightxt, leaveD unchanged;10

endif11

/* Process previous orange alarm */
if Orange Alarm(xt−ℓ) then12

Evaluate usefulness ofxt−ℓ over previousℓ13

measurements;
if NOT usefulthen14

Raise Red2 Alarm(xt−ℓ);15

Removext−ℓ from dictionaryD;16

else17

Lower Orange Alarm(xt−ℓ).18

endif19

endif20

/* Remove obsolete elements */
Evaluate usefulness of each dictionary element over21

previousL measurements;
Remove any useless element from dictionaryD;22

endfor23

A. The Algorithm

Algorithm 1 provides a high-level overview of our KRLS
anomaly detection algorithm. We include a more complete
description in the Appendix. The algorithm operates at each
timestept on a traffic measurement vectorxt and an associated
scalaryt. An example choice forxt is the flow vector (the
number of packets in each source-destination flow, normalized
to the unit hypersphere) and foryt the total number of packets
in the network, as recorded during the measurement interval
corresponding to timestept. In accordance with standard
KRLS [11], the algorithm begins by evaluating the error,δt, in
projecting the arrivingxt onto the dictionary (in the feature
domain). This error measureδt is then compared with two
thresholds,ν1 and ν2, whereν1 < ν2. If δt < ν1, we infer
that xt is sufficiently linearly dependent on (i.e. explained
by) the dictionary, and represents normal traffic. Ifδt > ν2,
we conclude thatxt is far away from the realm of normal
behavior, and immediately raise a “Red1” alarm to signal an
anomaly.

In the remaining case whereδt lies betweenν1 and ν2,
we infer thatxt is sufficiently linearly independent from the
dictionary to be added, but not far enough away to be immedi-
ately declared an anomaly. In this case, we do the following:

temporarily expand the dictionary to include the new input
vector, declare an “Orange” alarm, track the “usefulness” of
this newly-added dictionary member for a short interim period
(ℓ timesteps), and then make a firm decision on the orange
alarm.

The usefulness of the added dictionary vector is assessed by
trackingkernel(xt,xj) over the time periodi = t+1, . . . , t+
ℓ. If the kernel is large (greater than a thresholdd), thenφ(xt)
is close toφ(xj). If a significant number of the kernel values
are large, thenxt cannot be considered anomalous; normal
traffic has just migrated into a new portion of the feature space
and we should lower the orange alarm. If almost all kernel
values are small, thenxt is a reasonably isolated event, and
should be heralded as an anomaly. We evaluate:





t+ℓ
∑

j=t+1

I(kernel(xt,xj) < d)



 > ǫℓ, (6)

whereI is the indicator function andǫ ∈ (0, 1) is a selected
constant. If (6) evaluates true, then we turn the orange alarm
to green (no anomaly). If not, we elevate it to a “Red2” alarm,
and remove the relevant input vectorxt from the dictionary.

Removal of elements from the dictionary occurs when a
Red2 alarm is raised or when a dictionary element is declared
obsolete. The latter event occurs after a similar test to (6)
above. We periodically perform the same check, but replace
ℓ by L, a much larger number. It is important to keepℓ
relatively small, because it determines the lag-time before an
anomaly is detected. On the other hand, we do not wish to
declare an element obsolete if a short time period occurs
where no traffic lies in its vicinity. ThereforeL should be
relatively large, allowing short periods of obsolescence to
be ignored. We describe in the appendix the mechanics of
removing an element from the dictionary. This removal of
dictionary elements, together with the use of dual thresholds
and the incorporation of exponential forgetting (see Appendix)
are extensions of KRLS beyond the original version in [11].

B. Complexity Analysis

Storage and complexity issues are paramount to online
applications. In terms of storage requirements, the maximum
dimensions of the variables that we have to store arem×m,
wherem represents the size of the dictionary. We also store
one binary L × m matrix. Our experiments have shown that
high sparsity levels are achieved in practice, and the dictionary
size does not grow indefinitely (30-50 elements is typical).

The computational bottlenecks in the KRLS anomaly detec-
tion algorithm are the matrix multiplications (see Algorithm
2 in the Appendix). When no element is dropped, there are a
constant number of multiplications of anm × m matrix with
an m × 1 column vector. In the rare case that an element
is removed from the dictionary, the algorithm must perform
a multiplication of twom × m matrices. The complexity of
the algorithm is thusO(m2) for every standard timestep and
O(m3) for timesteps when element removal occurs.

