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Abstract

The popularity of peer-to-peer (P2P) networks makes them an attractive target to the creators of viruses and other malicious
code. Recently a number of viruses designed specifically to spread via P2P networks have emerged. Pollution has also become
increasingly prevalent as copyright holders inject multiple decoy versions in order to impede item distribution. In this paper
we derive deterministic epidemiological models for the propagation of a P2P virus propagates through a P2P network and the
dissemination of pollution. We report on discrete simulations that provide some verification that the models remain sufficiently
accurate despite variations in individual peer behaviour to provide insight in the system. The paper examines the steady-state
behaviour and illustrates how the models may be used to estimate in a computationally efficient manner how effective object
reputation schemes will be in mitigating the impact of viruses and preventing the spread of pollution.

I. I NTRODUCTION

Peer-to-peer (P2P) networks have become increasingly vulnerable to malicious behaviour, including the dissemination of
pollutedversions of files and the release of P2P viruses. Early P2P networks such as Napster focussed exclusively on media
files, so propagation of viruses was difficult to achieve [1].Contemporary P2P networks such as Kazaa / Fastrack [2] and
eDonkey2000 [3] can be used to disseminate executable files and are hence much more susceptible, particularly as the
mainstream adoption of P2P file exchange—the eDonkey2000 network alone typically has over 2 million users connected
at any given time [4]—means that a significant fraction of users lack the technical knowledge to detect suspicious files or scan
for viruses.

The phenomenon of pollution, the presence of corrupted (or “bad”) versions of items (songs, movies or multimedia files)
in P2P networks, has become increasingly prevalent. Some ofthese versions are made available by accident, as users make
errors in file generation. But the dominant cause is deliberate dissemination of decoy files, termeditem poisoningin [5], a
technological mechanism employed by copyright holders andtheir agents to impede the distribution of content. These decoy
files have names and metadata matching those of the genuine item, but contain corrupted, unreadable or inappropriate data.
Whether accidental or deliberate, pollution has rendered a substantial portion of the files on popular P2P networks unusable.

In this paper we examine the behaviour of viruses and pollution in P2P networks. We adopt a epidemiological approach,
developing dynamic models to describe the evolution of infection/pollution. We consider the stochastic nature of the system
during our development of the models, but our models are deterministic and focus on the expected behaviour of the system.
We illustrate that these deterministic models are sufficiently accurate to capture the behaviour of P2P networks, by comparison
with more realistic simulations that model individual peers.

Our initial purpose is to model the impact of malicious code on a P2P network, but a primary motivation is to examine
how effective the introduction of mitigation techniques might be. In particular, we focus onobject reputationschemes (such
as Credence [6]) and methods that increase the rate of elimination of infected files. Our model provides an analytical method
for determining (at least approximately) how widespread the adoption of such schemes must be, and how effective they must
be, in order that specific targets of residual pollution or infection be achieved. We validate these specifications through more
accurate simulation of the networks.

The paper is structured as follows. In the remainder of the introduction, we highlight the salient features of P2P networks,
viruses and pollution, and discuss related work. Section IIpresents a model for the expected evolution of a virus in the system.
In Section IV, we analyze the steady-state behaviour of our P2P virus model. Section V presents an epidemiological model
for the proliferation of pollution. Section VII reports on an empirical study of the e-Donkey network, which we conducted to
identify suitable parameters for the examination of our models. Section VI examines the impact of object reputation schemes.
Section VIII reports on discrete-time simulations of the P2P network, which provide a validation that the deterministic models
capture the primary characteristics of system evolution despite ignoring the variability in behaviour of individual peers. Finally,
Section IX draws conclusions based on our analysis and results.
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A. Peer-to-peer networks, viruses and pollution

This section highlights the key features shared by popular P2P Networks, including Kazaa, eDonkey2000, and Gnutella [7].
Every peer connected to the network has ashared foldercontaining all the files the user wishes to make publicly available
for download by others on the network. When a user wants to download a file, he begins by sending out a search request.
In response he receives a list of files matching the search criteria. The specific manner in which this list is generated varies
among the various P2P networks, but in all cases the query response is the result of the examination of the shared folders of a
subset of all peers connected to the network. Once the user elects to download one of the files from the list, his client attempts
to set up a connection to a peer sharing the file and begins receiving the file. Depending on the specific network, the client
may attempt to simultaneously download different parts of the file from a number of peers in order to expedite the operation.
P2P clients typically save new downloaded files in the sharedfolder – making them immediately available to other users.

A number of worms and viruses that exploit P2P networks have already surfaced. The majority of these behave in a similar
fashion. Specifically, when a user downloads a file containing the virus and executes it, a number of new files containing
the virus are created and placed in the client’s shared directory. Some types of viruses, including Achar [8] and Gotorm [9],
generate a fixed list of filenames when executed. More advanced viruses, such as Bare [10] and Krepper [11], randomly pick
the list of filenames from a large pool of candidates.

Pollution is a more widespread phenomenon, as indicated by the empirical study performed in [12]. The study indicated
that the number of versions of relatively popular items is generally substantial (on the order of tens or hundreds). It was also
observed that the pollution level (the fraction of bad versions) for a specific item remained approximately constant over time.

B. Related Work

The advent of mathematical Epidemiology – the field of biology which models how diseases spread in a population – is
generally credited to McKendrick and his seminal 1926 paper[13]. Previous work in applying epidemiology to modeling
how computer viruses and other malware spreads between machines dates back to the late 1980s/early 1990s [14], [15].
More recently, several authors have utilized epidemiological models to study the spread of worms and e-mail viruses in the
Internet [16]–[20].

There have been a number of recent papers which model file propagation in P2P networks [21]–[24]. Dumitriu et al. [5]
model the spread of polluted files in P2P networks, and Liang et al. report on an empirical study of pollution in P2P networks
in [12]. The behaviour of object reputation mechanisms has been discussed in [6].

