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Abstract

The popularity of peer-to-peer (P2P) networks makes them an attraetiget to the creators of viruses and other malicious
code. Recently a number of viruses designed specifically to spread2Pan@works have emerged. Pollution has also become
increasingly prevalent as copyright holders inject multiple decoy vessio order to impede item distribution. In this paper
we derive deterministic epidemiological models for the propagation of R \R&is propagates through a P2P network and the
dissemination of pollution. We report on discrete simulations that provideeseerification that the models remain sufficiently
accurate despite variations in individual peer behaviour to provide ingigthe system. The paper examines the steady-state
behaviour and illustrates how the models may be used to estimate in a commltatifficient manner how effective object
reputation schemes will be in mitigating the impact of viruses and preventenggtead of pollution.

I. INTRODUCTION

Peer-to-peer (P2P) networks have become increasinglyesalife to malicious behaviour, including the dissemimatid
polluted versions of files and the release of P2P viruses. Early P2Rorlet such as Napster focussed exclusively on media
files, so propagation of viruses was difficult to achieve [@antemporary P2P networks such as Kazaa / Fastrack [2] and
eDonkey2000 [3] can be used to disseminate executable fildsaee hence much more susceptible, particularly as the
mainstream adoption of P2P file exchange—the eDonkey2008onetalone typically has over 2 million users connected
at any given time [4]—means that a significant fraction of adack the technical knowledge to detect suspicious filecan s
for viruses.

The phenomenon of pollution, the presence of corrupted l§ad™) versions of items (songs, movies or multimedia files)
in P2P networks, has become increasingly prevalent. Sonteest versions are made available by accident, as users make
errors in file generation. But the dominant cause is deltkedissemination of decoy files, term@dm poisoningin [5], a
technological mechanism employed by copyright holders theit agents to impede the distribution of content. Thesmyle
files have names and metadata matching those of the gename bt contain corrupted, unreadable or inappropriata. dat
Whether accidental or deliberate, pollution has renderegbatantial portion of the files on popular P2P networks ublgsa

In this paper we examine the behaviour of viruses and pofiuth P2P networks. We adopt a epidemiological approach,
developing dynamic models to describe the evolution ofdtiéa/pollution. We consider the stochastic nature of thstem
during our development of the models, but our models arermd@testic and focus on the expected behaviour of the system.
We illustrate that these deterministic models are suffttjearccurate to capture the behaviour of P2P networks, bypesison
with more realistic simulations that model individual peer

Our initial purpose is to model the impact of malicious codeaP2P network, but a primary motivation is to examine
how effective the introduction of mitigation techniquesgint be. In particular, we focus owmbject reputationschemes (such
as Credence [6]) and methods that increase the rate of eliiminof infected files. Our model provides an analytical moelt
for determining (at least approximately) how widespreasl ddoption of such schemes must be, and how effective they mus
be, in order that specific targets of residual pollution dedtion be achieved. We validate these specifications gtrouore
accurate simulation of the networks.

The paper is structured as follows. In the remainder of th@duction, we highlight the salient features of P2P nekspor
viruses and pollution, and discuss related work. Sectigrdbents a model for the expected evolution of a virus in yiseem.

In Section IV, we analyze the steady-state behaviour of @R #irus model. Section V presents an epidemiological model
for the proliferation of pollution. Section VIl reports om @&mpirical study of the e-Donkey network, which we condddte
identify suitable parameters for the examination of our atedSection VI examines the impact of object reputatioresws.
Section VIl reports on discrete-time simulations of thePR#etwork, which provide a validation that the determicistiodels
capture the primary characteristics of system evolutiapile ignoring the variability in behaviour of individuakers. Finally,
Section IX draws conclusions based on our analysis andtsesul



A. Peer-to-peer networks, viruses and pollution

This section highlights the key features shared by poputd Retworks, including Kazaa, eDonkey2000, and Gnutella [7
Every peer connected to the network hashared foldercontaining all the files the user wishes to make publicly latée
for download by others on the network. When a user wants to hadna file, he begins by sending out a search request.
In response he receives a list of files matching the seartérieri The specific manner in which this list is generatedegar
among the various P2P networks, but in all cases the queppmss is the result of the examination of the shared foldias o
subset of all peers connected to the network. Once the usetiséb download one of the files from the list, his clientratés
to set up a connection to a peer sharing the file and begin#iregehe file. Depending on the specific network, the client
may attempt to simultaneously download different partshef file from a number of peers in order to expedite the operatio
P2P clients typically save new downloaded files in the sh&oktbr — making them immediately available to other users.

A number of worms and viruses that exploit P2P networks h#neady surfaced. The majority of these behave in a similar
fashion. Specifically, when a user downloads a file contgirtie virus and executes it, a humber of new files containing
the virus are created and placed in the client’s sharedtdimecSome types of viruses, including Achar [8] and Goto8 [
generate a fixed list of filenames when executed. More addaviceses, such as Bare [10] and Krepper [11], randomly pick
the list of filenames from a large pool of candidates.

Pollution is a more widespread phenomenon, as indicatechéeinpirical study performed in [12]. The study indicated
that the number of versions of relatively popular items isegally substantial (on the order of tens or hundreds). K alao
observed that the pollution level (the fraction of bad vams) for a specific item remained approximately constant tinee.

