
Video-on-Demand Server Selection and Placement
Frederic Thouin and Mark Coates

McGill University
Department Electrical and Computer Engineering

3480 University, Montreal, Quebec, Canada H3A 2A7
{fthoui,coates}@ece.mcgill.ca

Abstract— Large-scale Video-on-Demand (VoD) systems with
high storage and high bandwidth requirements need a substantial
amount of resources to store, distribute and transport all of the
content and deliver it to the clients. We define an extension to the
VoD equipment allocation problem as determining the number and
model of VoD servers to install at each potential replica location
and the origin such that the deployment cost is minimized for
a given set of distributed demand and available VoD server
models. We propose three novel heuristics (GS, IRH and IGS)
that generate near-optimal solutions (within 10% of the optimal
solution). Simulations show that the number of replica sites for
networks where the load is unevenly distributed is low (35−45%),
but that the hit ratios at deployed replicas are high (> 85%).

I. INTRODUCTION

As the number of available titles and usage of video-on-
demand services is expected to grow dramatically in the next
years, many providers are planning the deployment of large-
scale video-on-demand (VoD) systems. These systems require
significant resources (bandwidth and storage) to store the
videos, distribute them to caches, and deliver them to clients.
An important and complicated task part of the network plan-
ning phase is resource allocation. It consists of determining
the location and number of resources to deploy such that user
demand is satisfied, cost is minimized, and any quality of
experience (QoE) constraints (delay, packet loss, frame loss, or
packet jitter) are respected. This operation is important because
it is often very difficult (or even impossible) to substantially
alter the chosen solution after the deployment. The main
challenge is to build sufficiently accurate models for all of
the factors involved: the available infrastructure, the network
topology, the peak/average usage of the system, the popularity
of each title, and bandwidth and storage requirements.

In the case of a distributed video-on-demand network
deployment, the resources to consider are the equipment
required at the origin and proxy video servers and for the
actual transport between each location. We assume an existing
topology with a high bandwidth capacity and focus on the
equipment required at each location to store and stream the
content. A video server consists of storage devices to cache
the desired content and streaming devices to deliver the videos
to the users. In [1], Thouin et al. defined the VoD equipment
allocation problem that consists of determining the number of
streaming and storage devices at each location in the topology
such that the demand is satisfied and the deployment cost is
minimized. They showed that the nature of the equipment
installed at each location has a major impact on the design

and on whether it is beneficial to even cache content. A
natural extension of the problem thus involves identifying the
best type of equipment to install at each location when many
models are available and there is flexibility for variation from
site to site. Therefore, in this paper, we address the problem
of determining not only the number, but also the model of the
VoD servers at each potential replica location.

This paper is organized as follows. In Section II, we
formulate the VoD equipment allocation problem such that
the solution includes both the number and model of the VoD
servers. In Section III, we present two simple algorithms
(Full Search and Centralized or Fully Distributed Heuristic)
and three novel heuristics (Greedy Search, Integer Relaxation
Heuristic and Improved Greedy Search) to solve the problem.
In Section IV, we perform a complexity analysis of our
algorithms. In Section V, we show and discuss the results
of simulation experiments performed on randomly generated
topologies. Finally, in Section VI, we present our conclusions
and suggest future extensions to our work.

A. Related Work and Contribution

Researchers have tackled the problem of generating cost-
efficient VoD network designs using different optimization
techniques: placement of replica servers, video objects or
allocation of available resources to minimize cost. Solving the
replica placement [2], [3] or video placement [4] problems
independently of the resource allocation problem usually leads
to suboptimal solutions because the location of the replicas
has a direct impact on the amount of resources required.
Laoutaris et al. defined the storage capacity allocation problem
as determining the location of each object from a set to achieve
minimal cost whilst enforcing a capacity constraint [5]. Al-
though they determine the actual storage requirements at
each node with their solution, the authors do not explicitly
determine the equipment required. In [6], Wauters et al. define
an Integer Linear Programming (ILP) model built on viewing
behavior, grooming strategies, statistical multiplexing and Er-
lang modeling to specify the equipment required for transport
(the number of ports, multiplexers and switch ports) at each
of the candidate network nodes [6]. Thouin et al. defined
the VoD equipment allocation problem in [1] as the task of
determining the number of VoD servers (which include both
a storage and streaming device) to deploy at each potential
location in a network topology such that the total demand is
satisfied and the deployment cost is minimized. Solving the



W1: F1 = 1Gbps, 
G1 = 1TB, B1 = 10 k$ 
W2: F2 = 3Gbps, 
G1 = 2TB, B1 = 20 k$ 
W3: F3 = 2Gbps, 
G3 = 4TB, B3 = 18 k$ 

No VoD servers

REPLICA

MOVIE
STREAM

Fig. 1. Video-on-Demand equipment allocation problem. Logical connectiv-
ity between origin, N = 5 replica servers and clients. Each replica represents
a potential location to install VoD equipment in the network. Clients’ requests
(shown as movie stream arrows) are served by replicas when possible (if
content is available) or by origin. Key shows the specifications (streaming
and storage capacity and price) of W = 3 different VoD server models. We
show the number and type of VoD servers installed at each potential location.
The optimal solution can include locations with no equipment (empty square).