Contribution: We believe that our paper is the first to develop a epidemiological model for peer-to-peer viruses. Although
these viruses share similarities with Internet worms and e-mail viruses, there are sufficient differences in their spreading
mechanics to necessitate the development of a new model. Thedynamic pollution model developed in [5] is closely relatedto our
epidemiological pollution model, and produces similar behaviour. Phrasing the model in an epidemiological frameworkprovides
an alternative understanding of system behaviour. The deterministic models are reasonably accurate even with substantial
variation in individual peer behaviour, and we illustrate how they can be used to estimate in a computationally efficient
manner the impact of an object reputation scheme in mitigating P2P viruses and pollution. Conversely, the models can be
used to determine how widespread the usage of a reputation scheme must be and how much it must dampen the probability
of downloading an infected or polluted file in order to achieve a target level of pollution/infection.

II. P2P VIRUS MODEL OVERVIEW

The intent of our model is to predict the expected behaviour of a virus which spreads through a P2P network in the form
of malicious code embedded in executable files shared by peers. We make the simplifying assumption that all users download
files to their shared folder. We are not concerned with the transfer of media files which cannot contain malicious code, and
do not model them. Note that we use the termuser in this paper to refer to a person using a P2Pclient program. The term
peer is used to collectively refer to a P2P client and the user directing its behaviour.

This model classifies all peers as falling into one of three classes:Susceptible, Exposed, or Infected:

Susceptible– Peers that are not sharing any infected files, but are at riskof downloading infected files. The number of peers
in this category at timet is denoted byS(t).

Exposed– Peers that have downloaded one or more infected files, but have not executed them. The number of peers in this
category at timet is denoted byE(t). The Exposed category is included in the model to allow for a delay between download
of an infected file and execution.

Infected– Peers that have executed an infected file. Upon execution, atotal of of c infected files reside in the peer’s shared
folder. The number of peers in this category at timet is denoted byI(t).



3

Event Variables Affected

File downloaded q(t), S(t), E(t)
File executed q(t), E(t), I(t)
Peer recovers q(t), I(t), R(t)

TABLE I

P2P VIRUS MODEL VARIABLES THAT ARE POTENTIALLY AFFECTED BY EACH POSSIBLE EVENT IN THE NETWORK.

An Infected client may be detected by the user, who will then proceed to remove all the infected files, thereby returning
the state of the peer to Susceptible. At all times, every one of the N peers making up the network falls into one of the three
categories. Thus, for all values oft, N = S(t) + E(t) + I(t).

We assume that the total number of uninfected files in the network is fixed atM . The total number of infected files at
time t is given byK(t). The expected proportion of infected files in the network,q(t), is thereforeq(t) = K(t)

K(t)+M
. When a

user downloads a file, we assume the probability of choosing an infected file will be dependent on the prevalence of infected
files in the network. The probability will vary to some degreefor different peers, according to whether the peer has updated
virus-detection software or is aware of the common characteristics of virus files (such files are often much smaller than genuine
versions of the item). In our model, we are interested in the average probability of choosing an infected file, and we denote
this probability byh(t). In Section IV, where we examine steady-state behaviour, weseth(t) = αq(t), for some constantα,
to reflect the fact that the probability is closely tied to virus prevalence and to simplify our analysis.

There are three distinct events that may occur in the networkwhich affect one or more of the time-varying variables
described above. These events include a peer downloading a file from another, a peer executing a shared file, and an Infected
peer recovering. Although individual peers conduct these activities at (potentially very) different rates, we develop our model
based on average behaviour. Our simulation results in Section VIII indicate that this modelling choice does not produce
substantially erroneous behaviour. The average rates at which each of these events occurs are governed by three parameters:

λS : Average rate, in files per minute, at which each peer downloads new files (this includes time spent searching and setting
up the connection to another peer).

λE : Average rate, in files per minute, at which each peer executes shared files. We assume that a peer executes files in the
order in which they are downloaded.

λR: Average rate, in “recoveries per minute”, at which Infected peers recover. A recovery occurs when all infected files are
removed, returning the peer state to Susceptible.

A. Model Equations

Table I summarizes which time-varying variables are affected by each of the three events that may occur in the network.
The state progression for all peers in our model isS → E → I → S.... We now derive the differential equations that govern
the evolution of our P2P model.

III. M ODEL EQUATIONS

A. Rate at which the number of Infected peers changes

When an Infected peer recovers, the number of Infected peers decreases by one. Recoveries occur at rateλRI(t). When
an Exposed peer executes an infected file, the number of Infected peers increases by one. Since files are executed in order of
download, the file executed by an Exposed peer will always be the infected file which it had downloaded to become Exposed
. This occurs at a rate ofλEE(t). Therefore,

dI(t)

dt
= −λRI(t) + λEE(t) (1)

B. Rate at which the number of Exposed peers changes

The rate at which the number of Exposed peers decreases due toinfection is given by the negative of the second term in (1).
The rate at which previously Susceptible peers become Exposed is dependent on the aggregate rate at which they download
files: λSS(t), multiplied by the probability that a downloaded file is infected:h(t). The overall rate is therefore:

dE(t)

dt
= −λEE(t) + λSS(t)h(t) (2)
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C. Rate at which the number of Susceptible peers changes

This is governed by the negatives of the the first term in (1) and the second term in (2):

dS(t)

dt
= −λSS(t)h(t) + λRI(t) (3)

D. Rate at which number of infected files in the network changes

There are three events which result in a change in the number of infected files in the network: a peer downloads an infected
file, an Exposed peer becomes Infected, and an Infected peer recovers.

The rate at which these events occur is dependent on three model assumptions. Two of these are related to peer behaviour
and one to the behaviour of the virus. The first assumption is whether downloaded files are always eventually executed, or
if some proportion are never executed. Second, if a downloaded file is executed, users may or may not be able to download
additional files before execution. The final assumption relates to the creation of new infected files upon execution of an infected
file. Some viruses generatec infected files with file names randomly generated from a pool significantly larger thanc, while
others generate the same list ofc file names every time. In all cases we assume that each peer canonly have on instance of a
particular file name.