The complexity using PCA over a block of data of length
t is O(tR2), whereR is the number of principal components
[1]. The key point to note here is that the complexity of PCA
is a function of time, whereas the KRLS complexity is not.

C. Parameter Selection

The algorithm requires the setting of a number of constant
parameters. When the algorithm commences, the dictionary
has not been formed so there is no definition of normality. For
this reason, every vector should be considered for additionto
the dictionary, i.e., there should be no Red1 alarms. During
this initial training period (we use300 training samples in the
experiments), the value ofν2 is set to1. In addition, we set the
value of ℓ, the time allowed before a decision must be made
on an orange alarm, to be large. During the training period,
we are not interested in rapid declaration of anomalies and
care more that the space of normality is correctly determined.
By considering a larger set of vectors for determining the
“usefulness” of an input vector, we improve the robustness
of the learning algorithm.

During normal operation, the two parameters that have
the most direct effect on the detection performance are the
thresholdsν1 andν2. Our experiments have shown that optimal
settings for the thresholdsν1 andν2 vary for different traffic
metrics (such as number of packets, number of bytes, number
of flows, or entropies of destination addresses). However,
for the same metric, the performance of a setting remains
approximately the same across widely-separated time periods.
In Section IV, we analyse the performance variation obtained
by different choices. Currently, we do not offer an automatic
approach for setting the thresholds — this is an area of future
research. Instead, we recommend the procedure of running the
algorithm over a training set of data with known anomalies and
then setting the values to achieve an acceptable compromise
between detection and false alarm rates.

Experiments indicate that the algorithm performance is not
particularly sensitive to the choice ofℓ, d, ǫ, or L. The choice
of ℓ governs a compromise between time-lag to anomaly
declaration and false alarm rate. From a practical point of view,
as statistics are often exported by network monitoring devices
every5 minutes, a value ofℓ = 20 evaluates to under2 hours.
The 20 input vectors usually provide more than enough data
to assess the usefulness of a new dictionary element. Indeed,
our experiments have shown that for almost all anomalies
that are initially identified as orange alarms, the kernel value
drops immediately, similar to the example of Fig. 2(c). The
parameterL exerts a similar influence toℓ, but determines
when obsolete vectors are removed from the dictionary. In this
case, there is not such a pressing motive to keepL small, since
it is not critical to remove obsolete elements immediately.We
chooseL = 100 in the experiments, but any choice in the
range40 − 200 results in similar performance.

The choice ofd determines how close the dictionary element
must be to an input vector before it is considered useful and
therefore defines a region of usefulness in the feature space.
The appropriate value is dependent on the kernel being used

(the kernel implicitly defines a distance measure) and should
lie below the long-term average kernel value of any genuine
dictionary element. The choice can be made based on an
inspection of kernel values (as depicted in Fig. 2). The value
of ǫ determines what fraction of input vectors must lie within
the region of usefulness. If an element explains more than
10 percent of the data it should not be considered an anomaly
(corresponding toǫ = 0.9). However, ifℓ is small, then setting
a slightly smaller value, e.g.,ǫ = 0.8, eliminates misses when
a number of similar anomalous events occur in succession or
if the anomaly persists over several timesteps.

D. Relationship with Minimum Volume Sets

The anomaly detection algorithm we have described ef-
fectively identifies aregion of normality that corresponds
to a high-density region of the space, i.e., it contains the
vast majority of the encountered measurement vectors. It is
natural to compare the outcome of the KRLS approach to
other approaches for determining high-density regions. One
common approach is the estimation of minimum volume
sets (MVSs) [13]. Given data drawn from some underlying
probability distribution, the MVS estimation problem is tofind
the minimum volume subsetS of the input space such that the
probability that a test point drawn from the distribution lies
outsideS equals a prespecified valueµ [13]. These sets are
known in the MVS literature as density contour clusters.

Muñoz and Moguerza propose the One-Class Neighbor
Machine (OCNM) algorithm for estimating minimum volume
sets in [14]. The OCNM algorithm is a block-based procedure
that provides a binary decision functionh(xt) indicating
whetherxt is a member of the MVS. The algorithm requires
the choice of a sparsity measure (a distance function)g(xt).
We have implemented the OCNM algorithm for comparative
purposes using then-th nearest neighbour distance as the
sparsity measure. Our comparison in this paper is purely
empirical (see Section IV).

