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Abstract— Wireless sensor-actuator networks (SANETs), in
which nodes perform actions (actuation) in response to sensor
measurements and shared information, have great potential in
medical and agricultural applications. In this paper, we focus
on the problem of using distributed sensed data to design
actuation strategies in order to elicit a desired response from the
environment, whilst attempting to minimize the communication
in the network. Our methodology is based on batch Q-learning;
we describe a distributed approach for learning dyadic regression
trees to estimate the Q-functions from collected data. Analysis
and simulation indicate that substantial communication savings
that can be achieved through distributed learning without sig-
nificant performance deterioration. The simulations also reveal
that the performance of our technique depends strongly on the
amount of training data available.

I. INTRODUCTION

Wireless sensor and actuator networks (SANETs) represent
an important extension of sensor networks, allowing nodes
within the network to make autonomous decisions and perform
actions (actuation) in response to sensor measurements and
shared information. The potential applications of such wireless
SANETs are widespread, including agricultural maintenance,
precision farming and automatic irrigation [1], [2], as well as
localized delivery of medication. One of the important tasks
in a SANET is the fusion of the sensed data in order to learn
the response of the environment to actuations; this permits the
subsequent design of an optimal actuation strategy.

A dynamic actuation strategy is a set of decision rules, one
per actuation interval (or time-step), that determine the nature
of the actuation performed by the SANET. It forms a map from
a set of past and present measured environmental variables
(and potentially the actuation history) to a discrete actuation;
an example from the agricultural setting is the decision of
how much herbicide and water to administer based on recent
measurements of temperature, soil salinity and moisture, and
weed density.

In this paper, we focus on the problem of using distributed
sensor measurements to design actuation strategies in order
to elicit a desired response from the environment. We are
interested in the particular case where system dynamics are
unknown but a batch of data is available from previous
actuation epochs; our goal is to use the data to learn the system

dynamics and to estimate an optimal actuation strategy, i.e, a
strategy that achieves the best (expected) marginal response
from the system over the course of an actuation epoch.

Our methodology incorporates distributed dyadic regression
tree learning [3] into a batch Q-learning framework [4],
[5]. A centralized implementation of the methodology re-
quires significant communication, particularly when the data
dimension and volume are large. For this reason, we propose
two algorithms for performing distributed construction of the
dyadic regression tree.

The paper is structured as follows. Section II defines the
problem and states our objective. Section III provides a review
of batch Q-learning and dyadic regression tree learning, and
outlines our proposed methodology for merging these tech-
niques to develop actuation strategies. Section IV describes
a distributed implementation and explores communication
requirements. Section V discusses the results of simulations
conducted to explore the performance of our proposed algo-
rithms.

A. Related Work and Contribution

Our work is founded upon the Q-learning framework [6]
and more specifically on batch Q-learning (or A-learning), as
outlined in [5], [7]–[9]. Within this framework, we incorpo-
rate functional approximation, an approach which has been
adopted in temporal learning and dynamic programming for
many years (see [4], [10]–[12] and the references therein). In
particular, we employ a dyadic regression tree approach [3]
and describe distributed implementations of this algorithm
(both exact and approximate). The exact algorithm involves
the identification and sharing of sufficient statistics, and is
similar to the approach adopted in [13]. The approximate
algorithm generates a tree that is similar but not exactly the
same as that constructed by the centralized algorithm. This
second algorithm is closer in spirit to the approach in [14] for
the derivation of an approximate decision tree based on the
transmission of a selected subset of data, and related to the
classification technique of bagging using disjoint data sets as
discussed in [15].

Our contributions in solving two problems related to wire-
less SANETs are the following. First, we propose a novel



methodology for the design of an actuation strategy that
maximizes the expected response from the unknown environ-
ment monitored and controlled by the SANET. Second, we
address the issue of minimizing the communication costs for
a low-power wireless SANET by developing two distributed
algorithms to build regression trees. Both algorithms share the
computational load among all nodes, which allows them to
transmit a reduced set of statistics to the fusion center.