VoD equipment allocation problem determines the location
of the replicas, the amount of storage available to cache
content, the streaming capacity available to serve clients and
the explicit specification of the equipment installed at each
location. However, the approach in [1] assumed that a fixed,
single and predetermined type of VoD server was available
at each location. This constraint rarely holds in practice and
enforcing it leads to suboptimal designs if the nature of the
equipment is not a good fit to the streaming (user demand)
and storage (library size) requirements.

In this paper, we re-formulate the VoD equipment alloca-
tion problem to determine both the number and model of
the servers to install at each location. Instead of fixing the
streaming and storage capacity per VoD server at each site
(the approach used in [1]), we require the pre-specification of
a set of available VoD servers and select the model at each
location that minimizes total network cost. This leads to the
faster generation of lower-cost solutions because the network
designer does not need to manually try all models for each
potential site. To solve the problem, we develop a network cost
model solely in terms of the numbers and models of servers
and propose three novel heuristics: the Integer Relaxation
Heuristic and two greedy-search based algorithms (Greedy
Search and Improved Greedy Search).

II. PROBLEM STATEMENT

We consider a metropolitan area network with one origin
server and N potential replica locations such as the one
depicted in Fig. 1. Each cluster of clients has worst-case
demand Mi (peak usage demand) and is assigned to a potential
replica location with hit ratio hi. The hit ratio represents an
estimate of the fraction of the demand Mi served at the replica,
the other portion is served directly by the origin server.

We address the VoD equipment allocation problem of de-
termining not only the number, but also the model of the
VoD servers at each potential replica location. To solve this
problem, we require the specification of a set of available VoD
server models W = {wj : j = 1, . . . ,W} where wj is a VoD
server with streaming capacity Fj Gbps, storage capacity Gj

TB and unit cost Bj k$. We define the sets N = {ni : i =
1, . . . , N} and V = {vo, vi ∈ W : i = 1, . . . , N} where ni

is the number and vi is the model of the servers installed at
location i. The optimization problem is expressed as follows:

{N ∗,V∗} = arg min
N ,V

CTOTV (N ) (1)

where CTOTV (N ) is the total cost of the network CTOT for a
fixed set V . We impose the following constraints:

no ·Go ≥ Y · file size (2)
ni · Fi ≥ hi ·Mi, ∀i ∈ {1 . . . N}(3)

no · Fo ≥
N∑

i=1

(1− hi)Mi (4)

no · Fo +
N∑

i=1

ni · Fi ≥
N∑

i=1

Mi (5)

Ĥ

(
ni ·Gi

Y · file size
, Y, Z

)
≥ hi, ∀i ∈ {1 . . . N} (6)

The first constraint states that the storage capacity at the origin
must be large enough to host the entire initial library. The
constraints in (3) and (4) ensure that the streaming capacity
at each location and the origin is large enough to serve the
fraction of the demand routed to this site. The constraint in
(5) imposes the constraint that the total network streaming
capacity is larger than the total demand from all locations. (6)
states that the storage capacity at each location should be large
enough to ensure the estimated hit ratio.

A. Network Cost Model

In order to perform a direct optimization, we derive an
expression for the deployment cost solely in terms of N and
V . We begin by expressing the total cost CTOT as the sum of
the cost of infrastructure, CT , and the cost of transport, CS :

CT = f1(no, vo) +
N∑

i=1

f1(ni, vi)

CS =
N∑

i=1

f2(hi,Mi)

CTOT = f1(no, vo) +
N∑

i=1

f1(ni, vi) + f2(hi,Mi) (7)

The cost of infrastructure at each potential location and the
origin includes a start-up cost for installation and software
(Ai) and increases linearly with the number of VoD servers
installed (ni). Note that f1 is also a function of vi which
defines Bi, Fi and Gi.

f1(ni, vi) = Ai + Bini (8)

The cost of transport for each location includes transport
from the replica to the clients (CSRCi

) and from the origin to
the replica (CSORi

). The cost of transport from the replica to
the clients includes the cost of network interfaces (CIF ) and



fiber (Cf ). The number of network interfaces (nRCi
) required

is proportional to the demand Mi and the fiber capacity (c).
The cost of transport from the origin to the replica location
includes the cost of DWDM with wmax-ports multiplexers
(CDWDM ), network interfaces (CIF ), fiber (Cf ) and line
amplifiers (CLA). The number of network interfaces (nORi

)
required is a function of the demand Mi and the hit ratio hi:
the amount of traffic on this link is equal to the fraction of
the demand un-served by the replica. For more details on the
cost functions f1 and f2, the reader is referred to [1].

f2(hi,Mi) = CSORi
+ CSRCi

(9)
CSRCi

= nRCi · (2 · CIF + dRCi · Cf ) (10)

CSORi
= nORi

(2 · CIF ) +
nORi

wmax

[
2CDWDM +

dORi · Cf +
(

dORi

maxamp

)
· CLA

]
(11)

nORi
=

(1− hi) ·Mi

c
nRCi

=
Mi

c
(12)

To derive an expression for CTOT solely in terms of ni for
i = 1, . . . , N , we resolve the hit ratio hi and number of servers
at the origin no as functions of ni (Mi is a fixed parameter).
We develop expressions to calculate hi and no for a fixed N .
To estimate the hit ratio Ĥ , we use (13), a function of the cache
size ratio Xi (number of files in the cache / number of total
files in the library), the library size Y and the number of files
added to the library every week Z. We designed the function
and determined best-fit constants K1 - K8 using a discrete-
time simulator based on the file access model proposed by
Gummadi et al. in [7] (refer to [1] for more details).