IV. EXPERIMENTS

A. Data

To evaluate our algorithm, we examined performance on
network-wide traffic datasets analyzed by Lakhina et al. in [1].
This data was collected from11 core routers in the Abilene
backbone network for a week (December 15 to December 21,
2003). It comprises two multivariate timeseries, one beingthe
number of packets and the other the number of individual
IP flows in each of the Abilene backbone flows (the traffic
entering at one core router and exiting at another), binned
at 5 minute intervals. Both datasets,X(1) and X(2), are of
dimensionF ×T , whereT = 2016 is the number of timesteps
andF = 121 is the number of backbone flows.

The anomalies in this dataset were manually identified in
[1]. Thus we have “ground truth” anomaly annotations against
which to compare the output of our KRLS detection algorithm.
We were able to manually identify19 different anomalies for
the packet-counts timeseries and21 different anomalies for the
IP flow-counts timeseries.

10
−2

10
−1

δ (a)

10
9

10
11

M
ag

ni
tu

de
 o

f r
es

id
ua

l

(b)

10
−1

10
0

E
uc

lid
ea

n
 d

is
ta

nc
e

(c)

500 1000 1500 2000

KRLS

PCA

OCNM

Timestep

(d)

Fig. 1. (a) KRLS projection errorδ with dotted line indicatingν1 and dashed
line indicatingν2; (b) magnitude of PCA projection onto the residual subspace
(dashed line indicates PCA Q-statistic threshold); (c) OCNM using nth
nearest-neighbor distance (n = 50, dashed line indicates anomaly distance
threshold); and (d) positions at which anomalies are detected by (⋄) KRLS,
(o) PCA, and (�) OCNM, all as functions of time. Dataset: Abilene packet-
counts timeseries (see Section IV-A).

B. Results

In our experiments, we setxt to be the flow vector at
timestept, normalized to the unit hypersphere. The flow vector
is defined asX(i)

t , where i = 1, 2 indicates whether the
number of packets or IP flows is being measured. We chose
as the associatedyt the total amount of traffic in the network:

xt =
X(1 : F, t)

‖X(1 : F, t)‖
, yt =

F
∑

f=1

X(f, t).

This choice exploits clustering due to spatial correlations in
network traffic [6]. We also performed experiments where
xt was generated by concatenation of several successive
flow vectors. This choice also allows detection of anomalous
departures from the usual temporal correlation observed in
“normal” network traffic [6]. We did not detect additional
temporal anomalies, so we do not report the results here.

We ran our KRLS algorithm for various combinations of the
thresholdsν1 andν2. For the results presented in this paper,
the default settings for the dropping parameters wered = 0.9
andL = 100, the tolerance for resolving orange alarms were
l = 20 and ǫ = 0.8, and pertain to the no-forgetting (γ = 1)
case (see Appendix). We used a linear kernel, as defined in (2).
We implemented the OCNM algorithm using then-th nearest
neighbour distance as the sparsity measure withn set to 50
andµ = 0.98.

For the dataset comprising the Abilene packet-counts time-
series, Figs. 1(a) and 1(b) show the variations inδt obtained
using KRLS withν1 = 0.03, ν2 = 0.07, and the magnitude
of the energy in the residual components from PCA using4
principal components, respectively. For PCA-based anomaly
detection, we use the Q-statistic threshold from [1]. Fig.
1(c) shows the distance measures obtained using the OCNM
algorithm, together with the threshold indicating the 98%
minimum volume set. The spike positions in Figs. 1(a-c)

0.8

0.9

1

K
er

ne
l v

al
ue

0.8

0.9

1

K
er

ne
l v

al
ue

1000 1250 1500 1750 2000

0.8

0.9

1

Timestep

K
er

ne
l v

al
ue

Fig. 2. Behaviour over time ofkernel(x̃j ,xt), whenx̃j is (top) a normal
D member, (middle) aD member that eventually becomes obsolete, and
(bottom) an anomalousD member. In each figure, the dashed line indicates
the usefulness thresholdd. Dataset: Abilene packet-counts timeseries.

indicate the anomalies signalled by KRLS, PCA and OCNM.
Fig. 1(d) compares the positions of the detected anomalies,
indicating that, for the most part, the three methods detectthe
same anomalous events.

