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. INTRODUCTION

The problem of traffic monitoring and parameter estimatismg camera networks has at-
tracted a lot of attention during recent years. This is du¢htofact that many large camera
networks have been built along roadways for operator aidsfficc monitoring. These camera
networks supply traffic monitoring centers with large antswf real-time data. This information
source can be readily used to automatically extract trafficameters, such as its intensity
or velocity, without any additional costs involved just bging image processing techniques.
However, in many practical situations this traffic estiroatigoal is not so easy to achieve
as it might seem from the first glance. For example, data frameras along the roads are
often compressed to a very low resolution and low frame radeors before they are sent to
traffic monitoring center. Thus data available to potenéat users in the person of image
processing and computer vision community is often of vewy tpality. This distinctive feature
of the problem often makes it impossible to apply existingipater vision techniques to traffic
estimation directly. Notwithstanding the potential priks outlined above, most of the work in
the field of traffic estimation is made under the assumptidrisigh resolution and high frame
rate video available for optical flow analysis and featurgaetion. These methods mostly rely
on geometrical methods for the extraction of traffic spearors and availability of good vehicle
models that can be used to detect and even identify cars oro#lie All these features move
aforementioned methods down into the class of determingdgjorithms that can deal only with
cases when data are not noisy, highly informative and abjetinterest transform into sensor
data obeying almost completely deterministic relatiopdetween physical reality and sensor
output.

In this report we study some properties of particle filter astadistically consistent tool for
multiple frame low-resolution video information fusion.eVdpply it to vehicle movement model
parameter estimation. Some experimental results presamtde report show that particle filter
is able to track and detect moving objects even if very logseii@ptions are made regarding the
appearance of the objects and the values of motion modemngteas. These results indicate that

particle filter is able to learn movement model of a vehiclgeobeven if availability of good
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prior information regarding the values of these paramatersot assumed. Thus the estimated

parameters of the motion model such as velocity can be usedaffic analysis.

A. Related work

Santini [1] suggests that most of the information regardraffic behaviour is enclosed in the
differences between adjacent frames. He notes also thagjeean camera viewpoint and lighting
conditions have rather profound effect on image differenétowever, he concludes that changes
due to traffic i. e. due to cars appearing and disappearimg iintages have local nature, whereas
changes in lighting conditions and camera position caustigedichange in variance of inter-frame
differences. Santini proposes to use 2-D inter-frame samatiance as a sufficient statistic for
traffic flow estimation system. To assess the global statubeotraffic using the measurements
of traffic from separate cameras located at different cozss he uses network tomography
approach. The drawback of this approach is that it proviadg qualitative characterization of
the traffic flow.

An example of work dealing with data driven camera calilmatand velocity estimation is
given in [2]. What makes this work interesting is that insteaf estimating motion vectors
necessary for traffic velocity estimation from coded imagégossibly low quality Mbonye
and Ferrie [2] use partial decoding of MPEG stream to use anotiectors readily available
within this stream. This procedure relies on an existingpatgm by Coimbra and Davies [3]
that is able to extract one motion vector for edé¢hx 16 MPEG macroblock. The application
of this algorithm results in fast extraction of smoothed imotfield. Kalman filter is used to
track the velocity field estimate from frame to frame. Howe¥er this method to work properly
some assumptions regarding the road structure should Roldexample, there should be two
lanes with the opposite directions of traffic flow. In someesasuch assumptions may be too
restrictive.

The algorithm proposed by Dailey et al. [4] belongs to theslaf geometric algorithms relying
on the availability of high frame rate video streams. Itsmmaalue is that before this algorithm
was introduced little work had been done on velocity estiomatising un-calibrated cameras.

