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Abstract— We present and evaluate a reinforcement learning-
based RWA algorithm for all-optical networks subject to phys-
ical impairments. The technique is suitable for decentralized
networks and is compared with other techniques with similar
computational complexity.

I. I NTRODUCTION

All-optical networks are a promising technology to provide
flexible network management and high rate data transmission
by keeping signals in the optical domain from end-to-end
without resorting to electronic conversion or regeneration at
the network nodes. However, due to the absence of electronic
regeneration, signals are subject to accumulating physical
impairments during propagation and perfect physical layeris
no longer a valid assumption – measuring Quality of Trans-
mission (QoT) through bit-error rates (BER), this means that
lightpaths’ BERs (a lightpath is a combination of a route anda
wavelength) can reach values beyond acceptable values as set
by the network manager. Routing and Wavelength Assignment
has emerged as a cross-layer technique to route calls in the
network over lightpaths accounting for physical impairments,
in order to decrease the probability a call is blocked because
of the lack of available resources or because establishing the
lightpath would cause this lightpath’s or another lightpath’s
QoT beyond the acceptable threshold [1]. In this paper, we
propose to use a reinforcement learning technique in a dis-
tributed fashion, to choose a tentative lightpath among a set
of alternates based only on the past events seen locally. We
compare by simulations the reinforcement-learning technique
based algorithm with other RWA algorithms that have similar
computational complexity.

Alternate routing is known to perform better than fixed
shortest path routing in circuit switched routing. Moreover,
it was shown in [2] that the time to compute a lightpath and
establish a call in an all-optical network with is critical;if the
call establishment procedure takes too long then the network
state may change during the lightpath computation/call estab-
lishment and additional blockings due to outdated information
can result. Reinforcement learning has been used in the past
to perform routing in a decentralized fashion in telephone [3],
circuit-switched (e.g., MPLS) [4], and all-optical networks [5],
but QoS impairments have never been accounted for. We
propose a routing procedure derived from alternate routing
(wavelength assignment is assumed to be “first fit”, arbitrarily)
where the chosen route for each call is drawn probabilistically

from a set of alternates and the probability with which a
route is chosen is updated using a reinforcement learning
technique based only on past, local information. For each
call, our technique selects only one route to minimize the
computations needed to verify the route meets the constraints
(resource availability and acceptable QoT) and hence the time
to establish the call. It is therefore crucial that the rightroute is
chosen so as to minimize the overall call blocking probability.

With reinforcement learning-based routing, each node
makes decisions to route calls based on past events (blocking
or acceptance of prior calls) observed locally, instead of using
the network state. The goal of reinforcement learning is here
to decrease the network’s call blocking probability by learning
online what decisions cause blocking or establishment. Such
event-based (as opposed to state-based) routing is desirable
because state-based routing imposes high overhead on the
network to flood the network status to each node at all time.

II. SYSTEM MODEL

We assume the absence of wavelength conversion and of any
electrical regeneration, such that the network we consideris
purely transparent. When a call arrives, it must be routed over
a lightpath. Calls can be blocked for two reasons: (wavelength
continuity constraint) if, on any route, no wavelength is
available from end to end between source and destination
then the call sustainswavelength blocking; (QoT constraint) if
no lightpath that meets the wavelength continuity constraint
yields an acceptable QoT then the call is rejected due to
QoT blocking. The overall blocking probability of the network
is the probability that a call is blocked due to inability to
simultaneously meet both constraints.

We assess the QoT of a lightpath via its BER, which
depends on the physical impairments sustained by the
lightpath during its propagation though the network. We
present the lightpath model used throughout this paper
in Fig. 1. At the source node, a laser transmits an On-
Off Keyed (OOK) signal over a given wavelength. The
signal then propagates in nodes (OXCs), fiber spans and
optical amplifiers until it reaches the detector, modeled as
a square-law device followed by a filter (filters are not
depicted on the figure.) The BER of the signal can then be
determined from the distributions of the received “0” and
“1” samples. More specifically, designing byµ0 and µ1 the
means of the received “0” and “1” samples, respectively,
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Fig. 1. Model for a lightpath in an all-optical network, and sources of physical impairments: ISI (fiber spans, photodetector), ASE noise (amplifiers),
interchannel crosstalk (fiber spans), node crosstalk (OXCs).

