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Abstract This paper describes a framework for
fixed-length frame scheduling in all-photonic net-
works with large propagation delays. We intro-
duce the Fair Matching Algorithm (FMA), a novel
scheduling approach that results in weighted max-
min fair allocation of extra demands, achieves zero
rejection for admissible demands, and minimizes
the maximum percentage rejection of any connec-
tion. We also propose the Minimum Rejection Al-
gorithm (MRA), which minimizes total rejection
but treats non-critical connections in a fair man-
ner. Finally, we introduce a feedback control sys-
tem based on Smith’s principle that reduces the
effect of prediction errors and increases the speed
of the response to the sudden changes in traffic ar-
rival rates. Simulations performed using OPNET
Modeler explore the performance of the scheduling
and control algorithms we propose.
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Fig. 1 Architecture of the Agile All-Photonic Network de-
scribed in [5, 17]. Edge nodes perform electronic-to-optical
conversion and transmit scheduling requests to the core
photonic node(s). Each buffer-less photonic core switch pro-
vides connectivity between any pair of edge switches estab-
lishing a star topology. The overlay of several stars provides
resilience to link or core failures.

1 Introduction

In modern high speed networks, electronic switches
and the associated opto-electronic conversion limit
the optical capacity to a few gigahertz, so the inser-
tion of all-photonic switches in the network cores
is attractive. The primary disadvantage is that all-
photonic switches are currently incapable of per-
forming queuing, so packet transmissions must be
carefully controlled. Burst switching and just-in-
time reservation approaches, and routing and wave-
length assignment techniques address this challenge
in general mesh topologies [35, 23]. Using a simpler
architecture such as an (overlaid) star topology re-
duces the complexity of the control plane.

In this article, we consider the agile all-photonic
network (AAPN), which is an overlaid star topol-
ogy [5, 17]. This architecture (see Figure 1) con-



sists of edge nodes equipped with buffers and op-
tical electronic convertors and fast, reconfigurable
and buffer-less photonic core crossbar switches which
connect the edge nodes. The star topology facili-
tates global network synchronization [14], enabling
the adoption of optical time-division multiplexing
(OTDM) approaches such as wavelength-specific
scheduling of time-slots. To avoid collision a source
edge-node must be aware of when it has ownership
of a given time-slot and is allowed to transmit to
a specific destination edge node.

In this study we assume that the traffic has
been divided among the stars using some form of
load-balancing, for example one of the techniques
outlined in [36]. Therefore, the core switches act
independently and the control problem is reduced
to the task of scheduling one switch configuration
to achieve a good match with the traffic arrival
pattern at the edge nodes.

Bandwidth allocation in networks with substan-
tial signaling delay is normally based on the pre-
diction of traffic arrival rates. In wide-area net-
works it is much more efficient to schedule blocks
of slots (frames1) than single slots [15]. In frame-
based scheduling algorithms, the edge nodes re-
port their predicted bandwidth requirements for
each frame duration to the central scheduler. Many
techniques can be adopted for performing this pre-
diction, ranging from a naive predictor (the predic-
tion is equal to the current traffic arrival rate) to
more elaborate techniques based on sophisticated
traffic models [31]. Since traffic prediction is be-
yond the scope of this paper, we simply consider a
naive predictor.

Contribution: We study the problem of fixed-
length frame scheduling in an overlaid star-topology
all-photonic network. The minimization of rejec-
tion is the priority. Fairness in the max-min sense
is also a desirable criterion and plays an important
role in achieving minimum average end-to-end de-
lay. We therefore propose the Fair Matching Algo-
rithm (FMA), an algorithm based on the weighted
max-min fairness criterion. This algorithm provides
zero rejection in the case of admissible traffic and
a fair allocation of extra bandwidth for the under-
loaded links in the network. We show that FMA
minimizes the maximum percentage rejection ex-
perienced by any connection. Subsequently, we pro-
pose the Minimum Rejection Algorithm (MRA),
which minimizes total rejection but treats non-

1 In this paper the term “frame” refers to a set of time-
slots containing multiple packets (for example, slots of
10µsec duration, which can hold up to 100 packets of 1000
bits on average on a 10Gbps optical channel).

critical connections in a fair manner. This algo-
rithm has much lower average time complexity com-
pared to the straightforward approach of solving a
max-flow problem.

Finally, we introduce a closed-loop control ar-
chitecture designed to interact with our proposed
open-loop scheduling mechanisms. We employ Smith’s
principle to design a linear feedback controller that
compensates for the sources of error (prediction,
rounding and rejection), resulting in a stable and
fair system. The feedback control system we pro-
pose allocates spare capacity in a fair manner and
responds to traffic variations faster than the open-
loop scheduling algorithm alone. This controller
acts as an illustration of a general framework for
combining a closed-loop controller with a central-
ized scheduler.

Related Work: Scheduling in the AAPN is
similar to scheduling of an input queued switch
(see [2, 19, 20]), with the difference that there is a
large propagation delay between the input buffers
at the edge nodes and the switch (photonic core).
This leads to superior performance for frame-based
scheduling algorithms. Of the frame-based algo-
rithms proposed for star topologies in optical and
satellite networks, the majority have focused on
variable-length frames [12, 11, 22, 13, 34]. Using
fixed-length frames reduces computational com-
plexity, and simplifies control and signalling, par-
ticularly slot synchronization and bandwidth re-
quest management. The authors of [6, 25, 16, 4]
have considered the problem of scheduling a frame
of fixed length for star-coupled networks with tun-
able transmitters/receivers, but do not address the
allocation of unused time-slots or rejection of inad-
missible demand. We note that the general princi-
ples employed in our algorithms, water-filling and
max-flow formulations, have been used in various
scheduling contexts, e.g. [4, 16], but never for schedul-
ing fixed-length frames in all-photonic networks
(where wavelength-tunability of transmitters/receivers
is not a primary consideration).