B. Related Work

The advent of mathematical Epidemiology — the field of biglaghich models how diseases spread in a population — is
generally credited to McKendrick and his seminal 1926 pdfp8i. Previous work in applying epidemiology to modeling
how computer viruses and other malware spreads betweenimeactates back to the late 1980s/early 1990s [14], [15].
More recently, several authors have utilized epidemiaalgmodels to study the spread of worms and e-mail viruseben t
Internet [16]-[20].

There have been a number of recent papers which model fileagatipn in P2P networks [21]-[24]. Dumitriu et al. [5]
model the spread of polluted files in P2P networks, and Lidraj.eeport on an empirical study of pollution in P2P netwsork
in [12]. The behaviour of object reputation mechanisms heentkdiscussed in [6].

Contributiont We believe that our paper is the first to develop a epidergiotd model for peer-to-peer viruses. Although
these viruses share similarities with Internet worms amdad-viruses, there are sufficient differences in their agieg
mechanics to necessitate the development of a new modetlyfzenic pollution model developed in [5] is closely relateadur
epidemiological pollution model, and produces similardabur. Phrasing the model in an epidemiological framewnvides
an alternative understanding of system behaviour. Thermetestic models are reasonably accurate even with sutigtan
variation in individual peer behaviour, and we illustratewhthey can be used to estimate in a computationally efficient
manner the impact of an object reputation scheme in mitigaB2P viruses and pollution. Conversely, the models can be
used to determine how widespread the usage of a reputati@m&cmust be and how much it must dampen the probability
of downloading an infected or polluted file in order to aclkievtarget level of pollution/infection.

Il. P2P VIRUS MODEL OVERVIEW

The intent of our model is to predict the expected behavidua wirus which spreads through a P2P network in the form
of malicious code embedded in executable files shared by p@&r make the simplifying assumption that all users dowhloa
files to their shared folder. We are not concerned with thesfex of media files which cannot contain malicious code, and
do not model them. Note that we use the tauserin this paper to refer to a person using a Raiént program. The term
peeris used to collectively refer to a P2P client and the userctirg its behaviour.

This model classifies all peers as falling into one of thresstsSusceptible, Exposedr Infected

Susceptible- Peers that are not sharing any infected files, but are abfigkwnloading infected files. The number of peers
in this category at time is denoted byS(¢).

Exposed- Peers that have downloaded one or more infected files, et executed them. The number of peers in this
category at time is denoted byF(t). The Exposed category is included in the model to allow foeky between download
of an infected file and execution.

Infected— Peers that have executed an infected file. Upon executitmiakof of ¢ infected files reside in the peer’s shared
folder. The number of peers in this category at titrie denoted byl (¢).



| Event | Variables Affected |

File downloaded| ¢(¢), S(t), E(t)
File executed q(t), E(t), I(t)
Peer recovers q(t), I(t), R(t)

TABLE |
P2P MRUS MODEL VARIABLES THAT ARE POTENTIALLY AFFECTED BY EACH POSSIBLE EVENT IN THE NETWORK

An Infected client may be detected by the user, who will theoceed to remove all the infected files, thereby returning
the state of the peer to Susceptible. At all times, every dritbeN peers making up the network falls into one of the three
categories. Thus, for all values 6f N = S(t) + E(¢t) + I(t).

We assume that the total number of uninfected files in the orétis fixed atA/. The total number of infected files at
time t is given by K (¢). The expected proportion of infected files in the netwarl,), is thereforeg(t) = K(Ii)% When a
user downloads a file, we assume the probability of choosmmf@cted file will be dependent on the prevalence of infécte
files in the network. The probability will vary to some degffee different peers, according to whether the peer has ggdat
virus-detection software or is aware of the common chariaties of virus files (such files are often much smaller thanune
versions of the item). In our model, we are interested in therage probability of choosing an infected file, and we denot
this probability byh(t). In Section 1V, where we examine steady-state behaviourseté(t) = «q(t), for some constant,
to reflect the fact that the probability is closely tied tougrprevalence and to simplify our analysis.

There are three distinct events that may occur in the netwdrich affect one or more of the time-varying variables
described above. These events include a peer downloaditg faofin another, a peer executing a shared file, and an Infecte
peer recovering. Although individual peers conduct theg&ities at (potentially very) different rates, we develour model
based on average behaviour. Our simulation results in @edill indicate that this modelling choice does not produce
substantially erroneous behaviour. The average rates iahvelach of these events occurs are governed by three paramet

As: Average rate, in files per minute, at which each peer dovadasew files (this includes time spent searching and setting
up the connection to another peer).

Ap: Average rate, in files per minute, at which each peer execshared files. We assume that a peer executes files in the
order in which they are downloaded.

Ar: Average rate, in “recoveries per minute”, at which Infecpeers recover. A recovery occurs when all infected files are
removed, returning the peer state to Susceptible.

A. Model Equations

Table | summarizes which time-varying variables are afféddby each of the three events that may occur in the network.
The state progression for all peers in our modebis- £ — I — S.... We now derive the differential equations that govern
the evolution of our P2P model.