II. PROBLEM STATEMENT

We consider a wireless SANET consisting of joint sensor-
actuator nodes labeled i = 1, . . . ,K. Measurements are made
over an epoch of T discrete time intervals. At the beginning
of each interval t = 0, . . . , T , node i measures a set of
environmental variables V

(i)
t , and chooses an actuation A

(i)
t

belonging to the discrete set of actuations A. At the end
of the epoch, each node measures a local response variable
Y

(i)
T . We denote the observed data at the end of the epoch as
{X0:T , AT , YT }, where X0:t = {A(i)

0:t−1, V
(i)
0:t }Ki=1.

Define a dynamic actuation strategy as a collection of
functions πt(X0:t) that at each time t generate an actuation
At based on the observed data and actuation history X0:t.
We represent this dynamic actuation strategy as a vector π =
(π0, . . . , πT ). Denote the class of actuation strategies that have
non-zero probability of appearing in the observed data as DP ,
where P is the distribution of the observed data. Our objective
is to identify the dynamic actuation strategy π∗ ∈ DP that
maximizes the marginal mean response EP [YT |π].

We assume that measurements at different nodes are in-
dependent. We do not assume stationarity or that the system
dynamics are Markovian (although our simulation results in
Section V address a Markovian system). Finally, we assume
that there are no unmeasured direct confounders in the ob-
served data [7]. This implies that the actuation decision At

is independent of potential outcomes given the actuation and
measurement history {X0:t}, i.e., no unmeasured environmen-
tal variable can have a direct causal influence on both the
actuation decision and the future outcome.

III. METHODOLOGY

A. Batch Q-learning

Our approach is founded on batch Q-learning, as discussed
in [4]–[6], [9]. The word “batch” indicates that learning occurs
after the collection of a set of training data (possibly from
multiple epochs). In reviewing Q-learning, we summarize the
description in [5] for the special case where there are no
intermediate rewards. The value function for an actuation
strategy π and initial observation v0 is defined as:

Jπ(v0) = Eπ [YT |V0 = v0] .

The t-value function at time t is

Jπ,t(x0:t) = Eπ [YT |X0:t = x0:t] .

The Q-function at time t is

Qt(x0:t, at) = E [YT |X0:t = x0:t, At = at] .

Note that this last expectation is independent of the policy π,
The optimal value function J∗(v0) is

J∗0 (v0) = max
π∈Dp

Jπ(v0),

and the optimal t-value function for history x0:t is

J∗t (x0:t) = max
π∈Dp

Jπ,t(x0:t).

For t = T , the optimal value function is:

J∗T (x0:t) = max
aT∈A

QT (x0:T , aT ).

For t < T , the optimal value functions satisfy the Bellman
equations [16]:

J∗t (x0:t) = max
at∈A

E
[
J∗t+1(X0:t+1)|X0:t = x0:t, At = at

]
= max

at∈A
Q∗

t (x0:t, at),

where Q∗
t (x0:t, at) is the optimal time-t Q-function:

Q∗
t (x0:t, at) = E

[
J∗t+1(X0:t+1)|X0:t = x0:t, At = at

]
.

The optimal strategy π∗ must satisfy, for t ∈ 0, . . . , T ,

π∗t (x0:t) = arg max
at∈A

[
J∗t+1(X0:t+1)|X0:t = x0:t, At = at

]
.

When the distributions are unknown, the Q-functions must
be estimated from the data, using an approximator such as a
neural network or decision tree [4], [5], [12]. In this paper,
we employ a dyadic regression tree. The estimated time-t Q-
function is denoted Q̂t(x0:t, at). The batch learning procedure
thus initially involves the formation of Q̂T (x0:T , aT ) based on
the data {x0:T , aT , yT }. Subsequently we set

Ĵ∗T (x0:T ) = max
aT∈A

Q̂T (x0:T , aT ).

Now we can construct the data set {x0:T−1, aT−1, Ĵ∗T (x0:T )}
and use it to form an estimate Q̂∗

T−1(x0:T−1, aT−1) of the
time T − 1 optimal Q-function. This process is repeated until
we reach t = 0, at which point we have formed estimates for
all J∗t and hence identified our estimated optimal strategy π̂∗.