Camera calibration is very hard to handle in practice as wastgd out in [4]. This is especially
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true when dealing with highway cameras that change thewpaits several times every day
to allow operator to better observe traffic conditions. Taligorithm overcomes the difficulty
by inferring calibration parameters directly from traffimages using relationship between the
distribution of car sizes in pixels extracted from image usgte and some a priory known
distribution of car sizes in meters. It uses three successawnes to form the differences between
adjacent frames and extract edges using Sobel edge defEztestimate the speed of moving
cars, relationships between bounding boxes in three subsedrames are established. This
means that overall this algorithm requires the moving dbjede present in five consecutive
frames. The weak spots of the algorithm are as follows. JFrds necessary to make direct
correspondence between object features appearing in stesequent frames. These features
may be very unstable because of the non-rigidity of the nmottamera jitter and noise, especially
when low-resolution video is used for feature extractioecdhd, some universal car length
distribution that is applicable to a wide variety of traffiorclitions should be specified.
Condensation algorithm was introduced in [5]. It belongsthe class of particle filtering

algorithms that are capable of approximately solving galnBayesian state estimation problem.
This algorithm is capable of tracking moving objects in iragequences using static feature
extraction. However, it relies on availability of good ialization for object locations and
parameters of movement model. This algorithm by itself it sigtable for movement model

parameter estimation.

B. Outline of the report

This report is organized as follows. Section Il reviews tkeegyal nonlinear state-space model
that is adopted in Bayesian state estimation frameworkjgmfiltering as an efficient Monte
Carlo approximation of Bayesian solution to state estiomgtand discusses feature extraction
mechanism, dynamical and observation models used in Ceatlen algorithm. Section Il pro-
vides a concrete statement of the particular problem and/atimn behind this study. Section IV
outlines modifications to the standard particle filter thatke it possible to use this algorithm
as a vehicle velocity estimator. Section V describes sitrariaexperiments and discusses the

results. Section VI provides concluding remarks.



Il. BACKGROUND
A. Nonlinear state-space model

Many problems in object tracking may be solved by the appboeof a state-space estimation

framework [5]. The state-space estimation approach iscbasethe following signal model:

Xy = fo(Xem1) + vy 1)
yi = fy(x) +uy (2
wheret = 1,2,... is the discrete timex; denotes the state vector, and indicates the

measurement obtained at time The state of the system evolves according to the stochastic
difference equation (1) characterized by the nonlinearpmapf, : R* — R* and excited by
white random noise;. The state vectax;, is observed through the measurement vegtpwhich

is functionally related tox, via the functionf, : R* — RY and corrupted by white random noise
u;. This framework can be applied to Computer Vision objectkiag problems if we assume
that equation (1) describes dynamics of some object in theesee of images and equation
(2) provides the link between the unobserved statand feature vectoy, we extract from the

image sequence.

B. Particle filtering

As discussed in [5], a practical Bayesian approach to thienagsbn of unobservable state
x; from the collection of measuremengs; = {yi,...,y:} available up to time consists
in sequential construction of prediction and update desssifThis approach is very similar to
Kalman filtering concept except for the fact that very loossumptions regarding nature of
noise and transition functions are made.

To derive recursive Bayesian filtering equations we needippgse that posterior distribution
from the previous filtering step(x;_1|y1.—1) is available and we can use it to construct a prior

density for current filtering step by prediction:

p(th’Lt—ﬂ = /p(xt|Xt—1>p(Xt—1|YI:t—1>dXt—1 (3)
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It should be noted, however, that strictly speak(e,;|y:.—1) iS not a prior density at time
stept. It is more reasonable to consider this density as a prediaf state distribution from

posterior density using state dynamjgs;|x;_;) arising from state transition equation (1)

p(Xt|Xt—1) = /p(Xt|Xt—1aVt—l)P(Vt—1|Xt—1)th—1 (4)

Using Bayes rule and Markov assumption embodied in equdfiprupdated posterior density

of state can be obtained after measuremerttas arrived

Here normalizing constant(y,|y:..—1) has the following form:

P(yelyres) = / P(yelx (el et )dx, 6)

Likelihood p(y:|x;) of statex, can be evaluated using known measurement noise distnibutio

pyelx:) = / p(31/e, ue)p(u)du, @)

Equations (3) and (5) constitute the basis of recursive Bayestate estimation framework.
However, closed form solutions to these recursions can tnedffor a limited class of state-space
models including linear Gaussian models and finite stadeespepresentations of the Markovian
model (1). In all other cases approximate numerical metmodst be used.