Ĥ = A(Y,Z) + B(Y, Z) · log(X) (13)
A = K1 + K2Z + K3 log(Y ) + K4Z log(Y ) (14)
B = K5 + K6Z + K7Y + K8ZY (15)

The hit ratio at a location is limited by either the streaming
or the storage capacity represented by constraints shown in (3)
and (6). We isolate hi in both expressions and define f3(ni, vi)
as the minimum (worst-case) hit ratio:

f3(ni, vi) = min
[
ni · Fi

Mi
, Ĥ

(
ni ·Gi

Y · file size
, Y, Z

)]
(16)

The number of servers required at the origin, no, is also
constrained by either streaming or storage (shown in (4) and
(2)). In (17), we define no as f4(N ,V) by substituting hi with
the expression in (16).

f4(N ,V) = max

[∑N
i=1(1− hi) ·Mi

Fo
,
Y · file size

Go

]
(17)

By replacing the equations for no and hi in (7), we derive
a new expression solely in terms of ni:

CTOT = f1(f4(N ,V)) +
N∑

i=1

f1(ni) + f2(f3(ni, vi)) (18)

III. DESCRIPTION OF HEURISTICS

A. Full Search (FS)

The Full Search is a very straightforward approach that
consists of trying all the possible points in the solution space.
We reduce this space by calculating the maximum number of
servers it is worth installing at a given location using (19). We
define ub = {ubi : i = 1, . . . , N} where ubi is the number of
servers required to store the entire library and handle 100%
of the requests (hi = 1.0).

ubi = max
(

Mi

Fi
,
Y · file size

Gi

)
(19)

For a given V , the boundaries of the solution space are N =
0 to ub where 0 = {ni = 0 : i = 1, . . . , N}. To complete the
full search, all the possible combinations of V must also be
tried. Although this procedure is guaranteed to find the optimal
solution, it is very computationally expensive and the amount
of time to search the entire space grows exponentially with
the size of the network.

B. Central or Fully Distributed Heuristic (CoFDH)

Ccentral = ∞;1

forall locations i do /* centralized design,2

Ncentral = 0 */
ni = 0;3

end4

forall models wj ∈ W do /* pick model at5

origin */
Set V ′

: v
′

i = wj for i = 1, . . . , N ;6

calculate cost CTOTV′
(Ncentral);7

if CTOTV′
(Ncentral) < Ccentral then8

Ccentral = CTOTV′
(Ncentral) and Vcentral = V ′

;
end9

Algorithm 1: Central Heuristic

CFD = ∞;1

forall models wj ∈ W do2

forall locations i do3

v
′

i = wj ;4

n
′

i = ubi /* fully distributed,5

N ′
= ub */;

end6

calculate cost CTOTV′
(N ′

);7

if CTOTV′
(N ′

) < CFD then CFD = CTOTV′
(N ′

),8

NFD = N ′
, VFD = V ′

;
end9

Algorithm 2: Fully Distributed Heuristic

The Central or Fully Distributed Heuristic simply calculates
the cost of a centralized design (∀i : ni = 0) and a fully
distributed design (∀i : ni = ubi) for each available VoD
server model in W and picks the cheapest design. The Cental
part of the heuristic is described in Algorithm 1; the Fully
Distributed in Algorithm 2. This heuristic is straight-forward



and highly suboptimal, but it provides an upper-bound that can
be used as a comparison base for other approaches.

C. Greedy Search (GS)

Set CGS = ∞, NGS : ni = 0 and VGS : vi = w1 for1

i = 1, . . . , N ;
Set C0 = CGS , N0 = NGS , V0 = VGS and k = 0;2

repeat /* cost has not decreased for I3

iterations */
k++;4

Set Ck = ∞, N = Nk−1 and V = Vk−1;5

forall locations i do6

N ′
= N , V ′

= V;7

n
′

i = ni + 1 /* add one server at i */;8

forall models wj ∈ W do9

v
′

o = wj /* model at origin */;10

forall models wk ∈ W do11

v
′

i = wk /* model at location i12

*/;
calculate cost CTOTV′

(N ′
);13

if CTOTV′
(N ′

) < CGS then14

CGS = CTOTV′
, NGS = N ′

, VGS = V ′
;

if CTOTV′
(N ′

) < Ck then Ck = CTOTV′
,15

Nk = N ′
, Vk = V ′

;
end16

end17

end18

until Cj ≥ Cj−1 ∀j ∈ k − I + 1. . .k;19

Algorithm 3: Greedy Search (GS)

We define a search topology in the discrete solution space
where each solution is connected to its neighbouring solutions.
In this case, a neighbour consists of adding one server at one of
the locations (and then potentially changing the server models
of the origin and all other locations). Greedy Search (GS) is
a searching heuristic that explores all neighbouring nodes and
selects the one that yields the best solution at every iteration
without considering the subsequent steps [8]. For each node,
we try each of the N locations (lines 5-7 of Algorithm 3) and
the different server models for both the origin server (lines
8-9) and the current location (lines 10-11). Therefore, each
solution has NW 2 neighbours; we select the origin model vo,
the location i and the model at that location vi that yield the
lowest cost at each iteration. Note that with this procedure, the
value of vo and vi can change at every iteration. We define
N = 0 as our initial solution, i.e., no servers installed at any
of the locations and continue the search until it reaches a local
maximum (or minimum); no neighbours offer a better solution
than the current one.