These three binary choices give rise to eight possible models, and we now examine the associated rate of change of infected
files associated with each model.

1) All downloads executed, no additional downloads before execution,c unique file names:In this case only Susceptible
peers can download infected files: Exposed peers do not download any additional files before becoming Infected, and Infected
peers are sharing allc possible infected files. Thus, the rate of change due to downloads isS(t)λSh(t).

An Exposed peer always has one infected file before becoming Infected, meaning in all casesc − 1 new infected files are
created when an Exposed peer becomes Infected. The rate of change is thusE(t)λS(c − 1).

An Infected peer will always sharec files, so a recovery results in a reduction ofc infected files. The rate is therefore
−I(t)λRc. The overall rate of change ofK is therefore:

dK(t)

dt
= S(t)λSh(t) + E(t)λE(c − 1) − I(t)λRc (4)

2) All downloads executed, no additional downloads before execution, possible file names>> c : Susceptible and Infected
peers can both download infected files. Thus, the rate of change due to downloads is(S(t) + I(t))λSh(t).

When an Exposed peer becomes Infectedc new infected files are created. The rate of change due to infections is thus
E(t)λEc.

Prior to recovery, an Infected peer will have thec infected files created during the transition from Exposed toInfected, the
one infected file downloaded while infected, and the additional infected files downloaded while infected. The expected time
spent in the Infection phase is1

λR
, so the expected number of files downloaded during this period is

∫ τ=t

τ=(t− 1

λR
)
λSh(τ)dτ . We

note that the preceding integral may be approximated byh(t)λS

λR
. The accuracy of this approximation depends on how much

the functionh(τ) fluctuates over the range fromt − 1
λR

to t.
The overall rate of change ofK is therefore:

dK(t)

dt
= {S(t) + I(t)}λSq(t) + E(t)λEc − I(t)λR(c + 1 +

∫ τ=t

τ=(t− 1

λR
)

λSh(τ)dτ) (5)

3) All downloads executed, additional downloads before execution possible,c unique file names :Susceptible and Exposed
peers can both download infected files, but Infected peers cannot since they already have allc possible files. Thus, the rate of
change due to downloads is{S(t) + E(t)}λSq(t).

The expected time from when a peer becomes Exposed till when it becomes Infected is1/overλE . Thus, while a peer is
Exposed, the expected number of additional infected files itdownloads is

∫ τ=t

τ=(t− 1

λE
)
λSh(τ)dτ . When it becomes Infected,

the remaining files are generated. The rate of change in the number of infected files due to Exposed peers becoming Infected
is thusE(t)λE(c − 1 −

∫ τ=t

τ=(t− 1

λE
)
λSh(τ)dτ).

An Infected peer will always sharec files, so a recovery results in a reduction ofc infected files. The rate is therefore
−I(t)λRc.

The overall rate of change ofK is therefore:

dK(t)

dt
= {S(t) + E(t)}λSq(t) + E(t)λE(c − 1 −

∫ τ=t

τ=(t− 1

λE
)

λSh(τ)dτ) − I(t)λRc (6)
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4) All downloads executed, additional downloads before execution possible, possible file names>> c : All peer can continue
to download, so the rate of change due to downloads isNλSq(t).

When an Exposed peer becomes infected,c new infected files are created in addition to the ones it is already sharing. So,
the rate of change due to executions of infected files isE(t)λEc

The expected number of files downloaded while Exposed and Infected is
∫ τ=t

τ=(t− 1

λE
)
λSh(τ)dτ

+
∫ τ=t− 1

λE

τ=(t− 1

λR
−

1

λE
)
λSh(τ)dτ , so the rate of change from recoveries is

−I(t)(c + 1 +
∫ τ=t

τ=(t− 1

λR
−

1

λE
)
λSh(τ)dτ).

The overall rate of change ofK is therefore:

dK(t)

dt
= NλSq(t) + E(t)λEc − I(t)(c + 1 +

∫ τ=t

τ=(t− 1

λR
−

1

λE
)

λSh(τ)dτ) (7)

5) Some downloads not executed, if file is executed: no additional downloads before execution,c unique file names:Since
not all files are executed,λE < λS , and the probability of a downloaded file being executed isλE

λS

The expected proportion of Exposed peers which do not execute the infected file they downloaded, and hence keep
downloading, isλE

λS
. Thus, the rate of change due to downloads is{S(t) + E(t)λE

λS
}h(t)λS

The number of infected files an Exposed peer downloads prior to executing one is geometrically distributed with parameter
λE

λS
, so the expected number of such downloads isλS

λE
. This means upon Infection, an additionalc − 1 − λS

λE
files will be

created, and hence the rate of change due to new Infections isE(t)λE(c − 1 − λS

λE
)

Infected peers will always sharec files, so the rate of change due to recoveries is−I(t)λRc.
The overall rate of change ofK is therefore:

dK(t)

dt
= {S(t) + E(t)

λE

λS

}q(t)λS + E(t)λE(c − 1 −
λS

λE

) − I(t)λRc (8)

6) Some downloads not executed, if file is executed: no additional downloads before execution, possible file names>> c:
Susceptible and Exposed peers download in the same fashion as in case 5), but in this case Infected peers can also continue
to download infected files. Therefore, the rate of change in infected files due to downloads is{S(t) + I(t) + E(t)λE

λS
}q(t)λS

Upon infection,c additional infected file types are created, meaning the rateof change due to infections isE(t)λEc
Prior to recovery, Infected peers are expected to have downloaded

∫ τ=t

τ=(t− 1

λR
)
λSh(τ)dτ . Prior to infection, Exposed peers

are expected to have downloadedλS

λE
files. Therefore, the rate of change in the number of infectedfiles due to recoveries is

−I(t)λR(c + 1 +
∫ τ=t

τ=(t− 1

λR
)
λSh(τ)dτ + λS

λE
)

The overall rate of change ofK is therefore:

dK(t)

dt
= {S(t) + I(t) + E(t)

λE

λS

}q(t)λS + E(t)λEc − I(t)λR(c + 1 +

∫ τ=t

τ=(t− 1

λR
)

λSh(τ)dτ +
λS

λE

) (9)

7) Some downloads not executed, additional downloads before execution possible,c unique file names:Susceptible and
Exposed peers can both download infected files, but Infectedpeers cannot since they already have allc possible files. Thus,
the rate of change due to downloads is{S(t) + E(t)}λSq(t).