Monte Carlopatrticle filtersbelong to the class of sequential approximation algoritbapable
of solving (approximately) the problem (3), (5) by directnmerical simulation [6]. In this class
of algorithms, the filtering distribution (5) is represeshtiey the empirical point mass function

of the particle set

N
p(xe|y1e) = Zwiﬁ(xt —x!) Zwi =1 (8)
i=1 <

whered(-) is the Dirac delta function and denotes the normalized weight of each particle

xi. The particle filter is initialized with a random sampi&}}¥, drawn from a known prior
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distributionp(x,). Subsequent propagation of this particle set using thetimsa(3), (5) yields
at every time step the approximation of state vector by areliscstatistical measure of the form
(8). Given the approximation of posterior distribution imetform of pmf the estimate of any

moment of the posterior can be expressed in the followinmfor

E{g(x)lynt = > wig(x}) (9)

=1

The assumption in (8) is that it is possible to draw samplesctly from posterior distribution
p(x¢|y1.¢). However, in most practical situations it is impossibleafts why in practice particles
are drawn from some easy to sample distributjoxy|y,.;), which is called a proposal distribu-
tion. The required property of proposal distribution isttita support should be at least equal
to the support of the true posterior distribution. It is pbksto include proposal distribution
into particle propagation steps (3) and (5) and derive afarlsequential particle weight update
based on Markovian assumption and importance sampling:

Py |xe)p(xe|xi-1) (10)
CI(Xt ‘Xom YI:t)

Wy = Wi—1

This technique for particle weight update is called Seqgakhmnportance Sampling (SIS). It is
shown for example in [6] that the unconditional variance aftigle weights grows with time
when SIS is used to update weights. This in turn leads to tbeease of the variance of state
estimate. The solution to this problem was found in the foff8ampling Importance Resampling
(SIR) particle filter. In SIR particle filter a resampling gtes introduced to substitute particles
with low importance weightsv! by the particles with high importance weights. Resampling
transforms current pmf approximatids:, w:}Y , with normalized weight$w:} , to the equally
weighted pmf{x;’, =} . Here the probability of each particle representation aft@dor state
pdf before resampling stefixi}Y , being resampled and included into particle representation
of posterior state pdf after resampling stég:‘}¥, is equal to the value of corresponding

normalized weight{wi}Y,.

C. Particle filtering in image processing: Condensation
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1) Feature extraction:Feature extraction is an indispensable part of the Contiensal-
gorithm. At every time step features are extracted from ki istege. The sequence of such
features is then tracked using observation and dynamicsitdenintroduced in section II-B.
The authors [5] propose to use a B-spline model to parametdéracked objects. Within this
framework objects are modeled as curves that can be panareetén terms of B-splines in the

following manner:
r(s,t) = (B(s)- Q%(t),B(s) - QY(t)) for 0<s<L (12)

whereB(s) = (Bi(s), By(s), ..., By, (s))! is a B-spline basis vecto@* and Q¥ are B-spline
control point vectors, and. is the number of spans. Parametrization in the form (11 wello
representation of an object as a deformation of some templatve.

2) Dynamical Model:Object dynamics in Condensation algorithm are modeledrdaog to

a linear model corresponding to the following 2nd orderet#hce equation:

) ) X, i
x,—X=A(x;_1 —X)+Bv, , x;= (12)
X

wherex is the mean value of the state vectdr,is the deterministic transition matrix, aisl is
the matrix defining the way in which random excitationinteracts with the deterministic part
of the dynamic system. It can be seen that model (12) is aapsase of non-linear model (1).
Linear model was chosen by the authors because it is simple asriety of techniques exists
for learning it on-line.

3) Observation ModelThe observation model that is used in Condensation algoiiticludes
a probabilistic mapping between point features in the image B-spline curve parameters. In
practice it is assumed that there exists some mappingbetween measured featurgés) and
normals to the curve(g(s)) such that a discrete approximation to the 2-D likelihoodction

p(y|x) can be written in the following form:

plyx) o< exp (—ﬁ > Fyi(sm) = r(sm); u)) (13)
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Here s,, = m/M, u = 20log(1/v2rac) is the spatial scale constant, arfdis defined

as follows f(v; ) = min(v?, u?). This parametrization of likelihood function is obtaineg b
the authors using the assumptions that the clutter can beelethés a Poisson process and
measurement is an unbiased estimator of the true featuedidachaving Gaussian pdf and
varianceo? = rM. It should be noted that the measurement process paraatietnizised in
the Condensation algorithm does not take into account tttetliat tracked objects move from
frame to frame. On the one hand, this static feature extma@pproach is reasonable because
it is not affected by the effects of camera movement when thelevscene may be moving. On
the other hand, vision system of many animals that chaseraftging prey does use movement
information for feature extraction and object detectioar Example, frogs are almost blind if
objects in the scene do not move. Roughly speaking, frogsearonly those objects that move
because of the peculiarities in their retina scanning @®d® be precise, because of the absence
of this scanning process. Nevertheless, and may be in mapects owing to this, frogs are
excellent hunters. In this sense, static feature extnaciém even be considered a counterintuitive

measure to detect moving objects.