To perform a more thorough search, we wait for more
than one (I = 3, 5, 10, 20, etc.) iteration over which the cost
does not decrease before stopping the search. Let Ck be the
minimum cost after placing k servers (k iterations), then the
search stops when Cj ≥ Cj−1 ∀j ∈ k− I +1. . .k. To explore
a larger part of the solution space, we perform two different

greedy searches: one where servers are added to an initial
solution N = 0 and a second one that removes servers from
an initial solution N = ub). For the second search, line 5 of
Algorithm 3 becomes n

′

i = ni−1. We then select the solution
that produces the lowest cost.

D. Integer Relaxation Heuristic (IRH)

forall models wj ∈ W do1

Set Vj : v
′

i = wj for i = 1, . . . , N ;2

Obtain Nj by performing a constrained nonlinear3

optimization on CTOTVj
;

end4

forall locations i do5

Set vi = wj and ni = nj such that CTi + CSORi
is6

minimized;
end7

Set CIRH = ∞, NIRH = N ;8

forall models wj ∈ W do9

Set vo = wj ;10

Calculate cost for CTOTV (N );11

if CTOTV < CIRH then CIRH = CTOTV , VIRH = V12

end13

Set C0 = CIRH and k = 0;14

repeat15

k + +;16

Set N = NIRH ;17

forall locations i do18

Set N ′
= N and n

′

i = 0;19

Calculate cost CTOTV (N ′
);20

if CTOTV (N ′
) < CIRH then21

CIRH = CTOTV (N ′
), NIRH = N ′

;
end22

Ck = CIRH ;23

until Ck ≥ Ck−1 ;24

Set C0 = CIRH and k = 0;25

repeat26

k + +;27

Set N = NIRH ;28

forall locations i do29

Set N ′
= N ;30

for k = ni ± 2 do31

Set n
′

i = k;32

Calculate cost CTOTV (N ′
);33

if CTOTV (N ′
) < CIRH then34

CIRH = CTOTV (N ′
), NIRH = N ′

;
end35

end36

Ck = CIRH ;37

until Ck ≥ Ck−1 ;38

Algorithm 4: Integer Relaxation Heuristic (IRH)

The first step of the Integer Relaxation Heuristic presented
in Algorithm 4 is to find an initial non-integer solution and the
second step is to search its neighborhood for a near-optimal
integer solution. In the first step (lines 1-13), we start by



finding a non-integer solution for each server model using a
constrained nonlinear optimization. Then, we calculate the cost
associated with each replica (CTi +CSORi

) and determine the
model that minimizes this cost for each location. We complete
the initial solution by determining the best server model to
install at the origin (lines 9-13). In the second step (lines 14-
42), we perform two different searches to find a near-optimal
integer solution. In the first one (lines 14-26), we iteratively
set ni = 0 at each location to make sure it is profitable to
setup a replica. The second search (lines 27-42) consists of
iteratively trying to remove or add up to two servers at each
location until we find a local minimum.

E. Improved Greedy Search (IGS)

Set CIGS = ∞;1

forall models wj ∈ W do2

Set V ′
: v

′

i = wj and calculate upper bounds ubi for3

i = 1, . . . , N ;
forall models wk ∈ W do4

Set v
′

o = wk;5

Set C0 = ∞ and l = 0;6

repeat7

l + +;8

Set N ′
= N ;9

forall locations i do10

Set n
′

i = ubi and calculate CTOTV′
(N ′

);11

if CTOTV′
(N ′

) < CIGS then12

CIGS = CTOTV′
, NIGS = N ′

,
VIGS = V ′

;
end13

Set Cl = CIGS ;14

until Cl ≥ Cl−1 ;15

end16

end17

Set C0 = CIGS , N0 = NIGS and V0 = VIGS ;18

repeat /* cost has not decreased for I19

iterations */
k++;20

Set Ck = ∞, N = Nk−1 and V = Vk−1;21

forall locations i do22

for m = −1 and m = 1 do23

Set N ′
= N and n

′

i = ni + m;24

calculate cost CTOTV (N ′
);25

if CTOTV (N ′
) < CIGS then CIGS = CTOTV′

,26

NIGS = N ′
, VIGS = V ′

;
if CTOTV (N ′

) < Ck then Ck = CTOTV′
,27

Nk = N ′
, Vk = V ′

;
end28

end29

until Cj ≥ Cj−1 ∀j ∈ k − I + 1. . .k or Cj ≥ CIGS30

∀j ∈ k − 2I + 1. . .k;

Algorithm 5: Improved Greedy Search (IGS)

As in the Integer Relaxation Heuristic, the Improved Greedy
Search is divided into two steps: determining an initial solution

and searching its surroundings for a better one. In IGS, both
steps are inspired by the greedy search. During the first step
of the heuristic (lines 7-17 of Algorithm 5), we iteratively add
servers in a greedy-fashion starting from a centralized design
by setting ni = ubi at the location that achieves the lowest
cost. We repeat this process of adding ubi servers at a chosen
location such that cost is minimized after each iteration, until
it is no longer possible to decrease the cost. This first step is
repeated for each VoD server model at the origin and the other
locations (lines 1-6) and at that point, we have determined
an initial integer solution and the first step is complete. The
second step (lines 20-36), just like in the Integer Relaxation
Heuristic, is an exploration procedure in the neighbourhood
of the initial solution. In a greedy-type approach, at iteration
k we add or remove one server to the initial solution at the
location that minimizes the cost Ck. We stop the search when
Cj ≥ Cj−1 ∀j ∈ k − I + 1. . .k or when Cj ≥ CIGS

∀j ∈ k − 2I + 1. . .k (minimum cost has not decreased for 2I
iterations). Because we increase and decrease the number of
servers, some solutions can be revisited during the searching
procedure. For that reason, we add the second termination
condition to guarantee the convergence of the heuristic (to
avoid a loop in the solution space topology).