Algorithm 1 RWA(s,d)
Initialization (offline):
Rs,d: predetermined set of alternate routes between the source
s and the destinationd.
P s,d

j = 1/|Rs,d|: prob. routej is selected (1 ≤ j ≤ |Rs,d|).
Output: Lightpath = pair (route, wavelength).

1: Select a routeRs,d
i ∈ Rs,d with probability P s,d

i

2: LP = ∅, Ds,d
i ← Ds,d

i + 1
3: Reward= 0
4: repeat
5: Select sequentially tentative wavelengthλ
6: Request establishment ofLP′ = (Rs,d

i , λ)
7: if LP′ satisfies both wavelength continuity and QoT

constraintsthen
8: LP = LP′

9: Reward= 1
10: end if
11: until λ > C or LP 6= ∅
12: P s,d ← UPDATE PMF(P s,d,Rs,d, i, Reward)
13: returnLP

and by σ0 and σ1 their respective standard deviations, we
define the Q factor asQ = (µ1 − µ0)/(σ0 + σ1). Then,
using a Gaussian assumption [6], the BER of the signal is
BER = 1/2 · erfc(Q/

√
2). During its propagation, the signal

sustains a number of physical impairments which contribute
to decrease its BER. We consider four physical impairments:
Inter-Symbol Interference, amplifier noise, interchannel
crosstalk, node crosstalk. Inter-Symbol Interference (ISI) and
amplifier noise (ASE noise) depend only on the hardware
(receiver filter, number of amplifiers, . . . ) present over the
lightpath. On the other hand, interchannel crosstalk (resulting
from the nonlinear interaction within fiber spans of several
signals co-propagating on different wavelengths) and node
crosstalk (resulting from optical leaks in OXCs, for instance
due to imperfect demultiplexing) depend on the network state.
Indeed, crosstalk is generated by the interaction of several
lightpaths. In this work, we use the physical layer model we
presented in [1]. In particular, we refer the reader to [1] for
efficient techniques that relate the impact of ISI, ASE noise,
interchannel and node crosstalk toµ0, µ1, σ0, σ1 and hence
BER.

Algorithm 2 UPDATE PMF
Inputs:P ,Rs,d: defined in Alg.RWA; i: index of the alternate
route to update; Reward: binary reward value.
Parameters:G andB: learning rate parameters.
Output: updated distributionP .

1: if Reward= 1 (route i was accepted: increasePi) then
2: Pi ← (1−G)Pi + G
3: ∀j 6= i : Pj ← (1−G)Pj

4: else
5: (routei was rejected: decreasePi)
6: Pi ← (1−B)Pi

7: ∀j 6= i : Pj ← (1−B)Pj + B
|Rs,d|−1

8: end if

III. ROUTING ALGORITHM

We propose a decentralized routing algorithm where, for
each call, a route is selected among a set of candidate
routes using reinforcement learning techniques. Wavelength
assignment is left out of the scope of this paper and is assumed
to be “first fit”, that is, for a given candidate route, wavelengths
are selected in a fixed order. Here, we focus on the routing
part of Routing and Wavelength Assignment.

Routing (and wavelength assignment) is performed by
Alg. 1 (“RWA”). Before network utilization, a set of alter-
nate routesRs,d (e.g., theK-shortest paths for someK)
is predetermined for each pair of nodes(s, d). Furthermore,
each routeRs,d

j ∈ Rs,d is associated to a probabilityP s,d
j

(
∑

j P s,d
j = 1). To achieve decentralization, Alg. 1 is in-

stantiated for each(s, d) pair of nodes. During network
operation, when a call (lightpath demand) arrives for pair
(s, d), nodes draws a route among the setRs,d according
to the distribution(P s,d); that is, routeRs,d