[1l. PROBLEM STATEMENT AND STUDY MOTIVATION

In this report we would like to explore the potentials of atde filter as a standalone
velocity estimator, moving object tracker, and detecton iteresting application for such
an algorithm would be vehicle traffic estimation in low reg@n image sequences obtained
from camera networks that exist along many highway lanesaBse of the low quality of
image sequences that are often available for processintactige, static feature extraction and
object detection in such sequences may be difficult and iabtel More than this, standard
approaches to velocity estimation in traffic data often usengetrical velocity measurement
based on calibrated cameras and Kalman filter relying on &&ausneasurement error to smooth
measurements. In low resolution images camera calibratimhgeometrical velocity estimators
may be very unreliable and measurement error may have venytailed distribution. In this
situation even the applicability of Kalman filter may becomeestionable. On the other hand,

particle filter is a statistically consistent procedure riaultiple frame information fusion that is
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Fig. 1. Concentration of particles in the areas supportiingady tracked objects prevents the detection of an objeatyn
entering the scene. Taken from [5] in a modified form

necessary in situation when every frame or measurementblf hay bear little information.
The core benefits of using particle filters for tracking andap@eter estimation in low resolution
video sequences are their ability to automatically rec@fesr missing measurements and track
loss, inherent ability to track multiple targets simultansly within single filter, and applicability
of the filter to any observation model.

Thus it is of interest to see how particle filter can handlepeter estimation and tracking of
multiple moving objects in low resolution video scenario.de able to detect and track moving
objects we would like to use some inter-frame informatiosagrsulating the assumption that
objects are moving, i.e. change their position from framgame. In this case observation model
might represent the likelihood of every pixel or a group ofgé being a part of a moving object
footprint. If particle filter is able to generate the spiképosterior density around moving objects

in feature space then moving object locations as well as mewne parameters can be extracted
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directly from the particle approximation to posterior dndHowever, standard particle filtering
algorithm that is widely known in image processing underribene Condensation assumes that
a good initialization for object locations and movement elod available. Once it converges
to tracking objects already present in the scene it is oft@nable to take into account objects
newly entering into the scene. This happens because oltedtare already tracked concentrate
most of the particles around themselves thus making newcbbietection very improbable.
This situation is illustrated in Fig. 1 showing the propagatof the discrete posterior density
approximation resulting in the blanking of a new object.

In this report we present a particle filtering algorithm thaércomes the problem of unknown
movement parameters and absence of good initializationmfoving object locations by the
application of a specific sampling strategy and movementahpdrameter estimation. As a
byproduct of this modification we obtain and study the pracedor vehicle velocity estimation.
This velocity estimator can then be used for traffic intgnsissessment. In traffic intensity
assessment we can use the ratio of instantaneous velocitiyetonaximum traffic velocity
estimated during long periods of traffic analysis to chamamé¢ current traffic state. This kind
of traffic state characterization does not require camelibration that can be difficult or even

impossible in many situations.

IV. PARTICLE FILTER FOR VELOCITY ESTIMATION
A. Dynamical model

We modify the linear dynamical model outlined in equatiof)(in the following way. First
of all, we do not assume that any prior information is avddads to what the mean state vector

x might be. Thus our model takes the following form:

x; = Fx; 1 + G§; (14)

Second, as we are interested in velocity estimation, tlgetatate vector is appended with the

vector of unknown velocities. This technique is often usegbint recursive state and parameter
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estimation [7]. Thus the exact parametrization of (14) isalews:

Tt 1 010
T 01 01
Xy = 7 s F = (15)
U1y 0010
Vo 0 001
0
&1t 0 1
& = , G= 2 (16)
Eat 1 0
0 1

Herex,, andz,, arex andy coordinates of the target correspondingly; andv,, arez and
y velocity components, and, ; and &, arexz andy acceleration components.