IV. COMPLEXITY ANALYSIS

In this section, we analyze the worst-case complexity,
WCC, of each of the heuristics presented in the previous
section. We define the worst-case complexity as the maximum
number of operations that the heuristics can perform before
terminating. The expressions presented are functions of the
number of locations N , number of VoD server models W and
the maximum of all upper bounds ubi, Umax = max(ub).
To further simplify these expressions, we assume that ubi =
Umax for all locations; this is reasonable for a network where
the demand is distributed evenly among all the locations.

A. FS

In the full search, all models must be evaluated at all loca-
tions (WN ) for all the possible number of servers (

∏N
i ubi).

When we assume ubi = Umax for all locations, the maximum
number of iterations for FS is:

WCCFS = WN
N∏
i

ubi = WN · Umax
N

= (W · Umax)N (20)

This expression is not the worst-case scenario, but the actual
number of iterations for every search. It is exponential in the
size of the network, N , indicating that it is impractical to use
this method for most scenarios.

B. CoFDH

CoFDH was developed to generate an upper-bound and a
baseline solution for assessing the performance of the other
heuristics. It is trivial and has low complexity; running either
the central or the fully distributed heuristic only requires a



number of iterations equal to W because the value of N is
either 0 (centralized) or ub (fully distributed).

WCCCoFDH = 2W (21)

C. GS

One iteration of Algorithm 3 consists of trying each model
at each location and the origin: N ·W 2 operations. The worst-
case scenario is that the best solution is a fully distributed
design (ni = ubi for all locations) which requires

∑N
i ubi

iterations if the algorithm reaches that solution.

WCCGS =
N∑
i

ubi · (N ·W 2) = (N · Umax) · (N ·W 2)

= N2W 2Umax (22)

Under our simplifying assumptions, the complexity of GS is
a second degree polynomial in N and W and linear in Umax.

D. IRH

The first step of IRH consists of performing a constrained
nonlinear optimization for each VoD server model. This type
of optimization is performed using a sequential quadratic pro-
gramming (SQP) [9], [10] algorithm which has a complexity
of O(N2). With W more operations, we determine the model
at the origin. The first part of the searching step (lines 11-18 of
Algorithm 4) requires going through each location once until
the cost does not decrease. The worst-case scenario is starting
from a solution N with ni 6= 0 for all locations and finishing
with N = 0; this requires up to N iterations. In the second
part, each iteration requires five operations (trying solutions in
the range of ni±2) for each location. The worst-case number
of iterations is

∑N
i ubi if we start from N = 0 and terminate

the search with N = ub or vice-versa.

WCCIRH = (W ·N2 + W ) + (N2) + 5N

N∑
i

ubi

= N2(W + 1 + 5Umax) + W (23)

E. IGS

Each iteration of the first step of IGS has the same complex-
ity as a GS iteration, but the maximum number of iterations is
N because we add ubi servers at a time instead of one. In one
iteration of the searching phase, two operations are performed
for each location. The worst-case is the same as that described
in IRH.

WCCIGS = (W 2N2) + 2N
N∑
i

ubi

= (W 2N2) + 2N2Umax (24)

F. Worst-case complexity comparison

We complete our analysis by comparing the WCC of all
the heuristics described in this section. The full search is
unsuitable for our problem; even small problems such as
N = 5, W = 6 and Umax = 20 take on the order of 109

operations. For complex problems like N = 100, W = 6

and Umax = 20, the WCC of IRH (270k oper.) and IGS
(760k oper.) is lower than GS (7.2M oper.), but the actual
computational times differ due to the running time of each
operation. In the next section, we measure the actual CPU
time used by each heuristic during our simulations.

V. SIMULATION EXPERIMENTS

In this section, we present our simulation results obtained
by applying our heuristics to different networks. Each test
network is defined by the constant variables in Table I
and choosing values for the other network parameters from
uniform distributions with the ranges specified in Table I.
Simulations were executed on a AMD Athlon 3000+ with 1
GB of OCZ Premier Series 400 MHz Dual Channel memory.

TABLE I
VALUES AND RANGE OF VARIABLES USED FOR THE SIMULATIONS.

Variable Value
CIF 10 k$

CDWDM 25 k$
CLA 10 k$
Cf 0.006 k$/km

wmax 16
c 10 Gbps

maxamp 75 km
bit rate 3.75 Mbps
duration 5400 s
file size 2.53 GB

Variable Min Max
dOR (km) 0 50
dRC (km) 0 5
Y (files) 1000 10000

Z (files/week) 0 100
priceGbps (k$/Gbps) 0 4

priceTB (k$/TB) 0 3
A (k$) 6 36

F (Gbps) 1 5
G (TB) 1 11

M (Gbps) 1 20

In our first set of tests, we generated networks with the
number of locations N ∈ {1, . . . , 5} and the number server
model W = 1 and another series with N = 3 and W ∈
{1, 2, 3}. We choose small networks to allow comparison with
the full search, which cannot produce a solution for larger
networks in a reasonable time frame.