The most closely related work is that of Peng
et al. [21], who also address scheduling in a star-
topology agile all-photonic network. Their proce-
dure focuses on determining a service matrix that
is similar to the original demand matrix through
a process of iterated projection. This procedure
achieves clamping of the demand matrix, but the
authors make no claim regarding what the projec-
tion procedure achieves in terms of network per-
formance. In contrast, the algorithms we propose
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in Section 3, FMA and MRA, explicitly achieve
fairness properties or minimize total rejection.

Feedback congestion control has been exam-
ined from a control theoretic perspective by many
authors, with the primary focus being controlling
the rates at which sources inject best-effort traffic
into a network in order to reduce the congestion
at bottleneck queues whilst maintaining high uti-
lization [7]. In the work most closely related to the
controller design presented in this paper, Mascolo
combines classical control theory and Smith’s prin-
ciple to design a simple congestion control law that
guarantees no packet loss and efficient use of band-
width [32]. In related work, Bauer et al. propose
a new class of time-variant Smith predictors using
time-variant network delay models [3]. Although
the theoretical techniques we adopt in our design
are similar to those used by Mascolo, the problem
we address differs significantly. We assume that we
have no control over arrival rates; instead we can
adjust, through scheduling, the resources allocated
in the network. This results in an inverted form of
the standard congestion control problem: switch
resources are controlled rather than source rates.

Finally, we should note that the research re-
ported in this paper is a compilation and exten-
sion of the material presented in the conference
papers [28, 29, 30].

Structure of the paper: Section 2 provides
a statement of the scheduling problem that we ad-
dress. Section 3 details our proposed frame-based
scheduling algorithms, FMA and MRA. Section 4
illustrates how the frame-based scheduling algo-
rithms act as feed-forward control systems. Sec-
tion 5 describes the design of a modified Smith
controller that interacts with the FMA schedul-
ing algorithm to produce a stable resource alloca-
tion mechanism for AAPNs. Section 6 describes
the simulation experiments we have executed to
assess performance. Finally, Section 7 summarizes
the proposed algorithms and results. Proofs appear
in the appendices.

2 Problem Statement

We investigate the scheduling problem in the AAPN,
an overlaid star topology network which connects
a large number of edge nodes using optical fibers
and photonic switches. We assume that load is di-
vided between the stars and we are concerned with
scheduling each star independently. Every star is
composed of N edge nodes connected through an
all-photonic switch. We also assume that there are

W available wavelengths and every edge node is
able to transmit/receive on every wavelength si-
multaneously. To isolate the wavelengths, we as-
sume that the load is distributed among the wave-
lengths as well, and our task in this paper is to
schedule one single wavelength on a single star net-
work.

During each frame, every edge node records the
number of packets that arrived for each destination
node and reports these values to the scheduler. For
simplicity we assume that the scheduler is located
at the core photonic switch. If the maximum one-
way signalling delay is T frames, then the scheduler
must design a schedule T frames into the future. It
uses all information at its disposal to predict the
demand for each source-destination pair.

Suppose that Dij is the predicted number of
slots needed for transmission from source node i to
destination node j. We consider a frame of length
L time-slots. Our aim is to devise a schedule S such
that the element Sjk identifies the source node al-
located to the k-th time-slot associated with des-
tination j in the frame.

The rejection for any individual connection (i, j)
is denoted by:

REJij = max(0, Dij −
L

∑

k=1

I[Sjk = i]) (1)

where I is the indicator function. The total num-
ber of rejections is defined as: TREJ(S, D, L) =
∑

i

∑

j REJij . We identify two scheduling prob-
lems for frames of fixed length L with demand
matrix D. The first strives to minimize total re-
jection; the second strives to minimize worst-case
percentage rejection. Suppose that S∗

1 and S∗
2 are

the schedules obtained from solving the first and
second problems respectively. Therefore we have:

MINREJ(D,L): S∗
1 = arg minS TREJ(S, D, L).

PERMIN(D,L): S∗
2 = argminS max(i,j) REJij/Dij .

2.1 Terminology and Definitions

We now define some terminology that will be used
throughout the paper and recall some definitions.
We denote the line sum of line ! of the demand
matrix D by LS!. Note that line ! consists of a set
of source-destination demands which correspond
to the connections passing through link ! of the
network. Each of these connections belongs to two
lines, a row and a column. The i-th row repre-
sents a link from source i to the optical switch at

3



the core, and the j-th column represents the link
from the core to destination node j. The row-sum,
ri(D) =

∑N
j=1 Dij , is the total demand at source

i, and the column-sum, cj(D) =
∑N

i=1 Dij , is the
total demand for destination j.

Definition 1 Admissibility. A demand matrix D
is admissible if

max{max
i

{ri(D)}, max
j

{cj(D)}} ≤ L.

For an inadmissible demand matrix, we denote the
set of overflowing rows of the demand matrix (rows
with ri(D) > L) as Or, and the set of overflowing
columns (cj(D) > L) as Oc. The set of overflowing
lines, O! = {! : LS! > L} is the union of Or

and Oc. We define a critical connection, or critical
demand element, as any demand entry Dhp such
that h ∈ Or and p ∈ Oc. The remaining entries
constitute non-critical connections/demands.

Definition 2 Feasibility. Consider an arbitrary net-
work as a set of links L where each link ! ∈ L has
a capacity C! > 0. Let {1, · · · , ζ} be the set of net-
work connections, and H! the set of all connections
passing through link !. Let Du be the demand (re-
quest) of connection u and υu be its assigned rate.
A rate allocation {υ1, υ2, · · · , υζ} is feasible if for
every link ! ∈ L we have

∑

u∈H!
υu ≤ C!.

Definition 3 Weighted max-min fairness. Let ωu(υu)
be an increasing function representing the weights
assigned to connection u at rate υu. A feasible al-
location {υ1, υ2, · · · , υζ} is weighted max-min fair
if for each connection u any increase in υu would
cause a decrease in transmission rate of connection
z satisfying ωz(υz) ≤ ωu(υu). The special case of
max-min fairness is obtained by ωu(υu) = υu.