Although there has been concern about the convergence
properties when incorporating function estimation in the Q-
learning framework [4], [10]–[12], Murphy provides a finite
sample upper bound on the generalization error of batch Q-
learning in [5]. Theorem 1 therein indicates that if a suitably
powerful regression approach is adopted and the complexity
(or smoothness) of the underlying Q-function satisfies certain
constraints, then batch Q-learning as described above is a
probably approximate correct (PAC) reinforcement learning
algorithm as defined by Fiechter [17]. The dyadic regression
tree approach that we have chosen is near-optimal if the
underlying function satisfies certain smoothness properties
(see [18]); we conjecture that this near-optimality is sufficient
to satisfy the constraints of Theorem 1 in [5], but we are yet
to develop a proof.



B. Dyadic Regression Tree Estimation

In this section we describe our estimator and the mechanism
for its computation. We address the situation where the number
of potential actuations is small; this leads us to an approach
where we construct a different estimator for each actuation.
If the number of actuations is large, then we must assume
some form of smooth behaviour of Q-functions with respect
to actuation and incorporate the actuation level as one of
the regression parameters. We now describe the process for
forming an estimate Q̂∗

T (x0:T , aT ) based on the response
measurements {x0:T , aT , yT }. Subsequent to this process, we
form estimates Q̂∗

t (x0:t, at) in exactly the same fashion based
on the constructed data sets {x0:t, at, Ĵ∗t (x0:t+1)}.

We model a response measurement YT to a specific actua-
tion aT as the expected response plus additive Gaussian noise.

YT (sT , aT ) = QT (sT , aT ) + εT . (1)

Here sT is the set of variables (or sufficient statistics) on which
YT (QT ) directly depends, aside from the actuation aT . For
example, in a Markov system, ST = VT . The term εT ∼
N (0, σ2) denotes zero-mean Gaussian with variance σ2.

The expected response QT (ST , aT ) is modelled as a piece-
wise smooth function, and we use a complexity-penalized
dyadic regression tree procedure to formulate an estimate of
the function, based on the approach described in [3]. We form
a dyadic partitioning of the ST space. The partitioning is
achieved through the construction of a tree. The root represents
a cell encompassing the entire space. At each layer in the
tree we divide the cell in half in one of the dimensions;
as we progress through subsequent layers, we cycle through
the dimensions in turn. The resultant data structure is a tree
of depth dmax, with a small, possibly empty, subset of the
samples S

(i)
T residing at any given leaf-node.

At each node in the tree we fit a function to the descendant
data points using least squares. This function could be a
wedgelet or a low-order polynomial, but in this paper, we
adopt the computationally simpler estimate of a constant (the
mean) over each cell in the partition. This choice greatly
simplifies the distributed construction of a tree in the case
that all data are not transmitted to a fusion site. We associate
with each node in the tree a loss (or risk) value which is the
sum of squared errors for the chosen fitted function. This is
appropriate for the Gaussian model we have adopted.

The formulation of the final estimate is achieved by pruning
the tree using a complexity penalty. The complexity penalty
is proportional to the square-root of the number of leaves in a
candidate tree. Through a recursive procedure, we identify, for
each value M , the M -leaf tree that has minimum risk (squared
error). From this set of trees, we select as our final regression
estimate the tree that has minimum penalized risk (the sum
of the risk and the complexity penalty). The choice of the
complexity penalty, which is related to the number of data
points and the noise variance σ2, is discussed in more detail
in [3]. Note that in our case, the variance σ2 is unknown, so
the complexity penalty becomes in essence a tuning parameter

that controls the smoothness of our estimates.

IV. DISTRIBUTED REGRESSION TREES

In this section we consider the problem of creating a
regression tree from data measurements spread across multiple
SANET nodes. For concreteness, we focus on the forma-
tion of the first regression tree in the Q-learning algorithm.
Specifically, we examine the case where K nodes (or clus-
terheads) each measure (or collect) N data sets of the form
{ST , AT , YT } as defined in Section II. Denote by R the
dimension of ST . Each sensor node is assigned a unique
identification number i ∈ 1, . . . ,K, and node K acts as a
fusion center. Let si,m represent the m-th data set recorded
by the i-th node.