1 2 3

10
−1

10
0

10
1

10
2

10
3

Number of models (W) for N=3
1 2 3 4 5

10
−2

10
0

10
2

Number of locations (N) for W=1

C
P

U
 T

im
e 

(s
)

 

 

IRH
IGS
GS
FS

Fig. 2. Computational time in seconds required to find a solution by each of
the heuristics averaged over 30 runs shown on a log-scale. Computational time
of Full Search (FS) grows exponentially with the size of the network. Greedy
Search (GS), Integer Relaxation Heuristic (IRH) and Improved Greedy Search
(IGS) all provide solutions within 0.1 seconds.

In Fig. 2, we show the computational time in seconds on
a log-scale averaged for 30 different networks with the same
N and W . In both plots, we see the exponential behavior of
the full search whereas the other heuristics show a very small
increase in CPU time. We note that the computational time
of the greedy-based heuristics (GS and IGS) is one order of



magnitude lower than the integer relaxation approach, but both
are nevertheless below 0.1 seconds for the simulated networks.

1 2 3 4 5
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

Number of locations (N) for W=1

C
os

t f
ra

ct
io

n 
of

 fu
ll 

se
ar

ch

 

 

IRH
IGS
GS

1 2 3
Number of models (W) for N=3

Fig. 3. Cost ratio between heuristics and the full search averaged over 30
runs.

In Fig. 3, we show the performance of our heuristics by
dividing the cost of the solution by the optimal solution
provided by the full search. For these small networks, Integer
Relaxation Heuristic and Improved Greedy Search perform
within 4% of the optimal solution. For all values of N and
W , both IRH and IGS perform better than the Greedy Search,
which is within 8% of the Full Search solution.

25 40 55 70 85 100
0.9

0.92

0.94

0.96

0.98

1

Number of locations (N) for W=10

C
os

t f
ra

ct
io

n 
of

 C
oF

D
H

 

 

IRH
IGS
IRH+IGS
GS

2 4 6 8 10
Number of models (W) for N=100

Fig. 4. Cost ratio between the heuristics solution and CoFDH averaged over
25 runs. IRH+IGS is the average of the minimum value between IRH and
IGS for all runs.

In this next set of tests, we compare the complexity and
the performance for networks with N = 25 to 100 potential
replica locations and W = 2 to 10 server models. We use
Central or Fully Distributed Heuristic (CoFDH) to measure
the performance of our heuristics because it is impossible to
determine the optimal solution with the Full Search.

In Fig. 4, we show values (averaged over 25 runs) of
the ratio between the cost of Integer Relaxation Heuristic,
Improved Greedy Search and Greedy Search and the cost
of CoFDH. Whereas Greedy Search is actually very close
to the cost produced by CoFDH, the other two heuristics
generate solutions that cost 2-5% less. It is not clear from
those plots whether Integer Relaxation Heuristic or Improved
Greedy Search performs better. By combining both (choosing
the best solution of the two), we obtain a better heuristic
(IRH+IGS), which achieves a 4-6% cost reduction compared
to CoFDH. In the left panel, we notice the downward trend
of the cost fraction as the number of locations in the network

increases because more modifications to the CoFDH design
can be made to reduce cost.

25 40 55 70 85 100
0

50

100

150

200

250

Number of locations (N) for W=10

C
P

U
 ti

m
e 

(s
)

 

 

IRH
IGS
GS

2 4 6 8 10
Number of models (W) for N=100

Fig. 5. CPU time in seconds for all heuristics averaged over 25 runs.
IRH+IGS is the average of the sum of the time taken to perform both searches.

For the same set of tests, we also show the complexity
expressed as the computational time in seconds in Fig. 5 and
the number of iterations (cost function evaluations) to obtain a
solution in Fig. 6. As suggested by the Worst-Case Complexity
analysis in section IV, the greedy search (GS) takes many
more iterations to find a solution than our other two heuristics
Integer Relaxation Heuristic and Improved Greedy Search.
However, although the number of iterations for Greedy Search
is much larger than for IRH, their computational times are
comparable in the left panel of Fig. 5. This is an indication
that IRH’s iterations take more time to execute than those in
the greedy approaches (GS and IGS).

25 40 55 70 85 100
0

1

2

3

4

5
x 10

5

Number of locations (N) for W=10

N
um

be
r 

of
 it

er
at

io
ns

 

 

IRH
IGS
GS

2 4 6 8 10
Number of models (W) for N=100

Fig. 6. Number of iterations averaged over 25 runs. IRH+IGS is the average
of the total number of iterations performed in both searches.

The Integer Relaxation Heuristic was the slowest of the
tested heuristics, but it still converges in a reasonable amount
of time. Since the computation time of Improved Greedy
Search is so low, we can combine IRH and IGS and obtain a
solution in a timely fashion.