IIl. M ODEL EQUATIONS
A. Rate at which the number of Infected peers changes

When an Infected peer recovers, the number of Infected pesneases by one. Recoveries occur at Paié(¢). When
an Exposed peer executes an infected file, the number oftéufgreers increases by one. Since files are executed in drder o
download, the file executed by an Exposed peer will alwayshbdrtfected file which it had downloaded to become Exposed
. This occurs at a rate ofg E(t). Therefore,

2 = ARl (1) + AE(t) (@)

B. Rate at which the number of Exposed peers changes

The rate at which the number of Exposed peers decreases thfedtion is given by the negative of the second term in (1).
The rate at which previously Susceptible peers become Expesdependent on the aggregate rate at which they download
files: A5S(t), multiplied by the probability that a downloaded file is iofed: h(t). The overall rate is therefore:

dE(t)

— = —ApE() + AsS()h(1) 2)



C. Rate at which the number of Susceptible peers changes
This is governed by the negatives of the the first term in (1) toe second term in (2):
dS(t
B AsS W) + AnI() €

D. Rate at which number of infected files in the network change

There are three events which result in a change in the nunibefeated files in the network: a peer downloads an infected
file, an Exposed peer becomes Infected, and an Infected peevars.

The rate at which these events occur is dependent on threelrmssmptions. Two of these are related to peer behaviour
and one to the behaviour of the virus. The first assumptionhstier downloaded files are always eventually executed, or
if some proportion are never executed. Second, if a dowelddile is executed, users may or may not be able to download
additional files before execution. The final assumptiontesl#o the creation of new infected files upon execution ohéected
file. Some viruses generateinfected files with file names randomly generated from a papiiicantly larger tharc, while
others generate the same listcofile names every time. In all cases we assume that each pe@nfahave on instance of a
particular file name.

These three binary choices give rise to eight possible rspdeald we now examine the associated rate of change of idfecte
files associated with each model.

1) All downloads executed, no additional downloads befaecetion,c unique file namesin this case only Susceptible
peers can download infected files: Exposed peers do not dagrdny additional files before becoming Infected, and tefitc
peers are sharing adl possible infected files. Thus, the rate of change due to dmdsl isS(¢t)\sh(t).

An Exposed peer always has one infected file before becomifegted, meaning in all cases— 1 new infected files are
created when an Exposed peer becomes Infected. The ratamfehs thusE(t)As(c — 1).

An Infected peer will always share files, so a recovery results in a reduction cofnfected files. The rate is therefore
—I(t)Arc. The overall rate of change df is therefore:

dK (t)

Ry 7 S(t)Ash(t) + E(t)Ap(c —1) = I(t)Arc (4)

2) All downloads executed, no additional downloads befaecetion, possible file names> ¢ : Susceptible and Infected
peers can both download infected files. Thus, the rate ofgghdne to downloads i€5(¢) + I(t))Ash(t).

When an Exposed peer becomes Infectedew infected files are created. The rate of change due totiofiscis thus
E(t))\EC.

Prior to recovery, an Infected peer will have thénfected files created during the transition from Exposethfected, the
one infected file downloaded while infected, and the addiidnfected files downloaded while infected. The expectetdt
spent in the Infection phase kég so the expected number of files downloaded during this ¢ésigf:::(’;_i) Ash(T)dr. We

AR

note that the preceding integral may be approximate(ﬂ@f—s. The accuracy of this approximation depends on how much
the functioni(7) fluctuates over the range from- ﬁ to ¢.
The overall rate of change df is therefore: '
dK(t) T=t
— = = {80 + I(OAsq(t) + E@)Ase — I(HAr(c+1+ _ Ash(r)dr) ()

T=(t—ﬁ)

3) All downloads executed, additional downloads beforeetien possible¢ unique file names Susceptible and Exposed
peers can both download infected files, but Infected pearsatasince they already have alpossible files. Thus, the rate of
change due to downloads {$(t) + E(t)} Asq(t).

The expected time from when a peer becomes Exposed till whieecomes Infected i$/overAg. Thus, while a peer is

Exposed, the expected number of additional infected filefowwnloads isf:_:(i_L) Ash(T)dr. When it becomes Infected,
- Py

the remaining files are generated. The rate of change in thbeuof infected files due to Exposed peers becoming Infected
is thus E(t)A\p(c—1— [T 1 Agh(r)dr).

T=(t—x=)

An Infected peer will alwayjé share files, so a recovery results in a reduction cofnfected files. The rate is therefore
—I(t))\RC.
The overall rate of change df is therefore:
dK (t) T=t
— = 5O+ EO}Asq(t) + Et)Ap(c —1 - Ash(r)dr) — I(t)Arc (6)

T:(t—i)



4) All downloads executed, additional downloads beforeeten possible, possible file names- ¢ : All peer can continue
to download, so the rate of change due to downloads Asq(t).
When an Exposed peer becomes infectedew infected files are created in addition to the ones it isaaly sharing. So,
the rate of change due to executions of infected fileB (5§ \gc
The expected number of files downloaded while Exposed aratted isf:::(tt_%) Ash(T)dr
E

—t— 1
T=t by

+f7_(,_;_;) Ash(T)dr, so the rate of change from recoveries is
VTR T 3E
“I)(e+ 1+ [[Z, 1 1 Ash(r)dr).
The overall rate of Iéhar’fge df is therefore:
dK(t)
dt

T=t
= NXgq(t) + E()Agc—I(t)(c+ 1+ / Ash(7)dr) @
(=3 xp)

5) Some downloads not executed, if file is executed: no additdownloads before executionunique file namesSince
not all files are executed\g < Ag, and the probability of a downloaded file being executqus

The expected proportion of Exposed peers which do not esethd infected file they downloaded, and hence keep
downloading, is3%. Thus, the rate of change due to download$§3%t) + E(t)3Z }h(t)As

The number of infected files an Exposed peer downloads miexécuting one is geometrically distributed with paramete
i—fsf, so the expected number of such download%—gs This means upon Infection, an additional- 1 — i—fj files will be
created, and hence the rate of change due to new Infectiabi§t )3 g (c — 1 — i—z)

Infected peers will always sharefiles, so the rate of change due to recoveries igt) Agc.