Using these settings, OCNM flags14 of the 19 different
anomalies in the packet timeseries. The anomalous input vec-
tors thus also exhibit high Euclideannth neighbour distances
in the input space. One noticeable difference in the results
of the three different algorithms occurs aroundt = 1400.
Here OCNM detects a series of anomalies, PCA indicates
nothing abnormal, and the KRLSδt is unusually low for a
block of time. This is indicative of the subtle differences in the
three approaches. The block of26 input vectors forms a small
cluster. The cluster is sufficiently numerous (and energetic) for
PCA to dedicate a principal component to it, so PCA does not
recognize it as an anomaly. KRLS signals the first vector in
the cluster as an orange alarm, but because there are sufficient
similar vectors immediately thereafter, the usefulness test is
passed, and the orange alarm is rendered green. The remaining
vectors in the cluster are very similar to this first vector, which
results in the unusually lowδt values. In contrast, thenth
nearest-neighbour distance for every vector in the clusteris
large (n is larger than 26, the number of vectors in the cluster).
It is interesting to note that if we setℓ = 125 and ǫ = 0.75,
KRLS also flags an anomaly. Alternatively, if we reducen to
25, OCNM declaresnoneof these timesteps as anomalous.

Fig. 2 depicts the changing behaviour over time of the kernel
valueskernel(x̃j ,xt) for three different types of dictionary
members̃xj . Fig. 2(a) depicts the behaviour for a consistently
useful dictionary element; many input vectors are close to this
element resulting in high kernel values above the threshold
d. Sudden drops below the threshold correspond primarily
to anomalies. Fig. 2(b) shows the behaviour for a dictionary
element that gradually becomes obsolete and is eventually
discarded. Fig. 2(c) illustrates the case of a Red2 alarm. The
kernel values drop significantly below the thresholdimmedi-
ately after this element is initially entered into the dictionary.
This input vector is not close to any subsequent vectors, so it
is flagged as an anomaly afterℓ timesteps.

0 5 10 15
75

80

85

90

95

100

False Alarm Rate (%)

D
et

ec
tio

n
R

at
e

(%
) ν

2
 = 0.06

ν
2
 = 0.07

ν
2
 = 0.05

ν
1
=0.01

ν
1
=0.02

ν
1
=0.03

Fig. 3. Detection versus false-alarm rate tradeoff as a function of ν2, for
various sets of fixedν1. Dataset: Abilene packet-counts timeseries.

TABLE I

DETECTION OF THE19 ANOMALIES IN THE ABILENE PACKET-COUNTS

DATASET FOR VARIOUS REPRESENTATIVE SETTINGS OFν1 AND ν2 .

ν1 setting ν2 setting Red1 Red2 Missed False

ν1 = 0.02 ν2 = 0.05 12 3 2 3

ν1 = 0.02 ν2 = 0.06 11 3 3 1

ν1 = 0.02 ν2 = 0.07 9 2 6 0

ν1 = 0.03 ν2 = 0.05 16 1 0 5

ν1 = 0.03 ν2 = 0.06 13 3 1 1

ν1 = 0.03 ν2 = 0.07 12 3 2 0

PCA 16 1 0

C. Detection Performance

Our objective is to detect the19 unique anomalies in the
packet-counts timeseries, and the21 unique anomalies in the
flow-counts timeseries. Note that several of these anomalies
persist over several measurement intervals. Fig. 3 illustrates
the detection versus false-alarm tradeoff for the packet-counts
dataset, for various settings ofν1 andν2.

Table I provides a breakdown of detection performance
for the packet-counts dataset and Table II presents the same
information for the flow-counts dataset. Most of the anomalies
are flagged as Red1 alarms. The detection rate does not
monotonically increase asν1 decreases becauseν1 does not
solely act as a detection threshold, but also determines, ina
non-linear fashion, the size of the dictionary and hence the
region of normality.

TABLE II

DETECTION OF THE21 ANOMALIES IN THE ABILENE FLOW-COUNTS

DATASET FOR VARIOUS REPRESENTATIVE SETTINGS OFν1 AND ν2 .