Finally, we focus on the networks with six server models
(similar behaviour was observed for other values of W ) to
analyze the hit ratio, ratio of locations with replicas, average
demand at replica locations and load on the origin server.
Fig. 7 and Fig. 8 show the results and provide interesting
insights on the solution generated by the heuristics. The left
panel of Fig. 7 shows that for networks of any size where
demand is not uniformly distributed among all locations (i.e,



25 40 55 70 85 100
0

0.2

0.4

0.6

0.8

1

Number of locations (N)

R
at

io
 o

f r
ep

lic
as

 

 

IRH+IGS
GS

25 40 55 70 85 100
0

0.2

0.4

0.6

0.8

1

Number of locations (N)

A
ve

ra
ge

 H
R

Fig. 7. LEFT: Ratio between the number of replicas (location with cached
content) and potential locations. RIGHT: Average hit ratio at locations with
cached content. Values are averages of 25 runs with W = 6.

the demand at each location is different), the percentage of
locations where a replica will be deployed is below 40% for
both heuristics. Although a case where the demand load is
evenly shared among all the locations (all Mi are approxi-
mately equal) is more plausible, this result indicates that it is
not always advantageous to cache content. If the demand is
too low or the site is too close to the origin, then it can be
more cost-effective to assume the entire load from a group of
clients directly at the origin. An impact of this low percentage
is shown in Table II where we show the number of servers
installed at the origin. Because the fraction of locations where
replicas are installed remains approximately constant for any
value of N , the total number of sites for which the origin must
assume the demand grows as the network becomes larger.

TABLE II
AVERAGE NUMBER OF VOD SERVERS AT THE ORIGIN FOR DIFFERENT

NUMBER OF LOCATIONS N WITH GREEDY SEARCH (GS) AND INTEGER

RELAXATION HEURISTIC + IMPROVED GREEDY SEARCH (IRH+IGS)

N 25 40 55 70 85 100
IRH+IGS 56 85 131 156 175 192

GS 81 109 133 190 244 223

25 40 55 70 85 100
0

4

8

12

16

20

Number of locations (N)

A
ve

ra
ge

 d
em

an
d 

M
 (

G
bp

s)

 

 

IRH+IGS (Rep)
IRH+IGS (NoRep)
GS (Rep)
GS (NoRep)

25 40 55 70 85 100
0

0.2

0.4

0.6

0.8

1

Number of locations (N)

F
ra

ct
io

n 
of

 to
ta

l d
em

an
d 

at
 r

ep
lic

as

 

 

IRH+IGS (Entire load)
IRH+IGS (Served)
GS (Entire load)
GS (Served)

Fig. 8. LEFT: Fraction of the total network demand supported by replica
locations. Total is the sum of the demand Mi at each location where a replica
is installed and Real is the actual part of the demand that the replica handles
(Mi · hi). RIGHT: Average load on the locations where replicas are installed
(Rep) and where no replicas are installed (NoRep). The values shown are
averages of 25 runs with W = 6.

In the right panel of Fig. 7, we display the averaged hit ratio

at all the locations where content was cached. The average hit
ratio of 90% suggests that the optimal number of servers to
install at a replica is often very close to ubi. This is explained
by both our popularity model and the ratio between the startup
cost of a location (A) and the cost incurred in transportation
to the origin. From our popularity model, we know that it
is possible to achieve a high hit ratio with a relatively small
amount of storage. Depending on the actual demand and the
type of server installed, the streaming capacity is usually the
limiting factor, which means that storage is often available to
increase the hit ratio to the values we observe in this plot.

We display the fraction of the total network demand at the
replica locations in the left panel of Fig. 8. We show two lines
for each heuristic: the sum of the demands Mi at each location
where a replica is installed (Entire Load) and the actual part
of the load (Mi ·hi) handled by the replica (Served). For both
Greedy Search and the best of Integer Relaxation Heuristic
and Improved Greedy Search (IRH+IGS), the performance is
very similar as a result of the high average hit ratio (≈ 90%).
We compare this ratio with the fraction of replicas in the
network (left panel of Fig. 7). For GS, the difference is not
significant, but in the case of IRH+IGS the percentage of
the network load handled at replicas is approximately ten-
twenty percent higher. This signifies that the locations chosen
by IRH+IGS to host replicas generally have a high demand.
This interpretation is confirmed in the right panel of Fig. 8 in
which we depict the difference between the average demand at
replica locations and locations where no caching is performed.
Whereas there is only a marginal difference in the GS case,
the average demand at replica sites in the IRH+IGS solutions
is almost twice the average demand of the other locations. The
solutions generated by combining Integer Relaxation Heuristic
and Improved Greedy Search have a much lower total cost
than the GS solutions, indicating that it is more cost-efficient to
install replicas at locations where demand is high and transport
the entire load of locations with low demand to the origin.

VI. CONCLUDING REMARKS

Fig. 9. Screenshot of the design tool that implements our heuristic (IRH+IGS)
to solve the VoD equipment allocation problem. A sample topology of
potential replica locations and the properties window of a selected replica
location is shown in the figure.