The expected number of infected files downloaded by an Exposed peer prior to deciding to execute one isλS

λE
. Before this

file is executed,
∫ τ=t

τ=(t− 1

λE
)
λSh(τ)dτ additional infected files are expected to be downloaded. Hence the rate of change due to

new Infections isE(t)λE(c − 1 − λS

λE
−

∫ τ=t

τ=(t− 1

λE
)
λSh(τ)dτ)

Infected peers will always sharec files, so the rate of change due to recoveries is−I(t)λRc.
The overall rate of change ofK is therefore:

dK(t)

dt
= {S(t) + E(t)}λSq(t) + E(t)λE(c − 1 −

λS

λE

−

∫ τ=t

τ=(t− 1

λE
)

λSh(τ)dτ) − I(t)λRc (10)

8) Some downloads not executed, additional downloads before execution possible, possible file names>> c: All peer
download infected files at all times, so the rate of change in infected files due to downloads isNλSq(t)

Upon infection,c additional infected file types are created, meaning the rateof change due to infections isE(t)λEc
Prior to recovery, Infected peers are expected to have downloaded

∫ τ=t

τ=(t− 1

λR
)
λSh(τ)dτ . Prior to infection, Exposed peers

are expected to have downloaded
∫ τ=t− 1

λR

τ=(t− 1

λE
−

1

λR
)
λSh(τ)dτ + λS

λE
files. Therefore, the rate of change in the number of infected

files due to recoveries is−I(t)λR(c + 1 +
∫ τ=t

τ=(t− 1

λE
−

1

λR
)
λSh(τ)dτ + λS

λE
)
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The overall rate of change ofK is therefore:

dK(t)

dt
= NλSq(t) + E(t)λEc − I(t)λR(c + 1 +

∫ τ=t

τ=(t− 1

λE
−

1

λR
)

λSh(τ)dτ +
λS

λE

) (11)

E. Model Extensions

1) Modeling On-line/Off-line Behaviour:In a real P2P network, individual peers are only on-line for limited durations. In
order to capture this behavior, we present an extension of our model that includes both on-line and off-line users. Each of the
three variables specifying how many peers are in each category – S,E, I – is partitioned into two variables to account for how
many peers in the category are on and off-line. So, for instance,I(t) = IN (t) + IF (t), whereIN (t) is the number of Infected
peers on-line, andIF (t) is the number of Infected peers offline. Peers that are off-line go on-line at a certain rateλN , and
on-line peers go off-line at rateλF . The differential equation governing the change in the number of on-line Infected peers
at time t is:

dIN (t)

dt
= IF (t)λN − IN (t)λF (12)

The equations governing the rates of change inSN (t) and EN (t) are analogous. We assume here that peers go on and
off-line at the same rate regardless of their state. It wouldalso be simple to expand the model to include different ratesfor
each state.

To complete the specification of the extended model, all the previously defined differential equations are changed as follows:
every instance ofS(t), E(t), andI(t) is replaced, respectively, bySN (t), EN (t), andIN (t).

2) Modeling Peers that Remain Infected:One can argue that a certain proportion of P2P users, when their client becomes
Infected, will never detect that this has occurred and not take any action to remedy this problem. In order to include this
behaviour in our model, we classify all peers as “aware” or “oblivious”. Aware peers behave as those in our basic model
described in II-A, while oblivious peers progressS → I and then remain Infected. The number of peers in each group is
fixed: N = NA + NO whereNA is the number of aware peers, andNO is the number of oblivious peers.

As in Section III-E.1, the number of peers falling into each of the four categories at timet is partitioned into two groups;
in this case the number of aware users in categoryX at time t, whereX ∈ {S,E, I}, is denoted byXA(t) and the number
of oblivious users in each category is denoted byXO(t). The behaviour of aware users is determined by equations (1), (2),
and (3), withXA(t) replacingX(t) for all X ∈ {S,E, I}. Oblivious users are governed by (1), (2), and (3), withX0(t)

replacingX(t), and λR set to zero (reflecting the fact that oblivious peers never recover). Finally, dK(t)
dt

is governed by a
modified version of (4), withS(t) replaced bySA(t) + SO(t), E(t) replaced byEA(t) + EO(t), andI(t) replaced byIA(t).