We consider that a communication tree has been formed to
allow each node to relay data to the fusion node K. We denote
the number of hops from node i to the fusion node as G(i),
and the average number of hops as Ḡ. Denote, for each node
i, a set of descendants D(i) and a set of children P(i). Let
D+(i) be the set {D(i), i} containing node i and all of its
descendants. In our analysis of communication overhead, we
assume perfect communications, disregarding the possibility
of node failures, and ignore packet overhead bits. We now
outline three techniques used to build a regression tree from
the distributed data.

A. Algorithm Descriptions

1) Uncompressed Data Aggregation (UDA): Each node i
sends its N measurement vectors to its parent node until node
K has all KN measurement vectors. Node K then performs
all the operations necessary to identify the regression tree.

2) Compressed Data Aggregation (CDA): This algorithm
is a special case of the technique for distributed learning
described in [13]. The transmitted data is reduced by requiring
each SANET node to determine and aggregate sufficient sta-
tistics for the creation of the regression tree. The information
ultimately received by node K allows it to deduce exactly the
same tree as in the UDA case. Initially, each node grows a
decision tree to depth dmax based on its N data points. Each
node i then calculates the mean value µ̂i,j and sum of squares
error σ̂2

i,j for each leaf cell j. The number of node i’s data
points falling within leaf cell j is denoted by ni,j .

The procedure to transmit the statistics to node K is the
following: each node i receives three vectors (µ̂, σ̂2 and n)
from each of its children, calculates the aggregated statistics
with equations (2)-(4) below for each non-empty cell, and then
transmits these to its parent in the communication tree. When
node K has received all the data, it incorporates its own and
then constructs the regression tree with sufficient statistics n′j ,

µ̂′j and σ̂′
2

j .
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Fig. 1. Total bits transmitted as a function of the number of data points N
at each of the K = 32 nodes. α = 0.95 and γ = 1.

n′i,j ← ni,j +
∑

k∈P(i)

n′k,j (2)

µ̂′i,j ←
ni,j · µ̂i,j +

∑
k∈P(i) n′k,j · µ̂′k,j

n′i,j
(3)

σ̂′
2

i,j ←
∑

k∈P(i)

σ̂′
2

k,j + n′k,j(µ̂′k,j − µ̂′i,j)
2

+
∑

m:si,m∈j

(yi,m − µ̂′i,j)
2 (4)

3) Lossy Data Aggregation (LDA): LDA further decreases
the amount of data that is sent, but derives a regression tree
which may differ from that created by UDA and CDA. The
LDA algorithm consists of three stages. In the first stage, each
node grows an individual tree based on its own measurements,
and transmits the indices of the leaf cells in its tree via the
communication tree to the fusion node K. In the second stage,
node K calculates the number of instances tj that cell j
appears in the trees. At this point, node K applies a heuristic
to decide on the unified tree. Each value of tj must exceed a
threshold tmin for cell j to be included in the tree. A natural
choice is tmin = K/2: at least half of the sensor nodes must
have elected to include a given cell in their individual tree in
order for node K to include the cell in the unified tree. Node
K then transmits the list of leaf cells in the unified tree. In the
third stage of the algorithm, each of the other nodes calculates
its mean value µ̂i,j and number of points ni,j for each cell j
in the unified tree. These are relayed back to the fusion node
using the same aggregation procedure described in the CDA
algorithm.

B. Communication Costs
In this section we perform an analysis of the amount of

data that is sent under each algorithm. We assume that a b1-
bit representation is used for each mean µ̂′i,j , sum-of-squares
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Fig. 2. Transmission savings in % of CDA and LDA over UDA as a function
of the fraction of non-empty leaf cells α. For this simulation, we set N = 256,
b2 = 13, γ = 1 and G = 2.5.

error σ̂′
2

i,j , and each component of data vectors {ST , YT }.
The number of points falling in a cell, ni,j , is represented by
a b2-bit integer.