ν1 setting ν2 setting Red1 Red2 Missed False

ν1 = 0.01 ν2 = 0.05 13 3 4 1

ν1 = 0.02 ν2 = 0.06 13 2 5 1

ν1 = 0.03 ν2 = 0.05 18 0 2 1

ν1 = 0.04 ν2 = 0.07 18 0 2 1

PCA 16 4 0

0

1

2

x 10
4

N
o.

 fl
ow

s

850 900 950 1000 1050 1100 1150 1200
0.1
0.3
0.5

δ

Timestep

(a) Top panel: Variation in number of IP flows in Abilene
Los Angeles-Chicago backbone flow over time. Bottom panel:
Variation in δt during the same time-period forν1 = 0.03 and
ν2 = 0.07 (shown as dashed line).

10
4

10
5

10
6

N
o.

 fl
ow

s

800 1000 1200 1400 1600 1800
10

0

10
10

M
ag

ni
tu

de
 o

f
 p

ro
je

ct
io

n

Timestep

(b) Top panel: Variation in number of IP flows in Abilene New
York-Chicago Backbone Flow over time. Bottom panel: Projection
of xt onto second principal component over the same interval.

Fig. 4. Example anomalies in the Abilene flow-count data set.(a) The
structure of normal traffic shifts dramatically for approximately 240 time steps
(20 hours). The KRLS anomaly algorithm flags all vectors during this time
period as red alarms; this behaviour can only be avoided by resetting the
dictionary or settingν2 very high. (b) Three anomalies occur in the IP flow-
count dataset on the New York-Chicago backbone flow. Due to the PCA
anomaly algorithm’s block-based analysis, it clusters these together and forms
a principal component to describe them. The anomalies go undetected. The
KRLS anomaly algorithm adapts over time and identifies all three as anomalies
for most threshold settings.

D. Anomaly Analysis

We now examine two types of the anomaly in more detail
to highlight the differences in behaviour between the block-
based approach of PCA and the on-line approach of KRLS.
In the first example, we consider a a 20-hour (240 time
step) period, during which the nature of the network traffic
changes fundamentally. This is most evident in the flow-count
data set; approximately 20 backbone flows experience step-
changes in behaviour. The top panel of Figure 4(a) depicts,
as an example, the number of IP flows in the Abilene Los
Angeles-Chicago backbone flow over time. This change in
normality is too radical for the KRLS algorithm to make
changes to its dictionary. It flags all the vectors, which arevery
similar in nature, as red alarms. In contrast, PCA dedicates
one principal component to this block of time and does not
indicate any anomalous behaviour. In the second example,
we examine the New York-Chicago backbone flow. In this
case, there are three sudden spikes where the number of IP
flows increases dramatically (each lasting 3-6 time steps, see
top panel of Fig. 4(b)). The PCA-based anomaly algorithm
clusters these anomalies together and dedicates a principal

component to describing them (bottom panel of Fig. 4(b)).
The KRLS anomaly algorithm adapts over time and detects
the three anomalies.

V. D ISCUSSION ANDFUTURE WORK

We have described an on-line anomaly detection algorithm
based on an extended version of Kernel Recursive Least
Squares (KRLS) that is able to detect anomalous events
immediately and in real-time. Through analysis of datasets
recorded on the Abilene network, we have demonstrated that
the algorithm achieves similar detection performance to the
most effective block-based approaches, but has a faster time-
to-detection and lower computational complexity.

The nature of our results raises interesting questions about
what should be reported as an anomaly. For example, the
input cluster discussed in Section IV can be viewed as a
large time-scale anomaly (in that the traffic is very different
from anything seen during the rest of the week). At the time-
scale used for analysis in this paper (5-minute intervals) it
persists for 26 timesteps (or two hours), rendering debatable
its labelling as anomalous. In the flow-count data set, we
observe a 20-hour period during which traffic is fundamentally
different from the rest of the week. The algorithm presentedin
this paper usually flags such events as orange alarms (unless
the change is radical), which at least draws attention to the
traffic for further analysis, but a multiscale anomaly detection
approach might prove advantageous.

In this paper, we identify anomalies solely based on the
nature ofxt. One of our initial motivations in selecting KRLS
as the core of our algorithm was to allow joint detection of
two types of anomalies. The first type would be flagged when
xt lay far away from the dictionary-defined normality and
the second when the KRLS prediction error|ŷt − yt| was
unusually large. To date, we have not incorporated the latter
type of anomaly detection because our preliminary analysisdid
not indicate that it improved performance. However, further
investigation is required to determine whether it can prove
useful for alternative choices ofyt.