IV. A NALYSIS - STABILITY RESULTS

If the P2P network reaches a steady-state equilibrium by some time t = T , then dE(T )
dt

= dI(T )
dt

= dS(T )
dt

= 0. In this
section, we assume that the probability of downloading an infected file is a function of the proportion of infected files, i.e.,
h(t) = f(q(t)). Defining Ẽ, Ĩ, S̃, as the steady-state values of, respectively,E(t), I(t), andS(t), Equation (1) implies that:

Ĩ = Ẽ
λE

λR

(13)

If we defineτ and µ as, respectively, the expected number of infected files eachExposed and Infected peer is sharing in
steady-state, theñq, the proportion of infected files in steady-state may be expressed as:

q̃ =
Ẽτ + Ĩµ

M + Ẽτ + Ĩµ
(14)

Substituting (13) into (14) provides:

q̃ =
Ẽ(τλR + µλE)

MλR + Ẽ(τλR + µλE)
(15)

If f(q̃) > 0, equation (2) implies that, in steady state:

S̃ = Ẽ
λE

λSf(q̃)
(16)

SinceS̃ = N − Ĩ − Ẽ, equation (13) can be utilized to expressN as:

S̃ = N − Ẽ(1 +
λE

λR

) (17)
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Fig. 1. The transition diagram for peers indicating the actions that trigger movement between the three classes of susceptible (S), infected (I) and recovered
(R)

If h(t) is proportional toq(t), h(t) = αq(t), we can obtain a closed-form expression forẼ by substituting (15) into (16),
equating with (17), and solving for̃E:

Ẽ =
λRα(NλS(µλE + τλR) − MλEλR)

(τλR + µλE)(λSα(λR + λE) + λEλR)
; q̃ > 0 (18)

The expression for̃I follows trivially from (18) and (13):

Ĩ =
λEα(NλS(µλE + τλR) − MλEλR)

(τλR + µλE)(λSα(λR + λE) + λEλR)
; q̃ > 0 (19)

If q̃ = 0, it follows from (14) thatẼ = Ĩ = 0. It is of interest to consider Equation (19) as it approaches0. In the limiting
case, approached from above, we have the equality

NλS(µλE + τλR) = MλEλR (20)

Since we assume that all downloaded files are eventually executed, it follows that it is reasonable to equate the rates of
download and execution,λE = λS . Under this assumption, (20) provides the following minimum average recover rate,λmin

R

in order for all infected files to eventually be removed from aP2P network:

λmin
R =

NµλE

M − Nτ
;M > Nτ (21)

This equation indicates that, ifh(t) = αq(t), thenλmin
R is a linearly increasing function ofλE .

V. P2P POLLUTION MODEL

We assume thatMi peers are interested in itemi, and that there are a multitude of versions of the item, classified as “good”
or “bad”. Initially the P2P network is seeded withNg(0) good files andNb(0) bad files. The peers who provided these seed files
do not number among theMi peers we consider in our model. We model the peers as belonging to three classes:Susceptible,
Infected, andRecovered. S(t) is the number of susceptible peers at timet; this class includes all peers who will attempt to
download another version of the file in the future. InitiallyS(0) = Mi, as all interested peers are susceptible.I(0) = 0 and
R(0) = 0, because no files have been downloaded from the seeds.

A peer transitions between the three states as depicted in the transition diagram in Figure 1. Each peer is susceptible when
it intends to download a file. When a susceptible peer downloads a file, it joins the Infected class if the file is bad and the
Recovered class if the file is good. A peer may leave the Infected class by testing the downloaded file and electing to retry
at some stage in the future. In this case, the peer rejoins theSusceptible class. Alternatively, an infected peer may decide to
give up and join the Recovered class, despite not being successful in acquiring a good version of the item. A peer may dwell
in the infected state for some period of time before choosingto give up or to retry. This represents the period of time before
an infected peer tests a downloaded file.

Eventually all peers will belong to the Recovered class. We label this class “recovered” primarily to highlight the parallels
with standard epidemiological models. In our model the distinguishing feature of a recovered peer is that it is no longeractively
seeking the item of interest. Note that in our model, any susceptible or infected peer may be sharing none or several polluted
files, but cannot be sharing a good file. A recovered peer may share at most one good file and may share several polluted files.

The number of good shared versions of the item varies over time, as does the number of bad. When a peer transitions
from the susceptible to recovered state by downloading a good version, it shares the file with probabilitypsg. When a peer
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transitions from the susceptible to infected state by downloading a bad file, it shares the file with probabilitypsb. When a peer
transitions from the infected to susceptible state or recovered state, it removes the polluted file with probabilitypdb. We model
the probability of downloading a polluted file at timet, pb(t), as being equal to the fraction of polluted files. This probability
is the same for a peer irrespective of how many times it has been infected. This is a reasonable approximation because the
number of versions of an item is anticipated to be much largerthan the number of re-tries.

We model the expected behaviour of a large group of peers. At time t, a fraction of the susceptible peersλs download a
file. This is effectively the download rate. A fractionλr of the infected peers decide to retry and hence rejoin the susceptible
pool. A fractionλx of the infected peers choose to give up and enter the recovered state. We make the simplifying assumption
that the download rate, and the rates of trying again and giving up (λr and λx) do not vary over time. A constant value of
λs produces the approximately exponential decay in the numberof downloads of an item as time elapses and its popularity
declines. It is reasonable to assume that the variation of the rates of trying again or giving up do not change substantially over
time.

With these modelling choices, we arrive at the following setof equations that describe the evolution of pollution in the
system.

pb(t) =
Nb(t)

Nb(t) + Ng(t)
(22)

dS(t)

dt
= −λsS(t) + λrI(t) (23)

dI(t)

dt
= pb(t)λsI(t) − (λr + λx)I(t) (24)

dR(t)

dt
= (1 − pb(t))λsS(t) + λxI(t) (25)

dNb(t)

dt
= λs pb(t) psb S(t) − (λr + λx) pdb psbI(t) (26)

dNg(t)

dt
= λs(1 − pb(t)) psg S(t) (27)

As with the P2P virus model, these equations are derived under the assumption that all peers have common behaviour;
variability in individual behaviour means that this will not be a completely accurate model of the system. In addition, the
model does not address any notion of memory in user behaviour; it is probable that a peer’s downloading behaviour would
change substantially if it has already received several badversions of an item. In simulations in Section VIII, we account
for variability in peer behaviour and a limited notion of memory; our results indicate that the deterministic model described
above, despite its limitations and assumptions, provides agood indication of the evolution of the extent of pollution in the P2P
network (for a specific item).