1) UDA: Node i has to send its N measurements, each of
which contains R + 1 components, in addition to those it is
forwarding from its children. The total number of bits sent
throughout the network, HUDA, is:

HUDA = Ḡ(K − 1)N(R + 1)b1 (5)

2) CDA: Each node i sends the values of µ̂′i,j , σ̂′
2

i,j , and
ni,j for all non-empty leaf cells in the set of unpruned trees
constructed by the set of SANET nodes D+(i). Denote this
number of non-empty cells by C(i) and the average number
by C̄. Node i must also send some overhead bits that index
the set of cells to which the statistics correspond. As discussed
in [19], we can encode the structure of a dyadic tree with M
leaf cells using at most 2M indexing bits. The total number
of bits sent throughout the network, HCDA, is:

HCDA = (2b1 + b2 + 2)
K−1∑
i=1

C(i) (6)

= (2b1 + b2 + 2)(K − 1)C̄ (7)

3) LDA: Denote by M(i) the number of leaf cells in the
pruned tree at node i; let M̄ be the average number across all
K − 1 nodes. In the first stage of LDA, each node i sends
a vector of 2M(i) bits over Gi hops to indicate to node K
the structure of its reduced tree of M(i) leaf cells. In the
second stage, node K decides on the structure of the unified
tree and sends the identities of its L leaf cells to the other
K − 1 nodes. The communication cost is simply the indexing
overhead 2L for each of the K − 1 nodes. Finally, the same
aggregation step is performed as in CDA, except that the tree
is common to all nodes, and the sum-of-squares error is not
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so HLDA/HCDA = γ. For this simulation, we set N = 256, b2 = 13 and
α = 0.95.

transmitted. There is no need for additional indexing bits in
this final stage because the set of leaf cells is already known.
The total transmission cost, HLDA, is:

HLDA = (K − 1)L(b1 + b2 + 2) + 2
K−1∑
i=1

GiM(i) (8)

C. Comparative Analysis

In order to more readily compare the communication over-
head of the three algorithms, we introduce some extra notation
and make some simplifying assumptions. Denote by α the
average fraction of non-empty leaf cells in the CDA trees,
i.e.,

α =
C̄

2dmax−1
.

Denote by γ the ratio of L and C̄. Note that when tmin = K/2,
we have L < 2C̄ and hence γ < 2 (consider the extreme case
where each of the L leaf cells is included in the trees of exactly
K/2 + 1 nodes and there are no other leaf cells in any tree).
In practice, we expect that in most cases γ < 1 due to the two
instances of pruning in LDA, first at the individual nodes and
second during the construction of the unified tree. We assume
that G and M are independent, so that the summation in (8)
can be approximated as (K − 1)ḠM̄ , and we further assume
that L ≈ M̄ is a reasonable approximation.

These assumptions lead to the following relationships:

HCDA/HUDA =
α2dmax−1(2b1 + b2 + 2)

ḠNb1(R + 1)
(9)

HLDA/HCDA =
γ(b1 + b2 + 2Ḡ + 2)

2b1 + b2 + 2
(10)

Example: We consider a network with K = 32 nodes where
the average number of hops Ḡ = 2.5 in the communication
tree. Each node gathers N data points for each of R = 2
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Fig. 4. Values of W and Z generated with the update rules for eight pairs
(W0, Z0) during two iterations (T=2).

variables. For CDA and LDA, we use dmax = 7. Finally, we
set b1 = 16 and b2 = log2(NK).

Fig. 1 illustrates the number of bits transmitted by each
algorithm as a function of the number of data points, under the
assumptions we have outlined. We observe how the number
of bits sent by UDA grows with the number of data points
gathered at each node whereas the two algorithms we propose
are independent of N . For N > 300, the communication cost
for UDA is one order of magnitude more than CDA and LDA.

