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Abstract-In this paper we consider the problem of optimal 
flow control in a multiclass telecommunications environment 
where each user (or class) desires to optimize its performance 
while being fair to the other users (classes). The Nash arbitration 
scheme from game theory is shown to be a suitable candidate for 
a fair, optimal operation point in the sense that it satisfies certain 
axioms of fairness and is pareto optimal. This strategy can be 
realized by defining the product of individual user performance 
objectives as the network optimization criterion. This provides 
the rationale for considering the product of user powers as has 
been suggested in the literature. For delay constrained traffic, 
the constrained optimization problem of maximizing the product 
of user throughputs subject to the constraints leads to a Nash 
arbitration point. It is shown that these points are unique in 
throughput space and we also obtain some convexity properties 
for power and delays with respect to throughputs in a Jackson 
network. 

I. INTRODUCTION 
LOW control has traditionally been used in the context F of congestion avoidance in networks. When network 

resources are limited and meeting the grade of service require- 
ments for each class of traffic is important, then performance- 
oriented flow control procedures are necessary. Due to the 
many types of traffic with different and conflicting require- 
ments the problem is one of multiple criteria optimization. This 
leads to a natural game theoretic framework for the analysis. 
The use of game theoretic concepts in network optimization 
has been considered in [5 ] ,  [12], [16], [MI, and [19] where 
the emphasis was on the characterization of operating points 
based on game theoretic equilibria. However, the works do not 
address the issue of the choice of the performance criterion 
to optimize network performance which is important in the 
proper apportioning of network resources. In this paper we 
show how this can be done given the individual objectives. 

In earlier work [6], [7] we argued that the network should 
be operated at pareto-optimal points since mathematically they 
correspond to equilibria from which any deviation will lead to 
the degradation in performance of at least one user of class. It 
can be shown that the pareto-optimal points are characterized 
by a surface in ( N  - 1) dimensions if there are N individual 
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objectives and thus there are infinitely many solutions in a 
multiclass environment. We use a criterion of fairness drawn 
from game theory known as the Nash arbitration scheme to 
select a unique operating point. This allows us to deal with the 
isues of optimality and fairness at the same time. Furthermore, 
it provides us with an abstract framework in which to analyze 
the difficult concept of fairness with precise mathematical 
structure. 

The organization of the paper is as follows. In Section I1 
we discuss the issue of fairness and performance objectives 
and present the main result. In Section 111 we show that user 
performance based on the power function and throughput 
maximization subject to constraints on delays satisfy the 
requirements of Section 11. In doing so we show some new 
convexity results of the inverse of user power and delays in a 
Jackson-type network. In Section 111 we offer some concluding 
remarks. 

11. PERFORMANCE MEASURES: FAIRNESS AND OPTIMALIR 

The aim of any network performance optimization pro- 
cedure must be the better utilization of network resources 
while providing a satisfactory level of performance for each 
user or class. In the emerging integrated network environ- 
ment the users or classes can be differential based on the 
grade of service required. Thus, it makes little sense to 
maximize an overall network performance measure without 
regard to the actual performance of each user of class. For 
packet switching traffic the important performance measures 
are throughput and delay while blocking is the important 
measure for connection-oriented traffic. In this paper we 
consider performance objectives most relevant to the packet 
switched environment although the main results do not depend 
on the particular situation. 

Game theory provides a natural framework for the analysis 
of the problem. This is not just an artifact, the advantage is 
that now we have a precise mathematical framework. This 
allows us to address the important issues of fairness and proper 
operating points for the network. References [l] and [17] are 
good references on game theory. 

In a game theoretic setting there are two inherently different 
types of situations: cooperative and noncooperative games. 
The noncooperative game framework is one in which every 
class or user acts individually LO optimize its performance 
measure without regard to the performance of other classes. 
Such a procedure leads to a Nash equilibrium point in the 
network [12]. This situation is important when the users act 
based only on local information [2], [8]. However, if the users 
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play a cooperative game then the performance of each class 
or user may be made better than the performance achieved at 
the Nash equilibrium. This is because the Nash equilibrium 
is pareto inefficient under certain conditions [9]. Hence, it is 
desirable to operate the network at pareto-optimal points. With 
the cooperative framework as the basis, we can then study the 
important issue of fairness. 