The overall rate of change df is therefore:

D (50 + BOIEa()rs + E@Ale — 1= 22) ~ I()Ane ©
t As A\E

6) Some downloads not executed, if file is executed: no additdownloads before execution, possible file namesc:
Susceptible and Exposed peers download in the same fashioncase 5), but in this case Infected peers can also continue
to download infected files. Therefore, the rate of changaiected files due to downloads {(¢t) + I(t) + E(t)ﬁ—’;}q(t)/\s

Upon infection,c additional infected file types are created, meaning the gatthange due to infections B(¢)Agc

Prior to recovery, Infected peers are expected to have cdxadatjf::(tti%) Ash(T)dr. Prior to infection, Exposed peers

R

are expected to have download§§ files. Therefore, the rate of change in the number of infefited due to recoveries is
—I(OAR(c+ 1+ [, o Ash(r)dr +3%)
The overall rate of chgnge df is therefore:

T=t
K (t) ={S()+ I(t) +E(t))\—E}q(t)/\s—|—E(t)>\EC—I(t)/\R(C+1—|—/ Ash(r)dr + ﬁ) 9)
dt As T=(t—5L) AE
7) Some downloads not executed, additional downloads defeecution possible; unique file names:Susceptible and
Exposed peers can both download infected files, but Infepgtsnls cannot since they already havecatlossible files. Thus,
the rate of change due to downloads{i$(t) + F(t)}\sq(t).
The expected number of infected files downloaded by an Exppser prior to deciding to execute oneﬁi%. Before this

file is executedﬁ:_:éii) Ash(7)dr additional infected files are expected to be downloadedckl¢ie rate of change due to
=(t—51
new Infections isE(t)Ag(c—1 — j—z - f:_:(tt_i) Ash(T)dr)
- A
Infected peers will always sharefiles, so the rate of change due to recoveries igt) Arc.

The overall rate of change df is therefore:

dK (t)
dt

= {S(t) + E(t)} sq(t) + EO)Ag(c—1— ii - /” Ash(r)dr) — I(t)Age (10)
E  Jr=(t-5)

8) Some downloads not executed, additional downloads dedrecution possible, possible file names c¢: All peer
download infected files at all times, so the rate of changefiected files due to downloads [Asq(t)
Upon infection,c additional infected file types are created, meaning the gatthange due to infections B (t)Agc
Prior to recovery, Infected peers are expected to have dased f:::(ttf%) Ash(7)dr. Prior to infection, Exposed peers
R

=t

are expected to have downloadﬁjd_éiiL Ash(T)dT + i—; files. Therefore, the rate of change in the number of infected
N AE AR
files due to recoveries isI(t)A\r(c+ 1+ fT:t a1 Ash(T)dT + i_;)

AR

=t -



The overall rate of change df is therefore:

dK (t =t A
Aggf:wa@y+E@Am>Ju»R@+1+/ ‘@hme+Xﬁ) (11)
= (e 5 — <L) E

E. Model Extensions

1) Modeling On-line/Off-line Behaviourtn a real P2P network, individual peers are only on-line forited durations. In
order to capture this behavior, we present an extension oiadel that includes both on-line and off-line users. Eatthe
three variables specifying how many peers are in each aateg6, E, I — is partitioned into two variables to account for how
many peers in the category are on and off-line. So, for instaf(t) = I (t) + Ip(t), wherely(t) is the number of Infected
peers on-line, andx(¢) is the number of Infected peers offline. Peers that are nd-jo on-line at a certain ratey , and
on-line peers go off-line at ratér . The differential equation governing the change in the nemds§ on-line Infected peers
at timet is:

dIn(t)

dt

The equations governing the rates of changeSin(t) and En(t) are analogous. We assume here that peers go on and
off-line at the same rate regardless of their state. It waldd be simple to expand the model to include different rédes
each state.

To complete the specification of the extended model, all tegipusly defined differential equations are changed devist
every instance ob(t), E(t), and(t) is replaced, respectively, b¥y (¢), Enx(t), andIn(t).

= Ip(t)Ay — In(t)Ap 12)

2) Modeling Peers that Remain Infecte@ne can argue that a certain proportion of P2P users, whénctient becomes
Infected, will never detect that this has occurred and nke tany action to remedy this problem. In order to include this
behaviour in our model, we classify all peers as “aware” doli\dous”. Aware peers behave as those in our basic model
described in 1I-A, while oblivious peers progreSs— [ and then remain Infected. The number of peers in each group is
fixed: N = N4 + No where N4 is the number of aware peers, ang is the number of oblivious peers.

As in Section IlI-E.1, the number of peers falling into eadhtte four categories at timeis partitioned into two groups;
in this case the number of aware users in categorgt time¢, whereX € {S, E, I}, is denoted byX 4(¢) and the number
of oblivious users in each category is denotedXyy(¢). The behaviour of aware users is determined by equations (4))
and (3), withX 4(¢) replacing X (¢) for all X € {S, E,I}. Oblivious users are governed by (1), (2), and (3), wih(¢)
replacing X (t), and A\r set to zero (reflecting the fact that oblivious peers neveover). Finally, th(t) is governed by a
modified version of (4), withS(t) replaced byS(t) + So(t), E(t) replaced byE4(t) + Eo(t), andI(t) replaced byl 4(t).