3 AAPN Scheduling Algorithms

This section introduces two scheduling algorithms.
The Fair Matching Algorithm (FMA), addresses
the PERMIN problem. FMA achieves weighted max-
min fairness in sharing the bandwidth between the
communicating source-destination pairs. For inad-
missible traffic, FMA minimizes the maximum per-
centage rejection experienced by any demand. The
second algorithm, the Minimum Rejection Algo-
rithm (MRA) efficiently solves MINREJ(D,L).

3.1 Fair Matching Algorithm (FMA)

FMA is a combination of a clamping procedure
and the EXACT algorithm. The EXACT algorithm,

presented in [9, 34], was designed for a variable-
length frame and it achieves the minimum number
of slots for this case. It is an iterative procedure
that repeatedly performs maximum cardinality bi-
partite matching (MCBM) to obtain the schedule.
When applied to the problem of scheduling a fixed-
length frame with an admissible demand matrix,
the EXACT algorithm generates a schedule S that
has length less than L and therefore zero rejection.
If the demand matrix is inadmissible, or the de-
mand is lower than the capacity of a frame, then
it is desirable to modify the demand matrix to con-
trol the way in which rejection occurs or free slots
are assigned.

Clamping modifies the demand matrix to en-
sure that all of the frame resources are assigned
properly. If the demand matrix is admissible, FMA
performs water-filling, incrementally assigning ad-
ditional demands to all elements until all of the
links reach capacity (their line-sums are equal to
L). This algorithm can be implemented by pro-
cessing one line at a time. We first choose the most
constrained line (the line that would reach its ca-
pacity first under the water-filling procedure) and
increase its demand to capacity. Then we choose
the next most constrained line and increase its de-
mand to capacity. We repeat until all lines have
reached capacity. FMA assigns extra capacity in
proportion to the original demand.

A similar procedure can be used for the case of
an inadmissible demand matrix (containing one or
more overloaded lines). In this case FMA identifies
the most overloaded line and reduces the demands
on that line such that they sum to capacity (L).
Demand reduction is proportional to the original
demand, i.e. each adjusted demand experiences the
same percentage reduction. When there are both
overloaded and under-utilized lines, the overloaded
lines are adjusted first.

Here we describe how FMA treats demands be-
longing to the adjustable lines in the set U! =
{! : LS!(0) $= L}, where LS!(0) is the line sum
of line ! at the beginning of calculations. We de-
fine AD ⊆ U! as the set of unmodified lines and
BD ⊆ U! as the set of modified lines. Initially AD

contains all lines in U! and BD is empty. Simi-
larly, we define a! as the set of unmodified de-
mands in line ! and b! as the set of modified de-
mands. Initially, a! contains all the demands and
b! is empty. In each iteration we adjust the unmod-
ified demands in line ! as follows:

D
′

ij = Dij ×
L − Sb!

Sa!

∀ (i, j) ∈ a!, (2)
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where Sa!
!

∑

(i,j)∈a!
Dij and Sb!

!
∑

(i,j)∈b!
D

′

ij .
We always have Sa!

+ Sb!
= LS!. Note that when

demand Dij belongs to an overloaded line,
L−Sb!

Sa!

<

1, and when Dij belongs to an under utilized line
L−Sb!

Sa!

> 1. Define for each of line in AD the value

G! ! L−LS!

Sa!

.

Algorithm 1 FMA
Set D′ = D.
while AD != O do

Identify the line !∗ = arg min!∈AD
G!.

Apply (2) to line !∗.
Transfer !∗ from AD to BD .
Update a! and b! for all lines ! ∈ AD .
Re-evaluate LS! for all lines in AD.
Transfer lines γ with LSγ = L from AD to BD.

end while

Apply EXACT to #D′$ to generate S.

The following theorem states that prior to round-
ing, FMA achieves weighted max-min fair alloca-
tion of capacity (weighted relative to the original
demand). See Appendix A for the proof.

Theorem 1 FMA generates an adjusted demand
matrix D′ with weighted max-min fair allocation,

where the weight is ω(D′
ij) =

D′
ij

Dij
.

If the demand matrix contains zero entries, then
an algorithm that adjusts requests multiplicatively
(such as FMA) cannot always generate full utiliza-
tion; there can be natural blocking because there is
no demand. After all of the demands are adjusted
FMA uses EXACT to allocate the time-slots and
generate the schedule. We now present some prop-
erties of the demand matrix D

′

= {D
′

ij} obtained
by FMA prior to rounding.

Property 1 : FMA guarantees full allocation of all
links provided D contains no zero elements.

Property 2 : If there is no natural blocking the
maximum total throughput of the network is
obtained:

∑

i

∑

j D
′

ij = NL.

Property 3 : The while-loop in FMA has O(N2)
computational complexity in terms of the num-
ber of edge nodes (2N iterations with a min-
imization over N elements in each iteration).
The best current implementation of the EX-
ACT algorithm has complexity O(N

5

2 ), and
hence this is also the complexity of FMA.

Define the percentage rejection as 1−
D′

ij

Dij
for the

lines which were initially overloaded. Consider the

set of demands that experience the highest per-
centage rejection (i.e., the demands on the most
overloaded line). Since the weight ω is a mono-
tonically increasing function of allocated rate D′

ij ,
weighted max-min fairness implies that it is im-
possible to increase the rate allocated to these de-
mands (or decrease the maximum percentage re-
jection) without violating feasibility. Decreasing the
rejection of any of those demands requires increas-
ing the rejection of another demand on the same
line, and hence the maximum percentage rejection
increases. We thus have the following corollary of
Theorem 1:

Corollary 1 Subject to the capacity constraints,
FMA generates a schedule that minimizes the max-
imum percentage rejection experienced by the con-
nections.

max
ij

{
Dij − D

′

ij

Dij
}

F MA
= min

CL
{max

ij
{
Dij − D

′

ij

Dij
}

CL
},

(3)

where CL is any clamping algorithm that clamps
the overloaded lines down to L.