VI. T HE IMPACT OF OBJECTREPUTATION SCHEMES

The possibility of downloading an infected or polluted file may be reduced through the use of anobject reputationscheme
which allows P2P users to rate individual files and share thisinformation with others in the network. The standard Kazaa
client [2] includes such a feature, allowing users to assignone of four possible rankings to each file. However, this simplistic
implementation has been ineffective in combatting the number of polluted files in the network [25]. A recently introduced
object-reputation scheme for the Gnutella network named Credence [6] appears promising because of its robustness in the face
of malicious peers which intentionally give high ratings topolluted or Infected files. In this section we model the effect that
an effective object-reputation scheme such as Credence hason virus propagation in a P2P network.

A. Effect on P2P Virus Propagation

As in Section III-E.2, peers are divided into two groups, “smart” peers which utilize an object-reputation system, and
“regular” peers which do not. The number of regular peers falling in a categoryX at time t, is denoted byXR(t) and the
number of smart users in each category is denoted byXS(t). Regular peer behaviour is governed by equations (1), (2), and
(3). Smart peer behaviour is determined by equation (1) and modified versions of equations (2) and (3) withh(t) replaced
by g(t). In order to reflect the fact that smart users are less likely to download infected files, we require thatg(t) ≤ h(t) ∀t.
In the case of a perfect object-reputation system, in which smart peers never download infected files,g(t) = 0 ∀t and hence
SS(t) = NS ∀t. Finally, equation (4) is replaced by

dK(t)

dt
= SR(t)λSht + SS(t)λSgt+

(ER(t) + ES(t))λE(c − 1) − (IR(t) + IS(t))λRc (28)
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Fig. 2. Empirical CDFs based on eDonkey measurement data.

B. Effect on Pollution Dissemination

We model the effect on pollution dissemination in a similar fashion, decomposing the set of interest peers into the two
groups of “smart” and “regular” peers. The object reputation scheme is assumed to reduce the probability of downloadinga
bad version of a file by a fixed proportion. Smart peers now download a bad version with probability

pb,S(t) =
βNb(t)

Nb(t) + Ng(t)
(29)

for some constantβ < 1. Regular peers download bad versions with the same probability as before (proportional to the extent
of pollution). The modified epidemiological model now keepstrack of the number of smart and regular peers in each class
and can hence determine the rates of change of the number of good and bad files in the network. We have:

dNb(t)

dt
= λs psb(pb,S(t)SS(t) + pb,R(t)SR(t))

− (λr + λx) pdb psb I(t) (30)

dNg(t)

dt
= λs psg((1 − pb,S(t))SS(t) + (1 − pb,R(t))SR(t)). (31)

VII. P2P MEASUREMENTS

In order to choose a realistic value ofλS for simulation experiments with our model, we sought to acquire appropriate
measurement data from an actual P2P network. A number of previous empirical studies have explored the behaviour of the
Gnutella Network [26]–[29] and the Kazaa Network [25], [29], and the eDonkey network [30]. The statistics presented have
included the number of files shared by peers, latency betweenpeers, the amount of time spent on and off-line, the degree of
peer connectivity, and mean bandwidth usage. However, we are not aware of any previous work directly analyzing the rate at
which peers download files.

We chose to conduct our measurements on the eDonkey2000 network because of its popularity and the apparently limited
amount of research conducted on the network. BayTSP [31], a company which monitors Internet file-trading, indicates that as
of September, 2004 the eDonkey2000 network has, on average,the most users of any P2P network [32].

The eDonkey2000 network is comprised of a number of servers [4] to which a peer can connect. Each server keeps a list
of all the files shared by connected peers, and uses this information to respond to keyword-based search queries. The search
results returned by the server include a 16-byte MD4 hash [33] value for each file in order to uniquely identify it. When the
user elects to download a specific file, his client sends the hash value of the desired file to the server, and the server responds
with a list of IP addresses and ports of peers sharing the file.

Our experiment consisted of two phases. In the first part, we collected a list of eDonkey2000 peer IP addresses/ports. We
achieved this by first conducting searches for keywords likely to return a significant number of results, for example: “.exe”, and
“.iso”, and then initiating the download of files shared by a large number of peers. Next, we made use of the Ethereal network
protocol analyzer [34] to capture and analyze the packets returned by the server containing the peer IP addresses. We initiated
the download of approximately 500 files to harvest over 20 thousand peer addresses. For the next phase of the experiment,
we developed a scanner program which attempts to connect to every peer and retrieve its list of shared files. We made use of
previous work carried out to reverse-engineer the eDonkey2000 protocol [35], and conducted further analysis using Ethereal.

Users of eDonkey2000 have the option of configuring their clients to block requests by other peers to view their list of shared
files. Our work was complicated by the fact that approximately 95% of peers to which we attempted to connect did not permit
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Interval % of % of % of % of Average
Peers Peers Peers Peers Down-
with with with with load

0 1-10 10-100 ≥ 101 Rate
new new new new (Files/
Files Files Files Files 48 hrs.)

1 11 50 33 6 41.2
2 12 47 33 8 35.8
3 7 39 48 6 36.0

TABLE II

OBSERVED EDONKEY2000 PEER DOWNLOAD BEHAVIOUR OVER THREE DISJOINT 48-HOUR INTERVALS.

viewing of their shared files. There are two obvious factors that contribute to this high percentage: eMule [36], the mostpopular
eDonkey2000 client, has the blocking option enabled by default, and the advent of RIAA (Recording Industry Associationof
America) lawsuits directed against P2P users [37] based on the scanning of shared directories has likely motivated manyusers
to actively disallow the viewing of their files. Nevertheless, we managed to connect to one thousand peers and retrieve their
lists of shared files. We repeated this procedure three more times, in 48-hour intervals. Each scan required approximately two
hours to carry out. In order to deduce the rate at which users were downloading files, we tracked the addition of any new
shared files every time the scanner connected to a peer. We assume that any new file is the result of a download. Admittedly,
the possibility exists that a new shared file was not downloaded, but instead added to the shared directory by the user from
a source outside the eDonkey2000 network. However, we are unable to distinguish such files and therefore our calculated
download rate may be a slight over-estimate. Table II provides the results of our measurements. The overall average download
rate is 37.7 files per 48-hour period. Figure 2 provides the empirical cumulative density functions (CDFs) of the number of
files shared per peer, the number of downloads per peer per 48 hour interval, and the net change in number of files each peer
changes per 48 hour interval. All three plots suggest heavy-tailed distributions, indicating that there are a small percentage of
“power-peers”, which are much more active and share many more files. This phenomenon has been observed in other empirical
studies conducted on P2P networks [29], [30].