We do not currently present an automatic procedure for
setting the thresholdsν1 andν2. Our experiments indicate that
optimal settings for them vary for different traffic metricsbut
remain similar over time for the same metric. Both supervised
and unsupervised learning approaches can be adopted to train
the parameters. In the supervised setting, the algorithm can be
run repeatedly over a set of training data with adjustments
to the thresholds until the detection rate is maximized for
a specified maximum false-alarm rate. In the unsupervised
setting, a minimum volume set approach can be incorporated
to provide pseudo-labels for the data. We are also exploring
the possibility of dynamically adjusting the thresholds.

It is interesting to consider how combinations of the three
approaches we have discussed might perform. For example,
PCA analysis could be performed on an initial block of
training data and the most significant components could be
used as the initial KRLS dictionary members. Alternatively,
the OCNM algorithm could be applied to provide an initial

definition of the region occupied by normal traffic. Further
study is required to develop a better understanding of the
relationships between minimum volume sets and the KRLS
dictionary and thresholds.

REFERENCES

[1] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic
anomalies,” inProc. ACM SIGCOMM, Portland, OR, Aug. 2004.

[2] ——, “Mining anomalies using traffic feature distributions,” in Proc.
ACM SIGCOMM, Philadelphia, PA, Aug. 2005.

[3] J. Brutlag, “Aberrant behavior detection in time seriesfor network
monitoring,” in Proc. USENIX Fourteenth System Admin. Conf. LISA
XIV, New Orleans, LA, Dec. 2000.

[4] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of
network traffic anomalies,” inProc. Internet Measurement Workshop,
Marseille, France, Nov. 2002.

[5] L. LaBarre, “Management by exception: OSI event generation, reporting,
and logging,” in Proc. Int. Symp. Integrated Network Management,
Washington, DC, Apr. 1991.

[6] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. Kolaczyk, and
N. Taft, “Structural analysis of network traffic flows,” inProc. ACM
SIGMETRICS, New York, NY, Jun. 2004.

[7] H. Hajji, “Statistical analysis of network traffic for adaptive faults
detection,”IEEE Trans. Neural Networks, vol. 16, no. 5, pp. 1053–1063,
Sep. 2005.

[8] H. Teng, K. Chen, and S. Lu, “Adaptive real-time anomaly detection
using inductively generated sequential patterns,” inProc. IEEE Comp.
Soc. Symp. Research in Security and Privacy, Oakland, CA, May 1990.

[9] T. Lane, “Machine learning techniques for the computer security do-
main of anomaly detection,” Ph.D. dissertation, Purdue University, W.
Lafayette, IN, Aug. 2000.

[10] K. Ilgun, R. Kemmerer, and P. Porras, “State TransitionAnalysis: A
Rule-Based Intrusion Detection Approach,”IEEE Trans. Software Eng.,
vol. 21, no. 3, pp. 181–199, Mar. 1995.

[11] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least squares
algorithm,” IEEE Trans. Signal Proc., vol. 52, no. 8, pp. 2275–2285,
Aug. 2004.

[12] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,Introduction to
Algorithms, 2nd ed. Cambridge, MA: MIT Press, Sep. 2001.

[13] B. Schölkopf and A. Smola,Learning with Kernels. Cambridge, MA:
MIT Press, Dec. 2001.

[14] A. Muñoz and J. Moguerza, “Estimating of high-densityregions using
one-class neighbor machines,”IEEE Trans. Pattern Anal. Machine
Intell., vol. 28, no. 3, pp. 476–480, Mar. 2006.

[15] T. Ahmed and M. Coates. Online sequential diagnosis of network
anomalies. Project Description. [Online]. Available: http://www.tsp.ece.
mcgill.ca/Networks/projects/projdesc-anom-tarem.html

APPENDIX: ALGORITHMIC DETAILS

In this appendix, we present a more detailed description of
the KRLS anomaly detection algorithm. Matlab code imple-
menting the algorithm, together with the datasets, is available
at [15]. Algorithm 2 presents pseudocode.