Each particles that is used in tracking = 1,..., Ny is then assigned a state vecmﬁi)
corresponding to some pixel neighborhab@gand tracking is performed on a neighborhood by
neighborhood basis. We assume that objects perform rigitbman feature space. Although in
general this is not true in practice, our experiments shaw phrticle filter is still able to capture
average pixel dynamics during the tracking of non-rigidlpuimg object footprints in feature
space. Which means that even if the object’'s appearanceatnrée space changes randomly
from frame to frame, patrticle filter is still able to estimatgocity of this object with reasonable

estimation error.

B. Image preprocessing

As was mentioned earlier, in our work we do not rely on a sfatiture extraction mechanism.
Instead, we try to use the inter-frame information to estamnhe likelihood of each pixel being a
part of moving object footprint. As the direct identificatiand tracking of objects in low quality
images is often impossible we first transform the sequend¢beoimages into the feature space.
The result of feature extraction should show how probables ithat pixel with coordinates
(z1,22) pertains to some moving object with state vectgr = [29, 23, v?, v3]T. Here v?, vg

are r and y components of its velocity vector. We assume that the iitiered each pixel
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y(x1,x2) can be modeled as a Gaussian random variable with some unkmma&n ., and
varianceo?: y(z1,z2) ~ N (pp, 07). We assume also that if pixel with coordinates, =) in a
sequence of frames pertains to a still object then the mgahor this pixel in these frames is
the same. If, however, this pixel pertains to the footprihtkanoving object, the mean of this
pixel corresponding to the frame at the time instant1 is u;—l and Mé at the time instant.
Therefore, the best feature extraction procedure wouldeément an optimum statistical test to

differentiate between the two hypotheses

Hy:ppy = ! (17)
Hy oy, # oyt (18)

given the measurements
Yi (w1, 9) = (21, 22) 4 C (21, 72) (19)

where((z1, z2) ~ N(0,02) is Gaussian random variable with zero mean.

However, it is known that the best optimum (uniformly mostwveoful) statistical test to
differentiate between the two hypotheses (17) whgnt and !, are arbitrary and unknown does
not exist [8]. The following suboptimum test statistic aretigion rule that are equivalent to the

frame differencing and thresholding are used for featuteaetion:

11, 22) — Y1 (21, 22))?
A(ys(w1, m2), ye1 (21, m2) |21, 79) o< 1 —exp <_(yt( : 2)2_3:721( 1,2) ) (20)
p

A(yt($1,$2)7yt—1($1,$2)|$1,9§2) 2 m (21)

C. Observation model

After the feature extraction, what we observe is the binamgge that is formed as a result

of the test (21) performed on successive frames:

1t A(ye(@r, 22), (21, 2) |21, 22) > m
(w1, 1) = t t (22)

—1 it Aly(z1, 22), yeo1 (21, 22) |21, 22) <M
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Simply following the observation model (13) used in Condgios algorithm we can reformulate

it to fit our concrete case as follows:

: 2
2N My Z (z(x1, x2) — s(21,72)) ) (23)

v x1,x2EN;

p(z(x1, x2)|s(x1, x2), 21, T2) X €xp (—

Where My is the number of pixels in the neighbourhadg, A, is the width of the likelihood
kernel ands(z1, z2), z1, 22 € N; is the true appearance (footprint) of the tracked objeceatifre

space. It is clear that (24) can be reformulated in a moreisengay:

pletan o)l aa)oan) xexp (~ (1= 1) (24)
where
p:MLNi Z s(xy, x9)z(x1, x2) (25)

1,22EN;

is the generalization of the so called Hough Transform (WWhens(zy,25) =1 Vay, 29 € N,
(25) exactly represents the idea of HT. Also, (25) can be idensd as an expression for a
correlation coefficient betwees(z,, z5) and z(z1, x2).

It should be noted that the conditional distributipfx(z, xz2)|s(z1, x2), x1, z2) IS not at all
Gaussian and (24) is at best an approximation of the realnadisen density. However, our
experiments show that even with this rough approximationlfervation density particle filter
works reasonably well. More than thig(z(z1, z2)|s(z1, x2), 21, 22) can be calculated exactly,
given all the previous assumptions and comparison of thes fltth optimum observation density

and approximation (24) would be an interesting thing to do.