3.2 Minimum Rejection Algorithm (MRA)

We are now in a position to define an algorithm
that (i) minimizes overall rejection, and (ii) sub-
sequently, fairly allocates any necessary residual
rejection or free slots.

We commence by considering a decomposition
of the demand matrix, D = D

′

+R. Here D
′

is the
pruned demand matrix with line sums not exceed-
ing the schedule length L and R shows the result-
ing rejections of every demand after pruning. We
define the sets B ! {(h, p) : h ∈ Or or p ∈ Oc},
and C ! {(h, p) : h ∈ Or and p ∈ Oc}, where Or

and Oc are the set of overflowing input and out-
put links of the optical network respectively. The
minimization of total rejection can be formulated
as the following max-flow problem:

Maximize
∑

(h,p)

D
′

hp subject to

0 ≤ D
′

hp ≤ Dhp ∀ (h, p) ∈ B ,

rh(D
′

) ≤ L, cp(D
′

) ≤ L ∀(h, p).

Ford and Fulkerson presented a solution to max-
flow problems of this kind in 1954 [10]. Note that
the max-flow solution is in general not unique.
The fastest maximum flow algorithms to date are
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preflow-push algorithms, which work in a more lo-
calized manner than the Ford-Fulkerson method [8].
In the straightforward formulation of the max-flow
problem above, there are 2N active nodes in the
corresponding s → t network (see [26] for details),
so the complexity of the preflow-push algorithm
for finding a max-flow solution is O(N3) [8].

We now outline a procedure for solving the
minimum rejection problem that can result in sig-
nificant computational savings. We commence by
defining a related but simpler max-flow linear pro-
gramming problem, MAXREJFLOW(D,L):

Maximize
∑

(h,p)∈C

Yhp subject to

Yhp = 0 if (h, p) /∈ C, (4)

Yhp ≤ Dhp ∀(h, p), (5)
∑

p∈ Oc

Yhp ≤ rh(D) − L ∀ h ∈ Or, (6)

∑

h∈ Or

Yhp ≤ cp(D) − L ∀ p ∈ Oc. (7)

In order to find an efficient approach for solving
MINREJ(D,L), we identify a relationship to a so-
lution of MAXREJFLOW(D,L) with the following
theorem. The proof is in Appendix B.

Theorem 2 Set A = MAXREJFLOW(D,L). Con-
struct a rejection matrix R = A +Q, where Q is a
non-negative matrix such that Qhp = 0 ∀(h, p) /∈
B, Qhp ≤ Dhp − Ahp ∀(h, p), rh(Q) = rh(D) −
L − rh(A) ∀h ∈ Or, and cp(Q) = cp(D) − L −
cp(A) ∀p ∈ Oc. Then if S is a schedule that gener-
ates the decomposition D = D′+R, it is a solution
to the problem MINREJ(D,L).

The identification of a solution to MINREJ(D,L)
thus requires us to (i) find a solution A to MAXRE-
JFLOW(D,L); and (ii) determine a suitable Q.
The MAXREJFLOW problem is a max-flow prob-
lem, and a solution can also be determined using
the Ford-Fulkerson algorithm or one of the preflow-
push algorithms. The FMA algorithm can be used
to determine a suitable Q. Note that A only has
non-zero entries on the critical connections. By us-
ing FMA to determine the remaining rejection, we
are introducing weighted max-min fairness in re-
jection allocated to the non-critical connections.
The combined Minimum Rejection Algorithm is
specified in Algorithm 2.

The complexity of the MAXREJFLOW prob-
lem is O(|O!|3). In the worst case all 2N lines are
overflowing, and the complexity is O(N3). In gen-
eral, only a fraction of the lines are overflowing,

Algorithm 2 Minimum Rejection Algorithm
1: Apply the Ford-Fulkerson algorithm (or an

alternative preflow-push algorithm) to solve
A =MAXREJFLOW(D,L).

2: Generate the modified demand matrix D′ = FMA(D−
A, L).

3: Apply EXACT to #D′$ to generate S.

and |O!| ) N , so there is a substantial reduc-
tion in computational complexity. In the MRA al-
gorithm, this reduction is offset, however, by the
incorporation of the FMA algorithm, which has
complexity O(N5/2). The primary advantage of
the MRA algorithm is the introduction of weighted
max-min fairness in rejection and residual slot al-
location for the non-critical connections.

4 Queue Control and Stability

The scheduling techniques outlined in the previous
sections can be interpreted as open-loop control
algorithms. If the system relies on only open-loop,
feed-forward control then the effect of errors is ig-
nored, leading to instability and unfairness. These
errors arise primarily from mistakes in the traffic
prediction and the fact that the scheduling algo-
rithms involve rounding and do not remember past
rejection. A closed-loop control system is needed to
achieve stability (i.e., bounded steady state queue
size variation), fairness, and faster response to traf-
fic variations.

We now develop a control system model for re-
source allocation in an AAPN. Initially we adopt a
continuous-time model, but since scheduling is per-
formed once per frame, we later sample the data
with period Ts (the frame duration) to obtain a
discrete-time system. Figure 2 shows a feedback
control model for an agile all-photonic network
with a central controller. Note that this figure de-
picts the control loop for one source-destination
pair, or virtual output queue (VOQ), (i, j). There
is a similar control loop for every source-destination
pair, and all of these loops are coupled through the
FMA scheduler.