Notation and Definitions: We use subscripts with variables
enclosed in square brackets to denote a subset of the rows and
columns of a matrix. Thus[Λ]2:5,1:5 refers to the second to fifth
rows, and first to fifth columns, of matrixΛ. K̃t represents
the mt ×mt kernel matrix for the vectors{(x̃j)}

mt

j=1 that are
in the dictionary at timet, i.e., K̃t. Thus the matrix element
[K̃t]i,j = kernel(x̃i, x̃j). K̃

−1
t is the inverse of̃Kt andktt =

kernel(xt,xt). Pt is known as the covariance matrix in RLS
literature and equals[ATA]−1 whereAt is the full t × mt

matrix of least squares coefficientsa = (a1, a2, . . . , amt
).

Algorithm Discussion:
Lines 1-2: The fixed parameters of the algorithm were

discussed in Section III, with the exception ofγ, the forgetting

factor. Our KRLS algorithm gradually disregards old data
through exponential forgetting, which puts time-dependent
weights on old observations, leading to a weighted least
squares problem. The forgetting factorγ must be chosen
keeping in mind that KRLS effectively uses a data window
of size 1

1−γ
, so γ is usually very close to1.

Line 3: At timestep 1, initialization occurs. The first input
vector is added to the dictionary, the kernel matrix and its
inverse are initialized, the initialα value is calculated, and the
covariance andΛ matrices are set to 1.

Lines 5-7: Upon receiving each input vector, the projection
errorδt is evaluated. The first step in this process is the calcu-
lation of the kernel values for the current input measurement:

[k̃t−1(xt)]j = kernel (xt,D{j}) for j = 1, . . . , mt−1 (7)

This allows computation of the sparsification vectorat and
subsequentlyδt.

Line 8: The j-th column of the binary matrixΛ indicates
whether the kernel valueskernel(x̃j , xt) exceededd for the
previousL timesteps. Aside from the additional effects of
changes to the dictionary, theΛ matrix (of sizeL × mt−1)
is updated each timestep as follows:

Λ =























(

[Λ]2:end,1:end

k̃t−1(xt)
T > d

)

for t > L,
(

[Λ]

k̃t−1(xt)
T > d

)

otherwise.

(8)

Lines 9-15: These lines address the occurrence of an orange
alarm. The current vectorxt is added to the dictionary. The
optimum ãt is now given byat. The kernel matrix and its
inverse are updated as follows:

K̃t =

(

K̃t−1 k̃t−1(xt)

k̃t−1(xt)
T ktt

)

(9)

K̃−1
t =

1

δt

(

δtK̃t−1 + ãtã
T
t −ãt

−ãT
t 1

)

. (10)

A column of ones is appended toΛ to represent the new
dictionary vector. The entries are set to one so that the vector
cannot be deemed obsolete until (approximately) L timesteps
have passed. Oncext is added toDt−1, xt becomes perfectly
representable by the elements inDt−1, so at = (0 1). The
update equation for the covariance matrixPt is:

Pt =
1

γ

(

Pt−1 0

0T γ

)

. (11)

The least squares weights̃αt are:

α̃t = K̃−1
t PtA

T
t Yt (12)

whereYt denotes the full history ofyt for timestepsi = 1 : t.
The recursive update equation forα̃t in terms ofα̃t−1 is then:

α̃t =





γ− 1

2 α̃t−1 −
1
δt

ãt

(

yt − γ− 1

2 · k̃t−1(xt)
T · α̃t−1

)

1
δt

(

yt − γ− 1

2 · k̃t−1(xt)
T · α̃t−1

)



 .

(13)