IV. ANALYSIS - STABILITY RESULTS
dE(T) dI(T)

If the P2P network reaches a steady-state equilibrium byesbme ¢ = T', then —— = de(tT) = 0. In this

section, we assume that the probability of downloading dected file is a function of the proportlon of infected filew.]
h(t) = f(q(t)). Defining E, I, S, as the steady-state values of, respectivElft), I(¢), and S(t), Equation (1) implies that:

I=E= (13)

If we definer and u as, respectively, the expected number of infected files &xglosed and Infected peer is sharing in
steady-state, thef, the proportion of infected files in steady-state may be esged as:

_ Er+1
j=—"TT"_ (14)
M+ ET+1p
Substituting (13) into (14) provides:
_ E(TAR + pX
j= — 2Tt pd) 15)
MM\gr + E(T)\R + uAg)
If f(¢) > 0, equation (2) implies that, in steady state:
Y
=F - 16
Asf(q) (16)
SinceS = N — I — E, equation (13) can be utilized to expreSsas:
S:NfEu+5% 17)
AR
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Fig. 1. The transition diagram for peers indicating theawithat trigger movement between the three classes of sideg®), infected (I) and recovered

(R)

If h(t) is proportional tog(t), h(t) = aq(t), we can obtain a closed-form expression forby substituting (15) into (16),
equating with (17), and solving faf:

Ara(NAs(urg + 7Ar) — MAgAR)

E= :G>0 18
(T)\R—F/L/\E)()\soz()\R—F)\E)—|—)\E/\R) q ( )

The expression fof follows trivially from (18) and (13):
P Aea(NAs(uAE + TAR) — MAEAR) >0 (19)

(T)\R + /A/\E)()\Sa()\R + )\E) + AgAR) ’

If ¢ =0, it follows from (14) thatE = I = 0. It is of interest to consider Equation (19) as it approadhes the limiting
case, approached from above, we have the equality

Since we assume that all downloaded files are eventuallyueegcit follows that it is reasonable to equate the rates of
download and execution\r = \s. Under this assumption, (20) provides the following minimaverage recover rata "
in order for all infected files to eventually be removed frorR2P network:

B 7 M- N7
This equation indicates that, if(t) = aq(t), then X" is a linearly increasing function of.

‘M >Nt (21)

V. P2P POLLUTION MODEL

We assume that/; peers are interested in iteinand that there are a multitude of versions of the item, fladsas “good”
or “bad”. Initially the P2P network is seeded wil¥}, (0) good files andV;(0) bad files. The peers who provided these seed files
do not number among th&f; peers we consider in our model. We model the peers as belptgithree classeSusceptible
Infected and RecoveredS(t) is the number of susceptible peers at timehis class includes all peers who will attempt to
download another version of the file in the future. Initialy0) = M, as all interested peers are susceptithl®) = 0 and
R(0) = 0, because no files have been downloaded from the seeds.

A peer transitions between the three states as depictec itrahsition diagram in Figure 1. Each peer is susceptiblenwh
it intends to download a file. When a susceptible peer dowsla@afile, it joins the Infected class if the file is bad and the
Recovered class if the file is good. A peer may leave the latectass by testing the downloaded file and electing to retry
at some stage in the future. In this case, the peer rejoinStiseeptible class. Alternatively, an infected peer mayddeto
give up and join the Recovered class, despite not being ssitdén acquiring a good version of the item. A peer may dwell
in the infected state for some period of time before choosingive up or to retry. This represents the period of time teefo
an infected peer tests a downloaded file.

Eventually all peers will belong to the Recovered class. ¥l this class “recovered” primarily to highlight the peis
with standard epidemiological models. In our model theiigtishing feature of a recovered peer is that it is no loragtively
seeking the item of interest. Note that in our model, any episiole or infected peer may be sharing none or several tedllu
files, but cannot be sharing a good file. A recovered peer maresit most one good file and may share several polluted files.

The number of good shared versions of the item varies oveg,tas does the number of bad. When a peer transitions
from the susceptible to recovered state by downloading a geosion, it shares the file with probabilipy,. When a peer



transitions from the susceptible to infected state by doaaiing a bad file, it shares the file with probability,. When a peer
transitions from the infected to susceptible state or remy state, it removes the polluted file with probability. We model

the probability of downloading a polluted file at timep,(¢), as being equal to the fraction of polluted files. This prolitsb

is the same for a peer irrespective of how many times it has bfected. This is a reasonable approximation because the
number of versions of an item is anticipated to be much latigen the number of re-tries.

We model the expected behaviour of a large group of peersin# ¢, a fraction of the susceptible peeks download a
file. This is effectively the download rate. A fraction. of the infected peers decide to retry and hence rejoin theegtible
pool. A fraction ), of the infected peers choose to give up and enter the reabgtage. We make the simplifying assumption
that the download rate, and the rates of trying again andgivip ¢\, and \,) do not vary over time. A constant value of
As produces the approximately exponential decay in the nurabelbwnloads of an item as time elapses and its popularity
declines. It is reasonable to assume that the variationeofdtes of trying again or giving up do not change substayniisier
time.