D. Sampling scheme

Often in practical particle filters and also in Condensadéitgorithm, transition density(x;|x;_1)
is picked as a proposal densitix; |y;.¢). In our experiments we use a slightly modified sampling
scheme that is depicted in Fig. 2. The difference here is tikatdistinct particle clouds are
used to track and detect moving objects. As was mentiondéreagxisting moving targets
attract most of the particles to their locations preventimg exploration of other spatial areas

of the image sequence. To overcome this difficulty in theirggtivhere no prior information is
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Keep N particles

Movement
based particle
t
generator Ny
\ 4
Evaluate
Measurement »| likelihood » Resample
and normalize | N7+ Np P
A
Uniform Np
cloud particle
generator

Fig. 2. Sampling scheme that is used in particle filter withudtaneous detection and tracking of moving targets

available regarding the location of every new object agpgan the tracked scene we introduced
a separate search cloud uniformly distributed over theemtiage area. This cloud supplements
tracking cloud that contains the information about thosgab that are already tracked. Both
clouds undergo particle weight evaluation using obsemmatnechanism outlined in section V-
C. In general they contain different number of particles. was mentioned earlier, the track
cloud containsV; particles. At the same time, search cloud contaiiasparticles. After weight
evaluation and before weight normalization weight vectfroth clouds are appended. Thus
during the resampling process particles with significantghvs originating from the search
cloud substitute those with low weights originating frone ttrack cloud. Generally speaking,
the mixture of these two clouds can be implemented by theogpiate choice of the proposal

distribution. However, it might be more intuitive to imagithis mixture as two dedicated clouds.

E. Velocity estimation

We have already mentioned earlier that velocity of the mgwihject can be estimated by the
particle filter if this velocity is included into the statecoter as an unknown variable [7]. This
technique is sometimes called sample roughening. It wasgrezed in [7] that the application

of sample roughening to static parameters of the model may ¢éften does) cause inadequate
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diffusion of posterior particle distribution leading toetharge variance of velocity estimator and
even filter divergence. Therefore, it might be beneficialryoand treat velocity as an unknown
parameteid(z, o) in transition density. Wheré(z,, z,) is a matrix, that is, it is defined as a
field over the entire image area. We further assume that apaimy (1, x2) 0(z1, x2) assumes

some arbitrary value independent of all the others. A valay wo estimate this parameter then

is to find the argument maximizing evidence [9]:

pe(}’tb’m—l) = //p(Yt|Xt)p9(Xt|Xt—1)p€(Xt—1‘ylzt—l)dxt—lzt (26)

One way to deal with such recursive maximization is to cogristde Monte Carlo approximation

of (26) that is a simple sum of unnormalized importance wisigh

Po(yely1e-1) Z wt (27)

Using the properties of Monte Carlo density approximatia ean show that ad'; — oo, the
maximization of (27) is almost surely equivalent to the maixation of (26). Thus we can use

the following problem statement to find a recursive estimafa):
Nt _
0, = arg me?x Z wt(z) (28)

Now, if we recall the way in whichd comes into the play imy(x;|x;—1) (14) and apply the
velocity field independence assumption, then instead of \{g8can solve a simpler problem:

Or(zq,29) = arg@r(nax)wt( )(xl,xg) (29)
t(L1,T2

Where x1, 2, are x,y components of particle state vector. To solve (29) using télddarlo
technique, we can approximate the filtering dengitix; 1|y1.—1) by Ny particles and during
the update step we can expand this particle cloud by gengr&ij diffused particles from every
particle of posterior density. After that, we can easilyvsolhe problem (29) by just selecting
the particle with the largest weight and discarding all test v, — 1 particles.

Using the steps outlined above we generate the particl@appation of the velocity estimator.

In order to estimate velocity at any desired paipty, of the image we apply kernel smoothing



18

step [7] as described below. Normalized importance weightke track cloud:

w?