We consider a simple integrator as the dynamic
model for a virtual output queue (VOQ). Let qij(t)
be the length of the virtual queue of packets at
edge node i destined to edge node j. Let aij be
the input rate to V OQij , and depij the depletion
rate of this queue. In the control model the length
of each VOQ is compared with a reference sig-
nal, rij(t), and the difference is the input to the
controller. The controller then calculates how to
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Fig. 2 The provision of a feedback signal results in bandwidth allocation in an AAPN becoming a simple closed-loop
control system. Inputs to the system are a reference signal rij , the estimated arrival rate âij and the true arrival rate aij ,
and the feedback is the information from the VOQ, indicated by qij . The propagation delay from the controller to the
plant is T .
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Fig. 3 Schematic of a modified Smith predictor for bandwidth allocation in a wide-area AAPN with large signalling delay.
The terms Kr and K0 represent gains (control parameters) and T0 is the estimated dead-time. In our analysis we assume
T0 = T .

adjust the predicted traffic arrival rate âij(t) to
account for past prediction errors, rejections, and
rounding errors (this adjustment rate is acij(t)).

We model the depletion rate depij as constant
throughout a frame period:

depij(t + T ) =
D

′

ij(k)C

L
kTs ≤ t ≤ (k + 1)Ts.

The predicted arrival rate is used as the demand
signal dij(t). Therefore, we have:

âij(t) = dij(t) =
Dij(k)C

L
kTs ≤ t ≤ (k + 1)Ts.

Here Dij(k) is the predicted number of time slots
demanded for a source-destination pair (i, j) dur-
ing frame k, D

′

ij(k) is the adjusted number of allo-
cations based on the FMA algorithm, C is the line

rate in bits-per-second, L is the frame-length in
slots, and T is the propagation (signalling) delay.

Provided that the queue does not empty (qij >
0), the depletion rate is the sum of the predicted
arrival rate âij and the feedback adjustment acij ,
suitably delayed in time, i.e., depij(t) = âij(t −
T ) − acij(t − T ). Based on the flow conservation
equation [32] the queue length, with initial condi-
tion qij(0) = 0, is qij(t) =

∫ t
0 [aij(τ) − depij(τ)]dτ .

We model the queues as always-occupied to avoid
the need for non-linear components.

Demand matrix adjustment is performed by a
clamping algorithm (e.g., FMA) which clamps the
line sums of the demand matrix up or down to L.
FMA multiplies the predicted arrival rate âij by a

factor, xij =
D

′

ij

Dij
. Since this factor changes with
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the overall arrival rates the gain of the controller
is tuned each frame.

For this control system we aim to minimize the
error between the queue length and a desired queue
length shown by the reference signal, which may
be calculated based on the state of the network.
For example, if the desired state is equal queue
lengths for all of the VOQs, then the reference sig-
nal should be the average of the VOQ lengths. This
is also the effect of FMA [28], so this choice of refer-
ence signal aligns the feedback controller with the
feed-forward controller. Note that because FMA is
a clamping algorithm, the combination of the con-
troller and FMA never acts to artificially increase
queue lengths. FMA always allocates the full ca-
pacity of the switch (provided there is non-zero
demand).

5 AAPN Controller Design based on the

Smith Predictor

Instability is a common problem in delayed sys-
tems, since the addition of delays introduces extra
phase lag, resulting in a less stable system. If the
controller is not properly tuned to consider this
delay (deadtime), it can overcompensate substan-
tially. The Smith predictor, introduced by Smith
in [33], makes the controller aware of the dead-
time and adjusts its behavior based on prediction
of the effect of controller on the output during this
delay. Our controller design is an extension of the
modified Smith predictor developed by Matausek
et al. [18].

Figure 3 shows the modified version of this con-
troller for the AAPN network. The inputs to the
system are rij(t), a(t) and â(t), and the output is
qpij (t) = qij(t − T ). We consider the arrival rate
a(t) and its prediction â(t) as disturbances. The
reference signal, rij , represents the desired VOQ
length. The setpoint and disturbance responses of
the system are:

Hr(s) =
xijKre−sT

s + xijKr
, (8)

Hd(s) =
e−sT [s − xijKr(1 − e−2sT )]

(s + xijKr)(s + K0xije−2sT )
, (9)

Ĥd(s) =
xije−2sT [s − xijKr(1 − e−2sT )]

(s + xijKr)(s + K0xije−2sT )

= xije
−sT Hd(s) . (10)

We strive to eliminate the steady-state effect of
variations in the traffic arrival rate on the VOQ
lengths. This corresponds to eliminating the load

disturbance steady-state response and requires that
lims→0 Hd(s) = 0, which is possible if K0 $= 0.
Based on the final value theorem:

lim
t→∞

qpij (t) = lim
s→0

Rij(s)Hr(s) = rij . (11)

The stability of the system depends on the roots
of the characteristic equation:

(s + xijKr)(s + K0xije
−sT ) = 0. (12)

The first term implies that xijKr > 0 must be
satisfied. We can apply the same analysis as that
employed in [18] to derive the range of values for
K0 for which the system is stable (the phase mar-
gin φM > 0). We require:

K0 <
1

4xijT
. (13)

It is highly likely that there is additional error
in the control system, because the data is subject
to queueing delay which is not explicitly included
in our control system model. The system estimates
the dead-time as T , which corresponds only to the
propagation (signalling) delay, and this can be a
significant underestimate. We therefore must ex-
amine the robustness of the system to this type
of error. This analysis, conducted in Appendix C,
reveals that the proposed system is robust to such
errors, even if they are as large as the anticipated
dead-time itself.

Scheduling and signalling are only performed
once per frame. In order to obtain the equivalent
discrete-time system equations a simple approach
is to design a digital control system using the Delta
transform. Since the plant is continuous the input
to the plant is then converted to continuous form
with zero-order-hold. The discrete time equations
are approximated from the continuous form as:

dij(k) = âij(k) − urij(k) + K0qpij(k) − K0y2(k) ,

y1(k) = y1(k − 1) + xij(k − 1)urij(k − 1)Ts ,

y2(k) = y1(k −
2T

Ts
) ,

urij(k) = Kr(−y1(k) + y2(k) − qpij(k) + rij(k)) .
(14)

Defining λ ! T
Ts

, we have:

urij(k) = Kr( −
λ

∑

p=1

xij(k − p)urij(k − p)Ts

− qpij(k) + rij(k)). (15)
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The rate adjustment thus depends, through the
controller parameters K0 and Kr, on the diver-
gence of each queue length from the average queue
length, rij , as well as the amount of the queue
backlog qpij(k). The role of the Smith controller
is to take into account the effect of rate adjust-
ment on the queues during the λ previous frames
for which there is no feedback available.