With these modelling choices, we arrive at the following sttequations that describe the evolution of pollution in the
system.

po(t) = ﬁ(t;\@(t) -
%it) — CAS() + AI(8) )
%(tt) = po(t) AL () = (Ar + Xa) I (2) o
dTit) = (1= pp(£)AS(E) + A (2) )
I x 02 S(E) — O+ ) P ps (1) #0)
dl\gt(t) = Xs(1 = pp(t)) psg S(t) @

As with the P2P virus model, these equations are derivedrutideassumption that all peers have common behaviour;
variability in individual behaviour means that this will nbe a completely accurate model of the system. In additioa, t
model does not address any notion of memory in user behavtoisr probable that a peer's downloading behaviour would
change substantially if it has already received several\madions of an item. In simulations in Section VIII, we acabu
for variability in peer behaviour and a limited notion of meny; our results indicate that the deterministic model dbesd
above, despite its limitations and assumptions, providgsaa indication of the evolution of the extent of pollutianthe P2P
network (for a specific item).

VI. THE IMPACT OF OBJECTREPUTATION SCHEMES

The possibility of downloading an infected or polluted fileynbe reduced through the use of @ject reputationscheme
which allows P2P users to rate individual files and share itifikmation with others in the network. The standard Kazaa
client [2] includes such a feature, allowing users to assiga of four possible rankings to each file. However, this $istip
implementation has been ineffective in combatting the nemdd polluted files in the network [25]. A recently introdutce
object-reputation scheme for the Gnutella network namesdi€irce [6] appears promising because of its robustness iiatk
of malicious peers which intentionally give high ratingspolluted or Infected files. In this section we model the dffiat
an effective object-reputation scheme such as Credencerhaius propagation in a P2P network.

A. Effect on P2P Virus Propagation

As in Section IlI-E.2, peers are divided into two groups, &th peers which utilize an object-reputation system, and
“regular” peers which do not. The number of regular peerlnfalin a categoryX at timet, is denoted byXx(¢) and the
number of smart users in each category is denotedpyt). Regular peer behaviour is governed by equations (1), (&), a
(3). Smart peer behaviour is determined by equation (1) aadified versions of equations (2) and (3) witlit) replaced
by ¢(t). In order to reflect the fact that smart users are less likelgdwnload infected files, we require thatt) < h(t) Vt.

In the case of a perfect object-reputation system, in whinhrs peers never download infected filgg{) = 0 V¢ and hence

Ss(t) = Ng Vt. Finally, equation (4) is replaced by
dK (t
% = SR(t))\Sht + Ss(t))\sgtJr

(Er(t) + Es(t)Ae(c = 1) = (Ir(t) + Is(t)) Arc (28)
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Fig. 2. Empirical CDFs based on eDonkey measurement data.

B. Effect on Pollution Dissemination

We model the effect on pollution dissemination in a similasHion, decomposing the set of interest peers into the two
groups of “smart” and “regular” peers. The object reputaticheme is assumed to reduce the probability of downloaaling
bad version of a file by a fixed proportion. Smart peers now doada bad version with probability

BNy(t)
£ = 29
pb,S( ) Nb(t) +Ng(t) ( )
for some constan < 1. Regular peers download bad versions with the same pratyadoil before (proportional to the extent
of pollution). The modified epidemiological model now keapsck of the number of smart and regular peers in each class
and can hence determine the rates of change of the numbendfagal bad files in the network. We have:

) A pes(p,5(0) S5(0) + 1. (1) S (1)
- (>\r + )\z) Pdb Psb I(t) (30)
DU N pag(1 = pu,s(8)) S5(0) + (1 = po,pl0) S0 (31)

VIl. P2P MEASUREMENTS

In order to choose a realistic value af for simulation experiments with our model, we sought to aegappropriate
measurement data from an actual P2P network. A humber ofgueempirical studies have explored the behaviour of the
Gnutella Network [26]-[29] and the Kazaa Network [25], [28hd the eDonkey network [30]. The statistics presente@ hav
included the number of files shared by peers, latency betyeers, the amount of time spent on and off-line, the degree of
peer connectivity, and mean bandwidth usage. However, e@air aware of any previous work directly analyzing the rdte a
which peers download files.

We chose to conduct our measurements on the eDonkey2000rketecause of its popularity and the apparently limited
amount of research conducted on the network. BayTSP [31@ygany which monitors Internet file-trading, indicatest tha
of September, 2004 the eDonkey2000 network has, on avettagenost users of any P2P network [32].

The eDonkey2000 network is comprised of a number of servrso[which a peer can connect. Each server keeps a list
of all the files shared by connected peers, and uses thignatan to respond to keyword-based search queries. Thelsear
results returned by the server include a 16-byte MD4 hashVaBie for each file in order to uniquely identify it. When the
user elects to download a specific file, his client sends tisé kalue of the desired file to the server, and the server nelspo
with a list of IP addresses and ports of peers sharing the file.

Our experiment consisted of two phases. In the first part, elleated a list of eDonkey2000 peer IP addresses/ports. We
achieved this by first conducting searches for keyworddyit@return a significant number of results, for examplex&’® and
“.is0”, and then initiating the download of files shared byaege number of peers. Next, we made use of the Ethereal networ
protocol analyzer [34] to capture and analyze the packeétsmed by the server containing the peer IP addresses. Viatéai
the download of approximately 500 files to harvest over 2Qushhod peer addresses. For the next phase of the experiment,
we developed a scanner program which attempts to conneotty peer and retrieve its list of shared files. We made use of
previous work carried out to reverse-engineer the eDorll@y2rotocol [35], and conducted further analysis usingeEal.