~; (1)t

A (30)
o > Wipy,

and kernel weights reflecting the closeness of every partlthe desired location:

. (28] — 24)? + (2] — ya)?
Wgy = €Xp | — (31)

UVAVA

where A, is kernel width equal to 6 pixels are multiplied and veloa#stimation weights are

obtained:
wév)t = aéT)thk)t (32)

Smoothed velocity estimator at desired posit@pis then formed as a weighted sum of particle

velocities:
d ‘ 7
Vit = &N W)Yy ¢ (33)
Zp:Tl wg)v)t i=1 !
F. Algorithm

In this section we summarize the algorithm of particle filtgrfor velocity estimation. This

algorithm is presented in Fig. 3
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Fort=0,1,2,...
1) Get imagey;
2) Image preprocessing
« Calculate decision statistic (frame differencing):

r1,r2)—Yt—1(T1,T 2
A(ys (w1, 2), ye—1 (21, 12) |71, 72) = 1 — exp <—(yt( - 2)2.3231( e )

. Calculate feature space (thresholding):
Lot Ay, 22), yer (21, 22) |21, 22) > M1
Zt($17 932) = )
=1 it A(y(w1, 22), Y1 (21, T2) |71, 22) <M1
3) Particle filtering

« Generate search cloud: Foe 1 to Np, xi ~ [U(0,w), U(0, k), 0,0]7;
« Evaluate likelihood of the search cloud: Fo& 1 to Np,

Py =1 X s 2aD)u@? o)
ORGP
1 2 1

0 _ M ).
W(p) = €XP <‘A%(1 - p(D)t)>’

. Propagate track cloud and estimate velocity:
For: =1 to N,
Forj =1to N,,
x = Fx"| + G,
xy’jH = ny);

— Evaluate likelihood of the track cloud:

e el DI C2 CLs S P C L S

B x(w) x“’])eM
(i.4) o (i) (i) )+ (d) .
Prye+1 = M > z(xy ", 0y ) 2 (2 2y )

‘ J:gi’j)Jr,xéi’j)JrE./\/}
(43) _ (4,5) (4,5) .
wl) = exp (=& 0= o)) e (~ 41 = p510));

xD = arg max w(lN):
t gx(z‘,l...Nu) (1) '
t

« Estimate velocity at particle locations using (30)—(33)

- Append and normalize weight vectors; = [w/p,,. wir,|";
Fori=1t0 Np+ Np: @) = W
i
« Resample

Fig. 3. Summary of particle filtering for velocity estimatio




20

(a) Synthetic datag = 0.2 (b) Real data

Fig. 4. The example image of feature space generated usingirtiulator (left) and real camera data (right)

V. EXPERIMENTS

A. Synthetic model description

In our experiments we use the following synthetic model. TEget is represented by a square
set of pixels having sizé5 x 15 pixels. Each time a target is generated, part of the pixels is
marked as detected and part of them as not detected. Duengakement of the target its pixels
may switch from one state to the other with probabilityaccording to a markov model. The
movement of the target obeys linear constant velocity mddelse in the image is generated
as false alarms uniformly distributed over the entire imagea with density. After this first
stage image is generated, we apply image smoothing andthfiesecond stage thresholding
to get rid of the small artifacts and to close moving targettoars. The example image of
feature space generated using the simulator is shown iMKigft). The image of feature space
generated using real data is shown in Fig. 4 (right) for camspa. For a more comprehensive
comparison we also supplement this report with a video elartfpat.sp.compare.avi’. This
example contains the recording showing feature space gty the simulator described above
in the left pane and the feature space generated using rieabygdhe image preprocessing step

described in section IV-C.
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Fig. 5. Dependency of the MSE of velocity estimation from thenber of particles in the search clondr

B. Experiments with synthetic data

To assess the performance of the velocity estimation dlgordepicted in Fig. 3 a series of
experiments on synthetic data was performed. The resuliseske experiments are presented in
Fig. 5-9.

The dependency of the MSE of velocity estimation from the benof particles in the search
cloud N is shown in Fig. 5. As expected, the estimation error redasdbe number of particles
increases.