The gain of the controller Kr is designed based
on the Nyquist-Shannon sampling theorem which
states that the sampling period should be at most
half the time constant of the continuous system
(1/xijTs). Using a fixed controller gain can result
in undesirable behavior. A small gain does not pro-
vide sufficiently fast response to traffic changes,
but a large gain results in overreaction to minor
fluctuations. An adaptive gain can provide a good
compromise. We design the controller such that
the gain Kr adapts to the size of the queue varia-
tions:

Kr(k) = min{A exp(C∆qp),
1

2xijTs
}, (16)

where ∆qp = qp(k) − qp(k − 1). The choice of the
constants A and C determines how fast the sys-
tem reacts to traffic changes and whether there
are residual oscillations. To avoid overcompensa-
tion due to a large control gain we use a fast-start
slow-finish procedure in which we reduce the gain
of the controller by a factor of 0.05 two frames after
activation of the Smith controller.

6 Simulation Performance

In this section we report the results of simulations
of the scheduling approaches performed using OP-
NET Modeler [1]. We performed simulations on a
16 edge-node star topology network. The links in
the network have capacity 10 Gbps and the prop-
agation delay between each edge node and the op-
tical switch is 5 ms. A time-slot is of length 10 µs,
and a frame has a fixed length of 1 ms (or 100
slots). Recall that each time-slot contains multi-
ple packets (e.g. 100 IP packets on average) and
a frame refers to a set of time-slots. Each exper-
iment was run for a duration of 0.2 s (equal to
200 frame durations) and the results were averaged
over 5 repetitions of the simulations. The virtual
output queues in the simulations have fixed buffer
size (90000 packets). Whenever the buffer is full,
arriving packets are dropped. A summary of the
network parameters is presented in table 1.

Table 1 Network parameters.

Parameter Value

No. Nodes 16, 32, or 64
Link Capacity 10 Gbps
Propagation Delay 5 ms
Time-slot Duration 10 µs

Frame Duration 1 ms
Frame Length 100 time-slots
Av. No. Packets per slot 100
Simulation Time 0.2 - 0.5 s
Pareto Shape Parameter (α) 1.9

Our simulations involve bursty traffic using on/off
traffic sources. Every edge node is equipped with
6 on/off sources. The “on” and “off” periods have
Pareto distributions with a shape parameter α =
1.9. The mean of the “off” periods is 5 times greater
than the mean of the “on” periods. During “on”
periods the sources generate packets with an av-
erage rate up to the full link capacity (10 Gbps).
The rate distribution is exponential.

In the first experiment we compare the perfor-
mance of FMA with that of the algorithm pro-
posed by Peng et al. [21]. We use a non-uniform
traffic pattern; each destination receives on aver-
age the same amount of traffic, but each source
sends five times as much traffic to one specific des-
tination as compared to the others. As figure 4-top
panel shows, the average rejection when FMA is
used is less than that when the projection method
is used. The advantage of using FMA is more ap-
parent when we compare the maximum rejection
percentages of the two algorithms in figure 4-middle
panel. Figure 4-bottom panel indicates that FMA
achieves lower average queueing delay especially at
higher loads. Note that propagation delay is not
included in the figure.

Our second experiment compares FMA and MRA.
Since these only differ when there are critical el-
ements in the demand matrix, we investigate sce-
narios where critical demands are likely to exist.
In order to do this, in each frame we choose one
arbitrary source i and one arbitrary destination
j. Each source generates z times as many packets
for destination j compared to other destinations.
Similarly source i generates z times as many pack-
ets (to all destinations) as any other source. As z
increases, the elements of the demand matrix cor-
responding to these two edge nodes are more likely
to be critical connections; the demand element Dij

has even higher likelihood of being critical.
Figure 5-top panel compares the percentage of

rejected demand achieved by FMA and MRA as
the offered load changes for various values of z.
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Fig. 4 Comparison between FMA and projection method
under varying non-uniform traffic load in terms of rejec-
tion percentage and average queuing delay. Network has a
propagation delay of 5ms and 16 edge nodes. Top panel:
Rejection percentage. Middle panel: Maximum of rejection
percentage. Bottom panel:Queuing delay.
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Fig. 5 Comparison between the rejection (top panel) and
rejection percentage (bottom panel) obtained by FMA and
MRA under varying offered load for different factors of im-
balanced load (z). Traffic is bursty (generated by on-off
sources) and has uniform distribution, aside from the im-
pact of z.

At high load (greater than 70%) with z = 2, there
are numerous critical elements and MRA begins to
achieve less rejection than FMA. The discrepancy
is still only 2 percent at 90% load. Figure 5-bottom
panel compares the maximum percentage rejec-
tion experienced by any demand when scheduling
is performed by FMA and MRA. As the offered
load increases, MRA concentrates rejection on the
critical elements; the maximum percentage rejec-
tion is thus much (up to 25 percent) higher than
that achieved by FMA, which distributes rejection
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Fig. 6 Network performance (using FMA) with uniform
traffic as a function of offered load with a propagation de-
lay of 5ms for different number of edge nodes. Top panel:
Utilization. Bottom panel: Queuing delay.

fairly amongst all competing connections. The av-
erage queuing delay experienced by packets when
scheduling is performed using FMA and MRA are
similar, and so not shown here.

Our third experiment explores how increasing
the network size affects the performance of FMA.
The simulation settings are the same as in the pre-
vious experiment (with z = 1). Figure 6-top panel
compares utilization for networks of 16, 32 and 64
edge nodes and uniform traffic. The utilization is
not affected by network size. The bottom panel
compares the average queuing delays. For lower
offered loads the queuing delay multiplies by a fac-
tor close to 2 (and 4) for 32 (and 64) edge nodes.
This is the expected scaling behaviour, because the
injected traffic is kept constant per node, so the
total traffic doubles (and quadruples). For higher
loads the queuing delay increases dramatically be-
cause the frame length is too small to support the
increased number of nodes fairly. Sixty-four edge
nodes with similar traffic arrivals cannot share 100
time-slots in a fair fashion.