Users of eDonkey2000 have the option of configuring theérts to block requests by other peers to view their list ofestha
files. Our work was complicated by the fact that approxinya@8% of peers to which we attempted to connect did not permit
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Interval | % of | % of % of % of Average
Peers | Peers | Peers Peers Down-
with with with with load

0 1-10 | 10-100 | > 101 Rate
new new new new (Files/
Files | Files Files Files 48 hrs.)
1 11 50 33 6 41.2
2 12 47 33 8 35.8
3 7 39 48 6 36.0
TABLE I

OBSERVED EDONKEY2000 FEER DOWNLOAD BEHAVIOUR OVER THREE DISJOINT48-HOUR INTERVALS.

viewing of their shared files. There are two obvious factbeg tontribute to this high percentage: eMule [36], the npogular
eDonkey2000 client, has the blocking option enabled byugfand the advent of RIAA (Recording Industry Associatmmn
America) lawsuits directed against P2P users [37] basett@sdanning of shared directories has likely motivated mesgys

to actively disallow the viewing of their files. Neverthedesve managed to connect to one thousand peers and retreve th
lists of shared files. We repeated this procedure three nmoest in 48-hour intervals. Each scan required approximpéien
hours to carry out. In order to deduce the rate at which userg wownloading files, we tracked the addition of any new
shared files every time the scanner connected to a peer. \Wmaghat any new file is the result of a download. Admittedly,
the possibility exists that a new shared file was not dowrddadbut instead added to the shared directory by the user from
a source outside the eDonkey2000 network. However, we aabl@rto distinguish such files and therefore our calculated
download rate may be a slight over-estimate. Table Il prewithe results of our measurements. The overall averagelaivn
rate is 37.7 files per 48-hour period. Figure 2 provides theieoal cumulative density functions (CDFs) of the numbér o
files shared per peer, the number of downloads per peer peou8itfiterval, and the net change in number of files each peer
changes per 48 hour interval. All three plots suggest he¢aigd distributions, indicating that there are a smalicpatage of
“power-peers”, which are much more active and share mang filles. This phenomenon has been observed in other empirical
studies conducted on P2P networks [29], [30].

We calculated the rate at which peers removed files from #iered folder, by counting all files peers had made available
during a given run of our scanner program which were no lomgesent during a subsequent scan. The average removal
rate is 29.1. Although this does not entirely validate ouct®a Il assumption of a zero net increase in the total nunaer
files, it indicates that files are removed from the network atrailar rate to which new ones are downloaded. Furthermore,
a website [4] tracking eDonkey2000 server statistics ovex-month intervals indicates that, while there are sigaificdaily
fluctuations in the number of files available, the month-ltr@nd is fairly constant.

As stated in Section Il, we are only concerned about modaiegutable files in P2P networks. To estimate the proportion
of these files in the eDonkey2000 network, we analyzed theeggte list of approximately 230 thousand files initiallyasid
by the one thousand peers we tracked. From this list, we redhall files with extensions known to indicate a media file, e.g
“.mp3” and “.avi".

This left just over 55 thousand files that were likely to beaesable. Therefore, we estimate that the proportion of files
on the eDonkey2000 network that can potentially containicitals code lies at 24%. We note that this value may be a slight
over-estimate, due to the fact that some of the shared filee w@mpressed (“.zip” or “.rar”), and therefore we could not
identify them as executable with total certainty.

VIIl. SIMULATION RESULTS
A. Virus Model Behaviour

In this section we provide some examples of virus behaviot2P network predicted by our model. Unless otherwise noted
results are based on the version of our model described itio8dd-D.1. Figure 3 illustrates how the number of peertirig
into each of the three categories evolve over time, and eaéiptreach a steady state. In this cadg, = \g = 3.47 x 1073
files per minute, which corresponds to 5 downloads/exessitiper day. The average time for a peer to recover is 24 hours,
meaning\r is 6.94 x 10~4. The number of peersy, is 2 million and there are 60 million clean fildd. This example makes
use of the model in which the number of unique possible fildgniged to ¢, andc is 10. Finally, h(t) = 0.5¢(¢). Initially,
there are 10 000 Exposed peers, each sharing one infected file

In Figure 4 we examine the effect of varying the initial extefhinfection on the evolution of the number of infected fEeer
in the network. For high initial infection (1 million files}here is an initial overshoot in the number of infected pédexgond
the steady state. The medium initial infection case comsemost quickly to the steady state value, since, out of theeth
cases, the number of initially infected peers is closesthto @ventual steady state value. After about 700 hours, ttee th
networks reach the same steady-state. This is also the ibehamplicitly predicted by equation 19, since it is indejpent
of any initial condition (as long as at least one infected ifii¢gially exists in the network).
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Figure 5 examines how the steady-state proportion of iateétes is affected as model parameters are varied. The anel

in the figure display the effect of changing () the number of virus files inserted in the shared directorgnumfection;

(i) «, the constant that governs the probability of downloadingrdected file; and (iii)\g, the download rate of peers in
the network. These plots indicate that an increasingnd download rate have a limited effect on the infection ll@fehe
network, whereas an increase in the number of files createal\lijus can significantly raise the steady-state infectibthe
network. However, in a practical setting, the more new filegras creates, the more likely a user is to notice them aneteel
them. Thus, in reality, the recovery rate would likely be aoréasing function o and the high level of infection for viruses
creating 50 or more new files upon execution would be unliktelpccur.