In this paper, we defined an extension of the VoD equipment
allocation problem described in [1]. Instead of considering
fixed and pre-determined streaming and storage capacity at
each location, we require the specification of a set of available
VoD servers models. The optimization problem consists of
choosing the number and type of VoD servers to install
at each potential location in the network such that cost is
minimized. We modified the total cost expression to make
it a function of the number of servers ni instead of the
cache size ratio Xi. Solving this problem with a complete
search is possible, but for networks of more than five lo-
cations and a set of available models larger than three the
computational requirements render the approach impractical.
We described three heuristics to find a near-optimal solution
including two greedy-type approaches (GS and IGS) and an
integer relaxation method (IRH) that we implemented in an
interactive design tool shown in Fig. 9. The Improved Greedy
Search has very low complexity in practice (less than half a
minute and 50,000 iterations for large networks), but does not
always provide a better solution than the Integer Relaxation
Heuristic. We showed that it is possible to combine both by
choosing the best of the two to obtain a better solution while
maintaining the computational time reasonably low (slightly
more than four minutes and 150,000 iterations on average for
large networks). Depending on the context, two heuristics are
available: Improved Greedy Search for a very quick solution
(few seconds) or combining IRH and IGS for a better solution
that takes more time to produce.

For all our simulations, we generated network topologies
where the load was different at each location. For such net-
works, we observed that the fraction of locations where it was
cost-efficient to install replicas was small (35-45% depending
on network size). In the optimal solutions produced by our
heuristic IRH+IGS, the average worst-case demand at replica
locations is approximately 15 Gbps and 8 Gbps at locations
where the entire load is transported to the origin server. For
networks with 100 locations, the replica sites assume less than
45% of the total network load which results in a very large
number (almost 200) of required servers at the origin that
might be impossible to deploy in practice. Our simulations
indicate that the average hit ratio at the replica sites is above
85% for all network sizes. This suggests that it is possible
to have a cost-efficient solution with a higher fraction of
the network load handled at replicas and much reduced load
at the origin. A way to obtain such a solution is by using
equipment (VoD server model) that satisfies the streaming and
storage requirements of most of the locations in the topology.
Alternatively, the network designer could strive to divide the
demand evenly among all locations such that it is optimal
to deploy replicas at most locations using the same model
of equipment. A sensible extension to the resource allocation
problem we addressed in this paper is the problem of jointly
designing the VoD network and the logical topology. It consists
of choosing a topology that allows an allocation of resources
which minimizes the deployment cost of the network.

We have considered only the scenario where the service

provider does not own any network equipment or infrastruc-
tures prior to the deployment. However, this is not always
the case because some provider might be able to transport
data for free, i.e., no need to install fiber, network interfaces,
switches, or amplifier. Even if there is no installation cost,
there are still fees incurred by the usage and maintenance of
the equipment and the resources, which have to be considered
when generating solutions for this scenario. Also, we focused
on large-scale deployments, but there is also the issue of
scalability of such deployments. As the library reaches tens of
thousands of movies, the access model we assumed changes
as a larger portion of requests are located in the heavy tail of
the popularity distribution (’long-tail’ of content). It is unclear
if this simply shifts the hit ratio curve down (more storage
needed to achieve the same hit ratio) or the function would
be completely different. The growth in usage also affects the
design. During our simulations for the hit ratio function, we
determined that the impact of the varying number of users on
the hit ratio is not significant. Even if the storage requirements
are not affected, the higher loads at each location and on the
origin server require more streaming capacity. In that case, it
is sensible to impose a constraint on the maximum number of
servers at the origin to avoid a high load on one location (or
alternatively impose a minimum hit ratio at each replica). The
reason we chose not to include these constraints in our initial
problem statement was to allow a maximum number of valid
solutions. Producing the most cost-efficient solution, whether
it is feasible in practice or not, provides important feedback on
the design choices of the network planner. From our results,
an infeasible design is an indication that the equipment was a
mismatch for the given topology or, alternatively, the chosen
topology was not optimal for the available equipment.

REFERENCES

[1] F. Thouin, M. Coates, and D. Goodwill, “Video-on-demand equipment
allocation,” in Proc. IEEE Int. Conf. Network Computing Applications
(NCA), Cambridge, MA, July 2006.

[2] P. Krishnan, D. Raz, and Y. Shavitt, “The cache location problem,”
IEEE/ACM Trans. Networking, vol. 8, pp. 568–582, Oct. 2000.

[3] J. M. Almeida, D. L. Eager, M. K. Vernon, and S. Wright, “Minimizing
delivery cost in scalable streaming content distribution systems,” IEEE
Trans. Multimedia, vol. 6, pp. 356–365, April 2004.

[4] W. Tang, E. Wong, S. Chan, and K. Ko, “Optimal video placement
scheme for batching vod services,” IEEE Trans. on Broadcasting,
vol. 50, pp. 16–25, Mar. 2004.

[5] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis, “On the optimiza-
tion of storage capacity allocation for content distribution,” Computer
Networks Journal, vol. 47, pp. 409–428, Feb. 2005.

[6] T. Wauters, D. Colle, M. Pickavet, B. Dhoedt, and P. Demeester, “Optical
network design for video on demand services,” in Proc. Conf. Optical
Network Design and Modelling, Milan, Italy, Feb. 2005.

[7] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and
J. Zahorjan, “Measurement, modeling, and analysis of a peer-to-peer file-
sharing workload,” in Proc. ACM Symp. Operating Systems Principles
(SOSP), Bolton Landing, NY, Oct. 2003.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. Cambridge, MA: The MIT Press, 1990.

[9] R. Fletcher, Practical Methods of Optimization. New York, NY: John
Wiley and Sons, 1987.

[10] W. Hock and K. Schittkowski, “A comparative performance evaluation
of 27 nonlinear programming codes,” Computing, vol. 30, pp. 335–358,
1983.