Our fourth experiment investigates how the in-
corporation of the Smith controller impacts the re-
sponse time of our system when there is a sudden
change in traffic arrival rates. We are also inter-
ested in exploring the effect on the fairness in the
system. We measure an average relative fairness
factor (divergence), defined for source node j as:

δj =

∑

i,i'=j |qpji −
∑

i,i"=j qpji

(n−1) |
∑

i,i'=j qpji

(17)

This factor measures the average divergence of the
queue lengths of all VOQs at source node j from
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Fig. 7 The impact of the feedback controller with adaptive
gain and fast-start slow-finish compensation for the simula-
tion conditions in Section V (Scenario A). Top panel: Av-
erage queue length for VOQ experiencing the heavy load.
Middle panel: Average queue lengths of all VOQs. Bot-
tom panel: Relative fairness factor (divergence) as defined
by (17).
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Fig. 8 The effect of the Smith controller under the bursty
traffic conditions in Section V (Scenario B). Top panel: Av-
erage queue length for VOQ experiencing the heavy load.
Middle panel: Average queue lengths of all VOQs. Bot-
tom panel: Relative fairness factor (divergence) as defined
by (17).

the overall average. It thus provides a good indica-
tion of the degree of equality of waiting times for
packets in different queues (a value closer to zero
indicates better fairness).

In this experiment, we employ two traffic sce-
narios. In both scenarios, the average arrival rates
to the VOQs are equal except for two periods (frames
20-32 and frames 130-132) during which the arrival
rate of traffic from one source to one destination
increases by a factor of 10. The two traffic scenar-

ios are:
Scenario A: The arrival distribution of the data
packets is Poisson with average arrival rate of 9
Gbps during the baseline periods.
Scenario B: Six Pareto (α = 1.9) on-off sources
are connected to each edge node. The mean on-
period is 0.33 msec and mean off-period is 1.6 msec.
The average rates are 9 Gbps during the on-period.

The top panel of Figure 7 compares the queue
lengths of the VOQ carrying the heavy connec-
tion when using FMA with and without the Smith
controller for the case of adaptive gains with A =
63/xij and C = 0.08 in (16). The Smith controller
decreases the response time substantially, reducing
the queue length of the heavy connection much
faster than FMA alone. The middle panel shows
that there is little impact on the other queues.
The bottom panel compares average divergences.
During the initial periods of heavy traffic, the fast
draining of the long queue improves fairness.

Figure 8 examines the performance in response
to bursty traffic as described in Scenario B, which
is more unpredictable and thus poses a greater
challenge for the Smith controller. The simulations
indicate that the Smith controller still provides
better drainage of the queues experiencing severe
congestion. There is minimal negative effect on
other queues or fairness. Similar results are ob-
served for the case of several queues experiencing
a sudden change.

7 Conclusion

We investigated bandwidth allocation and schedul-
ing problem in single-hop all-photonic networks
with cross-connect switches and large propagation
delays. We proposed the Fair Matching Algorithm
(FMA), a novel scheduling algorithm that achieves
zero rejection for admissible demands and provides
weighted max-min fair allocation of free capacity.
When the demand matrix is inadmissible, FMA
minimizes the maximum percentage rejection ex-
perienced by any connection. We subsequently pro-
posed the minimum rejection algorithm (MRA),
which ensures minimum global rejection and pro-
vides weighted max-min fair allocation/rejection
to non-critical connections. Finally, we described
a feedback control system that compensates for
scheduling errors due to mispredictions and rejec-
tion. The controller design is based on the Smith
principle, which removes the destabilizing delays
from the feedback loop by using a “loop cancela-
tion” technique.
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OPNET Modeler simulations indicate that FMA
and MRA achieve similar performance in terms of
total rejection, but there is a major difference in
the fairness of the allocation of rejection. A com-
parison with an alternative algorithm proposed for
AAPNs, the projection method proposed by Peng
et al. [21], suggests that FMA achieves better per-
formance in terms of both rejection and queuing
delay. Simulations of the feedback control system
indicate that it reduces the response time to sud-
den changes in traffic intensity and imparts fair-
ness by controlling the divergence from the average
queue length.

A Proof of Theorem 2

We first define a bottleneck link and state a lemma relating
weighted max-min fairness and the existence of bottleneck
links; the proof of the lemma appears in [27].

Definition 4 Bottleneck Link: Given a feasible rate vec-
tor υ and a weight vector ω, we say that link ! is a bottle-
neck link with respect to (υ , ω) for a connection u crossing
!, if C! =

∑

k υk ! F! and ωu ≥ ωk for all connections k

crossing !.

Lemma 1 A feasible rate vector υ with weight vector ω =
{ υu

Ru
} is weighted max-min fair if and only if each connec-

tion has a bottleneck link with respect to (υ , ω).

Proof (Proof of Theorem 2) Let u ∈ {(i, j), 1 ≤ i, j ≤ N}
index the source-destination connections specified by the
demand matrix. We focus on the properties of the modified
demand matrix and associated sets at various iterations of
the while loop in Algorithm 1, so we index entities by it-
eration number and note that this indicates the value of
the entity at the start of the iteration. For example, AD(h)
denotes the set of unmodified overloaded lines at the start
of iteration h of the algorithm.

We prove that FMA achieves weighted max-min fair
allocation of the overloaded demand. During each iteration
h of the while-loop, FMA identifies the line γ ∈ AD(h)
such that Gγ(h) = min{G!(h); ! ∈ AD(h)}. It alters the
demands in aγ (h) according to (2) and after this modifica-
tion, there is no subsequent modification of these demands.
Substituting (2) into the definition of the weight, we have
ωu = 1 + Gγ(h) for all u ∈ aγ (h).