B. Virus simulations with varying peer behaviour

The propagation of a virus in a P2P network predicted by oudeh@s based only on the expected values of peer recovery
rates: A\, peer download rateds and peer execution networlkky. Realistically, one may expect these values to differ
significantly among peers. Since our equations do not iraratp the notion of a random distribution of these pararadtar
each peer, we are essentially modeling a P2P network in wdlicheers take on the same deterministic parameter values.
Therefore, it is of interest to consider how closely the ltsspredicted by our model mirror those which would be seean in
P2P network in which individual peer parameters are rangdatigtributed. To this end, we present a number of disciate-t
simulation results for a peer-to-peer network in which vidiial recovery and download/execution rates are choseordiag
to several different probability distributions.

All figures illustrate the evolution of the number of Infedtd=xposed, and Susceptible peers over time. The non-héisked
are the values predicted by our model, and the hashed lipessent the values obtained via our simulations. We cong&ide
000 users sharing 600 000 clean files. Parameters not ekplientioned below are set to the same values as in SectidAVI
In Figure 6(a), the download/execution rate is uniformadlistributed about the mean value ﬁf files per day, with individual
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rates varying from O tc%—g. Figure 6(b) illustrates the case where the download rateiimally distributed with mea@% and
standard deviation 0.05. Finally, in Figure 6(c), the ageréength of time between downloads is normally distributeiih
mean% and standard deviation 5. In figure 7(a) the recovery ratoimally distributed with mean /24 recoveries per day,
and standard deviation 0.1. In figure 7(b) the length of theriral between recoveries is normally distributed with meé

and standard deviation 5. Finally, in Figure 7(c) both thevmload and recovery intervals are normally distributede Key
observation from these figures is that the simulation restdhverge to steady-state values, and that these valuesthne
10% of the values predicted by our model. Given these factsassert that our model provides a good approximation of a
P2P network in which individual peer behaviour may vary gigantly.

C. Pollution model behaviour and simulations

In order to verify our pollution model, we conducted a diseréme simulation of a P2P network with polluted files, and
compared it to the results predicted by our model. As with otlver simulations, we used exponentially-distributedayel
between the various events governed by rate parameters.eWe ;= py, = pa = 0.3, Ng(0) = 100, Ny(0) = 10,

M; = 20000, As = 2, Ax = 57, A, = &. Figure 8(a) shows the number of Susceptible, Infected aab®red peers versus
time for both the simulation and the model. Figure 8(b) shbaw p;, varies with time and reaches a steady state. The model
and the simulation track each other well, with the steadjest, varying by less than 10%.

In Figure 8(c), we examine the impact that the initial numbeseeded polluted files has on the steady-state valysg.of
All other parameters are as described above. This plot atgicthat the initial number of polluted files seeded willeied
have a significant effect on the long term pollution level lné hetwork.

In Figure 9, we consider how the steady-state proportionodififed files is affected by three of the model parameterg Th
panels illustrate the effect of changing &), the download rate; (i), the rate at which Infected peers try again to download
a non-polluted copy of the file; and (iiij),, the rate at which Infected peers give-up on downloadingfilee These plots
indicate that variations in, and \,. have a similar effect on the ultimate level of pollution irethetwork.

D. Impact of Object Reputation Schemes on P2P virus propagat

We now report on simulation and model results for the impdcaro object reputation scheme such as Credence on the
evolution of P2P viruses. Figure 10(a) illustrates how tteady-state proportion of infected files changes as thetefémess
of Credence (as reflected by, the factor by which the probability of download of an infedtfile is reduced) increases.
Figure 10(b) depicts the reduction in residual infectionttees number of peers using Credence increases. These raseilts
obtained for the model parameters described in SectionAlllThe results indicate that if Credence reduces the piibityab
of downloading an infected file by a factor of 0.7 and fifty partof the peers use Credence, then the residual infection is
halved.

Figure 11 compares the behaviour of the deterministic maitbl a discrete time simulation of the propagation of a viirus
a P2P network consisting of 20 000 peers. Fifty percent ofuders employ Credence and it has an effectivenegs-o).7.
The figure illustrates that there is a good match betweenxpeated behaviour and that of the simulated system.

E. Impact of Object Reputation Schemes on P2P Pollution

In this section we consider the effectiveness of a Credékeescheme in reducing pollution in a P2P network. The plots
generated are similar to those from Section VIII-D, withastg-state pollution levels replacing infection levelsgitie 12(a)
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illustrates the impact of, while Figure 12(b) shows the impact of the proportion ofrpaesing Credence. The other parameters
are the same as in Section VIII-C. The results indicate tlsahame like Credence can indeed be effective in reducingtjool,
assuming a significant proportion of peers are utilizindg-tr instance, if forty percent of peers use Credence andlitces
the probability of downloading a polluted file by 0.7, the podtion of polluted files in steady-state is approximatete dnalf

of what it would be without Credence.

IX. CONCLUSION

We have presented a deterministic epidemiological modéiat a P2P virus spreads infection in a P2P network, and
derived expressions for the steady-state behaviour indke where the probability of a peer downloading an infecleddi
proportional to the prevalence of infection. We have alsecdbed an equivalent model for the evolution of pollutiorai P2P
network. Discrete-time simulations with varying indivadupeer behaviour indicates that the models are sufficiemtyrate to
provide insight into system dynamics despite being basedvenage behaviour. Our goal in developing these models evas t
provide a basis for understanding virus and pollution eNmihy) but also to construct a computationally efficient faah for
estimating the efficacy of object reputation systems. lartitwork we will perform more extensive validation of the retsd
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using further empirical measurements of P2P networks ane mocurate simulators of P2P networks that fully incorfora
the subtleties of object reputation schemes.
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