We examine the communication performance of CDA and
LDA with (11) by calculating the percentage reduction with
respect to UDA:

Savings(H) =
HUDA −H

HUDA
× 100% (11)

Fig. 2 shows the savings achieved by CDA and LDA as the
value of α varies for the case γ = 1. This is the scenario
in which the unified tree has C̄ leaf cells. The plot indicates
that when the percentage of occupied leaf cells (α) is small,
the communication reduction is significant (99 percent in this
case) and both LDA and CDA achieve similar savings. The
savings diminish as α increases, reducing to 90 percent for
CDA in the case where all cells are occupied (α = 1). The
difference between CDA and LDA increases as the pruning
becomes more substantial (the unified tree is more compact);
the extent of pruning is indicated by the parameter γ and
shown in Fig. 3.

V. SIMULATION EXPERIMENT

We perform simulations to illustrate the performance of
the proposed estimation method and the LDA algorithm for
a fictitious example scenario. We consider a model of an
agricultural system, in which actuation corresponds to the
release of a herbicide. Each wireless SANET node measures
the soil moisture content with Zt and Wt and at the start of a
day t and makes a decision At (-1 or 1) about the release of
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Fig. 5. Optimal J function, J∗1 , and the two estimated functions, cJ∗1 (UDA) and cJ∗1 (LDA) for the dynamic model described in Section V.Training is performed
with 8192 data points and noise strength σ = 0.2.
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Fig. 6. Comparison between optimal strategy π∗1 and the estimated strategies cπ∗1 (UDA) and cπ∗1 (LDA). The white areas represent a1 = 1 whereas the black
areas represent a1 = −1. Training is performed with 8192 data points and noise strength σ = 0.2.

the herbicide. At the end of the epoch, it measures the change
in the ratio of plant-density to weed-density YT , estimating it
from digital images of the surrounding environment. We wish
to emphasize that the dynamic model below is merely chosen
to illustrate the behaviour of the learning algorithm; we are
not suggesting that this model bears any resemblance to an
appropriate model for the agricultural system.

The model of the system is described by the following
equations (these are used to generate the measurements in our
simulations). Initially, we have

Z0 ∼ U [−0.07, 0.07] + 0.05ε (12)
W0 ∼ U [−1.2, 0.5] + 0.05ε (13)

where ε is zero-mean Gaussian noise with variance 1.
For t > 0, at each of the T iterations in one epoch, the

following update is performed:
1: W ′

0 = Wt−1

2: Z ′
0 = Zt−1

3: for i = 1 : 6 do
4: W ′

i = W ′
i−1 + 0.001At−1 − 0.0075 cos(3Z ′

i−1)
5: Z ′

i = Z ′
i−1 + W ′

i

6: end for
7: Wt = W ′

i

8: Zt = Z ′
i

where W is bounded in [−1.2, 0.5] and Z in [−0.07, 0.07].
If W ′

i lies outside the range after the update, it is set to the
boundary value. If Z ′

i lies outside its range, it is set to the
boundary value as well and W ′

i is set to 0.
After the update, at the end of the iteration, noise is added

to the measurements:

Wt = Wt + 0.05ε (14)
Zt = Zt + 0.05ε (15)

At the end of the epoch, the local response YT is generated
with the following expression:

YT = sin(3ZT ) + σε (16)

where σ2 represents the noise variance on the measured
response.

The results we report were generated by averaging over 50
simulations with different training data sets (S, V, Y ) for each
setting of the parameters we vary. In order to generate the
training data, actuation decisions were made at random with
equal probability. All results concern the case where T = 2;
Fig. 4, shows an example of W and Z generated with these
update rules. In the execution of our algorithms, we adopted
a Markov model, i.e., we set St = Vt.
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Fig. 7. (a) The percentage of actuation sequences that match the optimal sequence (ba0:T = a∗0:T )as a function of the training set size. (b) The relative
performance difference (as expressed in (17)) as a function of the training set size. The distributed algorithm used is LDA with number of nodes K = 8.
Noise strength coefficient σ = 0.2 and epoch duration T = 3. Values are the average results obtained from 50 training sets tested with 80,000 points.

We first compare the performance of our centralized learn-
ing algorithm (UDA) to the distributed LDA algorithm. We
assume a communication hierarchy where 8 clusterheads first
gather data from neighbouring SANET nodes and then execute
the LDA algorithm.