We calculated the rate at which peers removed files from theirshared folder, by counting all files peers had made available
during a given run of our scanner program which were no longerpresent during a subsequent scan. The average removal
rate is 29.1. Although this does not entirely validate our Section II assumption of a zero net increase in the total numberof
files, it indicates that files are removed from the network at asimilar rate to which new ones are downloaded. Furthermore,
a website [4] tracking eDonkey2000 server statistics over one-month intervals indicates that, while there are significant daily
fluctuations in the number of files available, the month-longtrend is fairly constant.

As stated in Section II, we are only concerned about modelingexecutable files in P2P networks. To estimate the proportion
of these files in the eDonkey2000 network, we analyzed the aggregate list of approximately 230 thousand files initially shared
by the one thousand peers we tracked. From this list, we removed all files with extensions known to indicate a media file, e.g.
“.mp3” and “.avi”.

This left just over 55 thousand files that were likely to be executable. Therefore, we estimate that the proportion of files
on the eDonkey2000 network that can potentially contain malicious code lies at 24%. We note that this value may be a slight
over-estimate, due to the fact that some of the shared files were compressed (“.zip” or “.rar”), and therefore we could not
identify them as executable with total certainty.

VIII. S IMULATION RESULTS

A. Virus Model Behaviour

In this section we provide some examples of virus behaviour in P2P network predicted by our model. Unless otherwise noted,
results are based on the version of our model described in Section III-D.1. Figure 3 illustrates how the number of peers falling
into each of the three categories evolve over time, and eventually reach a steady state. In this case,λE = λS = 3.47 × 10−3

files per minute, which corresponds to 5 downloads/executions per day. The average time for a peer to recover is 24 hours,
meaningλR is 6.94×10−4. The number of peers,N , is 2 million and there are 60 million clean filesM . This example makes
use of the model in which the number of unique possible files islimited to c, andc is 10. Finally,h(t) = 0.5q(t). Initially,
there are 10 000 Exposed peers, each sharing one infected file.

In Figure 4 we examine the effect of varying the initial extent of infection on the evolution of the number of infected peers
in the network. For high initial infection (1 million files),there is an initial overshoot in the number of infected peersbeyond
the steady state. The medium initial infection case converges most quickly to the steady state value, since, out of the three
cases, the number of initially infected peers is closest to the eventual steady state value. After about 700 hours, the three
networks reach the same steady-state. This is also the behaviour implicitly predicted by equation 19, since it is independent
of any initial condition (as long as at least one infected fileinitially exists in the network).
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Fig. 3. Example of the dynamic behaviour of a P2P network exposed to a virus (with model parameters set to the values described in Section VIII-A). The
network reaches steady-state after about 600 hours, at which point approximately twenty percent of the peers are infected.
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Fig. 4. The effect of the initial infection on the evolution of the number of infected peers. The solid line corresponds to 10 000 infected files initially in the
network, the dashed line: 100 000 initial infected files, thedotted line: 1 000 000 initial infected files.

Figure 5 examines how the steady-state proportion of infected files is affected as model parameters are varied. The panels
in the figure display the effect of changing (i)c, the number of virus files inserted in the shared directory upon infection;
(ii) α, the constant that governs the probability of downloading an infected file; and (iii)λS , the download rate of peers in
the network. These plots indicate that an increasingα and download rate have a limited effect on the infection level of the
network, whereas an increase in the number of files created bya virus can significantly raise the steady-state infection of the
network. However, in a practical setting, the more new files avirus creates, the more likely a user is to notice them and delete
them. Thus, in reality, the recovery rate would likely be an increasing function ofc and the high level of infection for viruses
creating 50 or more new files upon execution would be unlikelyto occur.

B. Virus simulations with varying peer behaviour

The propagation of a virus in a P2P network predicted by our model is based only on the expected values of peer recovery
rates: λR, peer download rate:λS and peer execution network:λE . Realistically, one may expect these values to differ
significantly among peers. Since our equations do not incorporate the notion of a random distribution of these parameters for
each peer, we are essentially modeling a P2P network in whichall peers take on the same deterministic parameter values.
Therefore, it is of interest to consider how closely the results predicted by our model mirror those which would be seen ina
P2P network in which individual peer parameters are randomly distributed. To this end, we present a number of discrete-time
simulation results for a peer-to-peer network in which individual recovery and download/execution rates are chosen according
to several different probability distributions.