Next we present the plot showing the MSE of velocity estioratis a function of the number of
particles/N, in velocity estimation step. During this experiment we kéegpnumber of particles in
the expanded cloud constant and equal to 4500. The numbartafles NV, in velocity estimation

step changes from 1 to 9 and the number of particles repiagethe posterior density changes
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Fig. 6. MSE of velocity estimation as a function of the numbéparticles N, in velocity estimation step

inversely toN,, Ny = 4500/N,. It is clear that in terms of computational complexity fiter
with different N, are equivalent. It is interesting to note, that first themaation error reduces
as N, grows, because this allows for better velocity estimatipevery time step. But whep,
becomes greater than 5, MSE starts to increase. This canrbmiteid to the fact that further
increase in the number of velocity estimation particlesi¢eto the depletion of the number of
particles that effectively represent the posterior fittigrdensity, which in its turn leads to larger
positioning (tracking) errors.

After that we study the influence of the absolute value ofhested velocity on the estimation
error. The relative MSE decreases with the increasing abswehlue of the velocity. Thus we can
conclude that absolute MSE is approximately constant. mfeans that the described velocity

estimation technique is suitable for the estimation of @#join a practical range.
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Fig. 7. MSE of velocity estimation as a function of the numbéthe absolute value of the velocity

Next we study the influence of the number of simultaneouslgkied targets on the relative
MSE. The relative MSE increases with the increasing numbg&aoked moving objects. This is
an expected result, because each target requires a numpartiafes to be tracked. Thus each
new target appearing in the scene reduces the number oflpargier target and thus the error
increases according to Fig. 5.

Finally, we present the plot of MSE versus the noise denkityse density is the percentage
of false alarms uniformly distributed over the image arezewery frame. It can be seen in
Fig. 9 that as noise density increases MSE of velocity esiimaalso increases. This can be
explained by the following. First, the presence of noise @sa&bject movements deformable.
That is, the object’s appearance in the next frame is alwéfereht from its appearance in the

previous frame. Thus the target constantly looses someeofrtitking particles because they
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Fig. 8. MSE of velocity estimation as a function of the numbésimultaneously tracked targets

assume low importance weights in the areas where defornmbten leads to the distortion
of the true velocity profile. Second, when the noise levelelatively high, large noisy areas
distract some particles from tracking cloud making theltotember of particles useful for object
tracking less. Also the nature of the error dependency fromenlevel suggests that tracking
algorithm’s performance deteriorates slowly as noisell@vereases and therefore suggested

velocity estimation algorithm is robust to the presence @fa in data.

C. Experiments with real data

To experiment with the described patrticle filter for velga#tstimation based on real data we
used traffic monitoring data available on-line [10]. The c@te scene that was used during the

simulation is shown in Fig. 10. In Fig. 11 we present the maximabsolute velocity profile
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Fig. 9. MSE of velocity estimation as a function of the numbéthe absolute value of the velocity

learned by the particle filter while tracking the vehiclesving in this area. Also we supplement

this report with the tracking video sequence "traelsults.avi’. Original image sequence is

depicted in the higher left corner of this video. Originalaige sequence with the tracking

results is shown in the higher right corner of this video.éde¥d dots depict particles from the

search cloud and green dots depict particles from the trieldc The appearance of the feature

space corresponding to the video sequence is shown in lagletr corner and the estimated

velocity profile appears in the lower left corner. It can berséom the tracking video sequence

that although the amount of the prior information we use tastact the tracking model is

small, particle filter is still able to autonomously detecbvimg objects marking them by red

particles, assign green patrticles to track them and learement model as they move along the

tracking area. All this confirms the validity of experimentasults regarding velocity estimation
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Fig. 10. The scene that was used during the simulation wihdata

that were obtained using the simplified, but fully contrdlgynthetic model.

VI. CONCLUSION

In this report we experimented with particle filtering alglom for velocity estimation in
image sequences. In particular, we considered a situati@renittle a priory knowledge was
used to parameterize exact appearance of the tracked ®lgedt movement model was not
initialized using good prior knowledge that is sometimeailable from object detection step.
However, particle filter was able to handle this situationl automatically allocate tracking
resources to the moving objects newly entering the sceriemads the velocity of moving
objects on-line, and localize moving objects by creatingtpoor density spikes in the areas
of the image corresponding to the objects of interest. Wainbtl useful experimental results

using both synthetic and real data. These results can betos&ssess the applicability of the
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Fig. 11. Maximum absolute velocity profile learned by thetigl filter while tracking the vehicles moving in the areasin
in Fig. 10

studied algorithm to some particular situation and optarttze performance of the algorithm by

choosing the optimum values of its parameters.
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