Fig. 5 shows the optimal J function, J∗1 , and the two
estimated functions, Ĵ∗1(UDA) and Ĵ∗1(LDA) for a typical
simulation. The dyadic regression tree has difficulty matching
the highly non-linear structure of the J function, but the
generated estimates are reasonable. The estimate generated
by the LDA algorithm is slightly less accurate than the
centralized version. Fig. 6 compares the optimal strategy π∗1
with π̂∗1(UDA) and π̂∗1(LDA) for the same simulation. In this
example, the difference in the responses evoked by a1 = 1 and
a1 = −1 is relatively small for much of the W -Z plane, so
small errors in approximating Q1(a0) and Q1(a1) can lead to
suboptimal actuation decisions.

We are interested in examining the impact of the number of
training points (NK) on the performance of the algorithms;
We ran simulations for six different training set sizes, ranging
from 1024 to 32768. Fig. 7(a) shows the percentage of
correctly identified actuation strategies for the two algorithms.
Fig. 7(b) displays the performance difference for the central-
ized and distributed approach as expressed in (17). In each
case, these values are estimated by comparing the optimal and
estimated actuation strategies of 80,000 randomly generated
data sets.

PD = E

[
J∗(v0)− Ĵ∗(v0)

J∗(v0)

]
· 100% (17)

We observe that as the size of the training set increases,
the percentage of correctly-identified actuation sequences in-
creases and the performance difference decreases. Both figures

indicate that the performance of the LDA algorithm is almost
as good as UDA for all training set sizes.

In Fig. 8(a) we show the impact of the number of nodes
K under LDA on the performance difference PD for a fixed
number of training points NK = 8192. From the plot, we
observe that increasing the number of nodes up to K = 32
actually yields better results. This can be explained by the fact
that by dividing the data and only keeping the leaf cells that
appear in at least half of the nodes, bad data gets averaged and
creates less disturbance on the estimate. However, for K > 32,
the PD starts to increase again because the number of points
available at each node becomes insufficient to construct an
accurate tree.

Fig. 8(b) depicts the calculated (UDA, CDA and LDA)
and simulated (LDA) number of bits transmitted during the
learning procedure. The analytical curves were generated by
combining (5), (6) and (8) with the approximations proposed
in Section IV-C. From the figure, we observe that the number
of bits sent under LDA during the simulations is lower than
our calculated cost. Contrary to our approximation L ≈ M̄ , the
number of leaf cells L in the unified tree is typically much
smaller than M̄ during the simulations, which leads to less
communications.

VI. CONCLUSION

In this paper, we addressed the problem of determining an
actuation strategy that maximizes the marginal mean response
for a wireless SANET. Our approach incorporates dyadic
regression tree estimation into a batch Q-learning. In the
future, we will investigate the development of adaptive training
strategies over multiple epochs, focusing on how to determine
regions of the input space that need more training. We will also
pursue other estimation strategies, such as trees generated by
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Fig. 8. (a) The relative performance difference of LDA (as expressed in (17)) as a function of the number of nodes K. (b) Total bits sent during one iteration
as a function of the number of nodes K. We show values for UDA, calculated upper-bounds for CDA and LDA, and simulated values for LDA. Total number
of data points used for both training and testing is NK = 8192, noise variance σ2 = 0.04 and T = 3. Simulated values are the average results obtained
from 50 training sets tested with 80,000 data points.

uneven splits which allow more accurate approximation, for
example cycle-spinning tree techniques [20].

A centralized implementation involves a substantial com-
munication overhead. We presented two algorithms for dis-
tributed tree learning in order to reduce the transmission cost.
Our first proposal reduces the amount of data sent through
the identification and sharing of sufficient statistics, and it
allows the construction of the same tree as in the centralized
case. The second scheme further reduces the communication
overhead, but potentially deduces a tree different from that
identified by the centralized algorithm. Based on analytical
calculations and simulations, we observe that our second
technique shows important communications savings over the
centralized approach (more than 90%) whilst maintaining
similar performance. Performance is dependent on the total
number of training data points; increasing the number of nodes
while reducing the number of measurements at each node
does not negatively impact performance. In the future, we will
develop an algorithm based on the construction of forests of
trees.
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