Algorithm 2 : KRLS Online Anomaly Detection

Set thresholds:ν1, ν2 ;1

Chooseγ, d, L, l, ǫ ;2

Initialize: t = 1, D = {x1}, m1 = 1, K̃1 = [k11],3

K̃−1
1 = [1

k11

], α̃1 = y1

k11

, P1 = [1], Λ = [1] ;
for t = 2, 3, . . . do4

Data: (xt, yt)
/* Evaluate current measurement */
Computek̃t−1(xt) using (7) ;5

Setat = K̃−1
t−1 · k̃t−1(xt) ;6

Calculate projection errorδt = ktt − k̃t−1(xt)
T · at ;7

UpdateΛ using (8) ;8

if ν1 < δt < ν2 then9

Raise Orange Alarm(xt) ;10

SetD = D
⋃

xt and ãt = at;11

ComputeK̃t andK̃−1
1 using (9) and (10) ;12

SetΛ = (Λ 1) andat = (0 1)
T ;13

ComputePt and α̃t using (11) and (13) ;14

mt = mt−1 + 1 ;15

else16

if δt > ν2 then17

Raise Red1 Alarm ;18

endif19

Dt = Dt−1, K̃t = K̃t−1, K̃−1
t = K̃−1

t−1,20

mt = mt−1 ;
Computeqt, Pt and α̃t using (14)-(16) ;21

endif22

/* Process previous orange alarm */
if Orange alarm(xt−ℓ) then23

Identify j such that̃xj = xt−ℓ;24

if sum([Λ]L−ℓ+1:L , j) < ǫℓ then25

Convert Orange Alarm to Red2 Alarm ;26

DropElement(j) ;27

else28

Convert Orange Alarm to Green ;29

endif30

endif31

/* Remove obsolete elements */
if t > L then32

for j = 1, . . . , mt do33

if sum([Λ]1:L , j) < ǫL then34

DropElement(j) ;35

endif36

endfor37

endif38

endfor39

ProcedureDropElement(p)

Move pth rows & columns ofK̃t, K̃−1
t to ends ;1

Setδp = 1/[K̃−1
t]mt,mt

and ãp = −δp[K̃
−1
t]1:mt−1,mt

;2

CalculateK̃−1
t and α̃t using (17) and (18) ;3

SetK̃t = [K̃t]1:mt−1,1:mt−1, mt = mt−1 − 1 and4

P = 10000 · Im ;
Removepth element fromD andpth column fromΛt ;5

Lines 17-21: These lines correspond to the case of a Red1
alarm (δt > ν2) or green-lighted traffic (δt < ν1). In either
case the dictionary does not change. The kernel matrix (K̃)
and its inverse (̃K−1) remain the same. The covariance matrix
P is updated using the following equation:

Pt =
1

γ

(

Pt−1 − qta
T
t Pt−1

)

(14)

whereqt is known as the Kalman gain in the RLS literature:

qt =
Pt−1at

γ + aT
t Pt−1at

. (15)

The least-squares vector̃α is also updated:

α̃t = α̃t−1 + K̃−1
t−1qt

(

yt − k̃t−1(xt)
T · α̃t−1

)

. (16)

Lines 23-30: These lines process an orange alarm raisedℓ
timesteps ago. We evaluate the “usefulness” of the vectorxt−ℓ

by determining its positionj in the dictionary and summing
the values of thej-th column ofΛ for the previousℓ timesteps.
If the sum exceeds the thresholdǫℓ, then we green-light the
traffic, otherwise we convert the orange alarm to a Red2 alarm
and drop elementj from the dictionary.

Lines 32-38: These lines evaluate whether any dictionary
element has become obsolete. The test is the same as for the
orange alarm, except it is performed overL timesteps. The
sum of each column ofΛ measures the usefulness of the
corresponding dictionary element; if it drops belowǫL, the
element is removed from the dictionary.

Procedure DropElement(p): This procedure removes the
p-th element from the dictionary and makes the necessary
modifications to the variables. The first step is the re-
organization of the rows and columns of̃K and K̃−1, such
that kernels of every other element with thepth element is
associated with the last row and column ofK̃ and K̃−1.
We then evaluateδp and ãp, and use them to updatẽK−1

t

according to:

K̃−1
t = [K̃−1

t]1:mt−1,1:mt−1 −
ãpã

T
p

δp

. (17)

The update equation for̃αt is:

α̃t = α̃t −
1

δp

(

ãpã
T
p −ãp

−ãT
p 1

)

K̃tα̃t. (18)

The new optimum weight vector̃αt must explain the estimate
ŷ using one less component. Equation (18) ensures that the
value of the last coefficient in the updated̃αt is 0. The last
component of the updated̃αt may thus be truncated, along
with the last row and column of̃K−1

t . We now delete the
pth element fromD and decrementm. Recalculation of the
covariance matrixP requires full access to the historical data;
instead we choose to resetP to a large constant times the
appropriately-sized identity matrix. A value of10, 000 allows
P sufficient variation in subsequent timesteps. This leads to
faster stability of the algorithm. We have chosen a value of
10, 000 for the constant. Our experiments have shown that the
prediction component of the algorithm stabilizes within a few
timesteps.