All figures illustrate the evolution of the number of Infected, Exposed, and Susceptible peers over time. The non-hashedlines
are the values predicted by our model, and the hashed lines represent the values obtained via our simulations. We consider 20
000 users sharing 600 000 clean files. Parameters not explicitly mentioned below are set to the same values as in Section VIII-A
In Figure 6(a), the download/execution rate is uniformallydistributed about the mean value of5

24 files per day, with individual
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Fig. 5. The effect of varying model parameters on the analytical steady-state proportion of infected files. (a) The effect of varying c, the number of virus
files created upon infection. (b) The effect of varyingα, the constant determining the probability of downloading aninfected file. (c) The effect of varying
the download rateλS .
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Fig. 6. The impact of variability in individual peer downloadrates. The solid, dotted and dashed lines show the predictedbehaviour according to the dynamic
model of infected, susceptible and exposed peers, respectively. The hashed lines show the results achieved in discrete-time simulations. (a) Download rate
drawn from a uniform distribution; (b) download rate drawn from a normal distribution; (c) interval between downloads drawn from a normal distribution.
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Fig. 7. The impact of variability in individual peer recoveryrates. The solid, dotted and dashed lines show the predictedbehaviour according to the dynamic
model of infected, susceptible and exposed peers, respectively. The hashed lines show the results achieved in discrete-time simulations. (a) Recovery rate
drawn from a normal distribution; (b) interval between recoveries drawn from a normal distribution; and (c) Recovery rate, download rate and susceptibility
to infection (α) drawn from normal distributions.

rates varying from 0 to1024 . Figure 6(b) illustrates the case where the download rate isnormally distributed with mean524 and
standard deviation 0.05. Finally, in Figure 6(c), the average length of time between downloads is normally distributed, with
mean 24

5 and standard deviation 5. In figure 7(a) the recovery rate is normally distributed with mean1/24 recoveries per day,
and standard deviation 0.1. In figure 7(b) the length of the interval between recoveries is normally distributed with mean 24
and standard deviation 5. Finally, in Figure 7(c) both the download and recovery intervals are normally distributed. The key
observation from these figures is that the simulation results converge to steady-state values, and that these values arewithin
10% of the values predicted by our model. Given these facts, we assert that our model provides a good approximation of a
P2P network in which individual peer behaviour may vary significantly.

C. Pollution model behaviour and simulations

In order to verify our pollution model, we conducted a discrete-time simulation of a P2P network with polluted files, and
compared it to the results predicted by our model. As with ourother simulations, we used exponentially-distributed delays
between the various events governed by rate parameters. We set psg = psb = pdb = 0.3, Ng(0) = 100, Nb(0) = 10,
Mi = 20000, λS = 5

24 , λX = 1
24 , λr = 2

24 . Figure 8(a) shows the number of Susceptible, Infected and Recovered peers versus
time for both the simulation and the model. Figure 8(b) showshow pb varies with time and reaches a steady state. The model
and the simulation track each other well, with the steady-statepb varying by less than 10%.

In Figure 8(c), we examine the impact that the initial numberof seeded polluted files has on the steady-state value ofpb.
All other parameters are as described above. This plot indicates that the initial number of polluted files seeded will indeed
have a significant effect on the long term pollution level of the network.

In Figure 9, we consider how the steady-state proportion of polluted files is affected by three of the model parameters. The
panels illustrate the effect of changing (i)λS , the download rate; (ii)λr, the rate at which Infected peers try again to download
a non-polluted copy of the file; and (iii)λx, the rate at which Infected peers give-up on downloading thefile. These plots
indicate that variations inλx andλr have a similar effect on the ultimate level of pollution in the network.

D. Impact of Object Reputation Schemes on P2P virus propagation

We now report on simulation and model results for the impact of an object reputation scheme such as Credence on the
evolution of P2P viruses. Figure 10(a) illustrates how the steady-state proportion of infected files changes as the effectiveness
of Credence (as reflected byβ, the factor by which the probability of download of an infected file is reduced) increases.
Figure 10(b) depicts the reduction in residual infection asthe number of peers using Credence increases. These resultsare
obtained for the model parameters described in Section VIII-A. The results indicate that if Credence reduces the probability
of downloading an infected file by a factor of 0.7 and fifty percent of the peers use Credence, then the residual infection is
halved.

Figure 11 compares the behaviour of the deterministic modelwith a discrete time simulation of the propagation of a virusin
a P2P network consisting of 20 000 peers. Fifty percent of theusers employ Credence and it has an effectiveness ofβ = 0.7.
The figure illustrates that there is a good match between the expected behaviour and that of the simulated system.

E. Impact of Object Reputation Schemes on P2P Pollution

In this section we consider the effectiveness of a Credence-like scheme in reducing pollution in a P2P network. The plots
generated are similar to those from Section VIII-D, with steady-state pollution levels replacing infection levels. Figure 12(a)
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Fig. 8. Examining the behaviour of the pollution model. Hashedlines are simulation results. (a) The evolution of susceptible (dotted), infected (solid) and
recovered (dashed) peers. (b) The percentage of polluted files versus time. (c) The steady-state percentage of polluted files as a function of the number of
initially “bad” files (with 100 good files).

illustrates the impact ofβ, while Figure 12(b) shows the impact of the proportion of peers using Credence. The other parameters
are the same as in Section VIII-C. The results indicate that ascheme like Credence can indeed be effective in reducing pollution,
assuming a significant proportion of peers are utilizing it.For instance, if forty percent of peers use Credence and it reduces
the probability of downloading a polluted file by 0.7, the proportion of polluted files in steady-state is approximately one half
of what it would be without Credence.

IX. CONCLUSION

We have presented a deterministic epidemiological model ofhow a P2P virus spreads infection in a P2P network, and
derived expressions for the steady-state behaviour in the case where the probability of a peer downloading an infected file is
proportional to the prevalence of infection. We have also described an equivalent model for the evolution of pollution in a P2P
network. Discrete-time simulations with varying individual peer behaviour indicates that the models are sufficientlyaccurate to
provide insight into system dynamics despite being based onaverage behaviour. Our goal in developing these models was to
provide a basis for understanding virus and pollution evolution, but also to construct a computationally efficient platform for
estimating the efficacy of object reputation systems. In future work we will perform more extensive validation of the models
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Fig. 9. The effect of varying model parameters on the analytical steady-state proportion of polluted files. (a) The effect of varying λS , the download rate.
(b) The effect of varyingλr , the rate at which Infected peers retry downloading a file. (c) The effect of varying the give-up rateλx.

using further empirical measurements of P2P networks and more accurate simulators of P2P networks that fully incorporate
the subtleties of object reputation schemes.
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