We demonstrate that the adjustment at iteration h

leads to γ being a bottleneck link (line) for u ∈ aγ (h), i.e.,
after this adjustment it holds that ωz ≤ ωu for u ∈ aγ(h)
and z ∈ bγ(h). Equivalently, we prove that min{G} is mono-
tonically increasing with respect to the iteration number,
i.e., min{G(h)} ≤ min{G(h + 1)}. The equivalence follows
since the ωz are obtained from adjustments prior to itera-
tion h.

Suppose that line β has minimum G at iteration h + 1.
Lines γ and β have at most one connection (demand) in
common. If there is no common connection, then Gβ(h +
1) = Gβ(h) ≥ Gγ(h). If there is a common connection k,
then:

LSβ(h + 1) = LSβ(h) + Dk(ωk − 1) (18)

Saβ (h + 1) = Saβ (h) − Dk (19)

and hence

Gβ(h + 1) =
L − LSβ(h) − Dk(ωk − 1)

Saβ (h) − Dk

=
Saβ (h)Gβ(h) − Dk(ωk − 1)

Saβ (h) − Dk

≥ Gγ(h) (20)

where the last inequality follows from substitution based on
Gβ(h) ≥ Gγ(h) = ωk − 1.

Thus the application of FMA upon an inadmissible de-
mand matrix D leads to the generation of a bottleneck link

for each connection u with weight ωu =
D′

u
Du

. By Lemma 1,
this establishes that FMA achieves weighted max-min fair
allocation of adjusted demands D′.

B Proof of Theorem 3

Proof We approach the proof by contradiction. Consider a
matrix R∗ that achieves minimum rejection and suppose
that it cannot be decomposed in the form R∗ = A+Q out-
lined in the theorem statement. Let R∗

C
denote the matrix

formed by setting all elements of R∗ to zero except those
where (h, p) ∈ C.

If there exists an element (h, p) ∈ C such that rh(R∗
C
) <

rh(D) − L, cp(R∗
C
) < cp(D) − L and R∗

C
(h, p) < D(h, p),

then it is clear that we can form a new rejection matrix
R′ by (i) setting R′(i, j) = R∗(i, j) for all (i, j) != (h, p);
(ii) setting R′(h, p) = R∗(h, p) + δ for some δ > 0; and
(iii) reducing one or more of the non-critical elements of
the line R′(h, ·) by a sum total of δ, and doing the same for
the column R′(·, p). The total rejection of R′ is less than
R∗, contradicting the assumption that R∗ is a minimum-
demand matrix.

We must therefore be able to construct a decomposition
R∗ = A∗ +Q∗, where Q∗ satisfies the same properties as Q

(if we replace A by A∗), and A∗ is a matrix that satisfies
the constraints of the MAXREJFLOW problem, and at
least one of (5)-(7) with equality. With this decomposition,
we can write the following expression for |R∗|:

|R∗| =
∑

h

∑

p

(A∗ + Q∗) (21)

= |A∗| +
∑

h∈Or

(rh(D) − L − rh(A∗))

+
∑

p∈Oc

(cp(D) − L − cp(A∗)) (22)

=
∑

h∈Or

(rh(D) − L) +
∑

p∈Oc

(cp(D) − L) − |A∗| (23)

Since A∗ satisfies one of the constraints for each (h, p) with
equality, the matrix Q∗ can contribute additional rejection
on either the row h or the column p, but not both, so we
do not double-count rejection in (22).

Now consider an alternative, arbitrary rejection matrix
R that can be decomposed as R = A + Q. This is always
possible because a water-filling procedure (such as FMA)
can be used to identify a satisfactory matrix Q. Since A

also satisfies at least one of the three latter constraints of
MAXREJFLOW with equality, an equivalent expression to
(23) is possible with |R| replacing |R∗|, and |A| replacing
|A∗|. The first two terms are only dependent on D and
L, and |A| > |A∗|, since A is the maximum flow solution
satisfying the specified constraints. It follows that |R| <
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|R∗|, contradicting the assumption that R∗ is a minimum
rejection matrix.

C Robustness Analysis

Gain margin and phase margin only measure robustness
with respect to model parameters, which are independent
of frequency ω. Since systems perform differently at dif-
ferent frequencies, we need to find a tighter bound on the
phase and gain margins with respect to the frequency of the
system. As a widely accepted and more useful robustness
indicator, we define M ! maxω |Hr(jω)|, the maximum of
the closed-loop transfer function. The following relation-
ships establish lower bounds on φM and GM [24]:

GM ≥ 1 +
1

M
(24)

φM ≥ 2sin−1

(

1

2M

)

(
1

M
(25)

In the proposed control model the major error occurs
due to the mismatch between the dead-time model and the
actual delay experienced by the data. This may cause the
system to cross its stability limits. Suppose that the dead-
time of the actual plant exceeds the dead-time T in our
model by the quantity δ. This error introduces a phase lag
of ωδ at frequency ω. Therefore, the system remains stable if
δ < φM

ωc
, where ωc is the crossover frequency at which the

open-loop system gain drops to unity. When (25) is sub-
stituted into this equation, a more conservative condition
δ < 1

ωcM
is obtained.

For the transfer function obtained in (8) M = 1, and the
above condition is transformed to δ < 1

ωc
. Since it is not

possible to obtain the crossover frequency for our system
explicitly (due to the time delay in the transfer function),
one approach is to represent the dead-time as a first-order
Padé approximation [24]:

e−Ts =

(

1 − T
2

s

1 + T
2

s

)

(26)

Then the crossover frequency can be approximated as ωc =
1

T+ 1

xijKr

. Substituting this equation into δ < 1
ωc

leads to:

δ < T +
1

xijKr
(27)

This equation confirms that our designed controller is stable
for errors as large as the actual dead-time. It also indicates
that smaller values of the gain Kr make the system more
resilient to error, but this of course has the disadvantage of
slowing the system response.
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