i for a given i

is picked with probabilityP s,d
i . Then, for each wavelength

λ, the lightpath(Rs,d
j , λ) is tentatively established. This can

be done by means of an appropriate protocol such as RSVP-
TE in MPLS networks. During tentative establishment, the
wavelength continuity and the QoT constraint are checked
(again, this can be done in a decentralized manner by the
nodes on the tentative route). If the lightpath meets both
constraints, it is accepted and the distribution(P s,d) is updated
according to Alg. 2 (UPDATE PMF). If no wavelengthλ
permits lightpath(Rs,d

j , λ) to meet the constraints, then the
call is blocked.
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Fig. 2. NSF topology used for the simulations. The weights onthe links
are the number of 70km spans. We simulate the network operation for 5000 s
for various offered loads and repeat each experiment 8 timesto obtain 95%
confidence intervals.

Notice here that, in order to reduce the amount of com-
putations, we require that only one tentative route can be
picked, thereby limiting the number of tentative lightpaths to
the number of wavelengths. Other variants of this scheme,
e.g, allowing drawing another route (again according to the
distribution P s,d) if all tentative lightpaths for the route
originally picked are blocked, are possible and left for future
work.

We now give more details about the reinforcement learning
algorithm (Alg. 2) we use to update the distributionsP s,d:
“Linear Reward-ǫ Penalty” (LRǫP) [7]. When a call is accepted
on a routei, LRǫP rewards call establishment success by
linearly increasing the associated probabilityP s,d

i . When a
call is rejected, LRǫP penalizes call establishment success by
linearly decreasing the associated probabilityP s,d

i . The algo-
rithm is parametrized by two gainsG andB (corresponding,
respectively, to reward and penalty), as can be seen in Alg. 2.
LRǫP is known to perform well in non-stationary environments
and avoids remaining stuck in absorbing states, and is therefore
adapted to the setup described in this paper.

IV. SIMULATION RESULTS

We evaluate the RWA technique on a scaled version NSF
topology depicted in Fig. 2 (in the original NSF network,
distances are too long to allow transmission with acceptable
quality between all pairs of nodes even when only ISI and ASE
noise are present.) All links are bidirectional and can carry up
to C = 8 wavelengths per direction. The physical parameters
are chosen to model large-scale metropolitan or medium-scale
regional networks (SMF fiber, full post-dispersion compensa-
tion, 6 dB noise factor amplifiers, 2 mW super-Gaussian NRZ
pulses modulated at 10 Gbps, 25 GHz grid spacing) and the
maximum acceptable BER is set to10−9. Calls between each
pair of nodes(s, d) arrive according to a Poisson process with
rate ℓs,d and call durations are exponentially distributed with
unit mean, such thatℓs,d is the offered load in Erlang froms
to d. The set of alternate routesRs,d is fixed to the set of the
4 shortest routes (in distance) betweens andd. The learning
parametersG andB are set to0.01 and0.001, respectively.

In Fig. 3, we compare the algorithm presented in Section III
(diamonds) with two other RWA algorithms: shortest path (the
only alternate path is the shortest path between any two nodes;
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Fig. 3. Blocking probability for the downscaled NSF topology.

circles), and alternate-uniform where an alternate route is
picked randomly uniformly (instead of being picked according
to the load sharing factors; squares). Alternate-random thus
does not implement any reinforcement learning technique. All
three algorithms have the same “computational complexity”in
the sense that they put the same burden on the network when
a call arrives to check whether the two constraints are met;
indeed for each algorithm a single route is chosen for each
call arrival, hence the constraints for at mostC lightpaths are
checked per call arrival. Alternate-uniform yields lower call
blocking probabilities than fixed shortest path event if a single
alternate is picked randomly. Our proposed algorithm performs
better than alternate-uniform for the higher loads, and similar
to alternate-uniform for the lower loads.

V. CONCLUSIONS

We applied a reinforcement learning technique, and more
specifically, the LRǫP algorithm, to the problem of low-
complexity, distributed route selection in all-optical networks
subject to physical impairments. The technique is shown by
simulation to perform well. This paves the way for more
research, including studying the convergence behavior of the
technique to changes in the network conditions such as link
failure or modifications in the offered loads.
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