The issue of fairness has been an important component 
in the design of optimal flow control schemes since it has 
been shown that there exist situations where a given scheme 
might optimize network throughput while denying access to 
a particular (or a set of) user(s) [lo]. However, fairness is 
difficult to quantify in the absence of a proper framework. 
Loosely speaking, fairness can be thought of as a situation 
in which no individual class or user is denied access to 
the network or overly penalized. The Nash equilibrium or 
competitive equilibrium can be shown (for the case of the 
power criterion) to be a point where no user is denied access 
to the network and in particular if the performance objectives 
are the same then it corresponds to equal throughputs for each 
class. From the above discussion it can be considered a fair 
operating point and in fact is the essence of the fair scheme 
proposed in [2]. However, since pareto-optimal points can 
provide higher user performance in general than Nash points, 
the key is to choose the appropriate pareto-optimal point (in 
general there are infinitely many) such that it guarantees that 
user objectives are met. 

In [lo], Gerla and Staskausas define a notion of optimal 
fairness in which total throughput is maximized subject to 
the network capacity being fairly utilized. A scheme which 
provides for equal sharing when the demands exceed capacity 
is then suggested as a fair scheme. From a game-theoretic 
standpoint, such a point is not special. Moreover, the tradeoff 
between throughput and delay is not taken into account. 
Several other ad hoc schemes might be proposed based on 
the ratios of individual demands or the precise nature of the 
individual performance objectives. 

We now introduce a notion of fairness drawn from the 
cooperative game framework which has a precise mathemati- 
cal interpretation which subsumes the usual assumptions as 
to what constitutes fairness. The most important outcome is 
that it leads to the optimization of a unique performance 
measure which is characterized completely by the individual 
performance measures. 

The key notion of a fair strategy in cooperative game theory 
is the notion of the Nash arbitration strategy [20]. In order 
for a strategy to be a Nash arbitration strategy it should 
satisfy the axioms of fairness given below. See [17] for a 
discussion of the Nash arbitration scheme. It is important to 
note the difference between the Nash arbitration strategy or 
scheme and the Nash equilibrium. The former corresponds to 
the cooperative situation while the latter is the competitive 
equilibrium. The Nash or competitive equilibrium point is 
a point at which no user may deviate from in order to 
improve its performance given that all the players adopt the 
same strategy. This corresponds to a player optimizing its 
performance without regard to the performance of the others 
before. A pareto equilibrium corresponds to the situation where 

no individual can improve its performance without affecting 
at least one user adversely. 

In order to state the axioms we first introduce the mathe- 
matical framework. 

Consider a cooperative game of N players (users). Let each 
individual player i have an objective function f i ( x )  : X + R 
where X is a convex, closed, and bounded set of RN. From 
the point of view of communications networks X will denote 
the space of throughputs. Let U* = [U;,U;,...,U~] where 
U: = f i ( z * )  for some z* E X denote a common agreement 
point which all the players agree to as a starting point for 
the game. In general U* can be thought of as the vector of 
individual user performances which the user would like to at 
least achieve if they enter the game. Let [U,U*] denote the 
game defined on X with initial agreement point U* where U 
denotes the image of the set X under f ( . ) ,  i.e., f ( X )  = U. 
Let F[.,u*] : U -+ U be an arbitration strategy. Then F is 
said to be a Nash arbitration strategy if it satisfies the four 
axioms below. 

Let+(u) = ~ ' w h e r e u ~ = a , u , + b , f o r i =  1 , 2 , . . . , N  
and a, > 0, b, are arbitrary constants. Then 

F[+(U), +(U*)]  = +(F[U, U * ] ) .  

This states that the operating point in the space 
of strategies is invariant with respect to linear utility 
transformations. 
The arbitration scheme must satisfy 

(F[U,  U * ] ) ,  2 U: for i = 1 , 2 , .  . . , N 

and furthermore there exists no U E X such that U, 2 
(F[U,  U * ] ) ,  for all i = 1,2 ,3 ,  N .  This is the notion of 
pareto optimality of the arbitrated solution. 
Let [ U ~ , U * ]  and [ U ~ , U * ] ,  be two games with the same 
initial agreement point such that: 

i) U1 c U2 
ii) F [ U ~ , U * ]  E U1. 

Then F[Ul ,  U * ]  = F[U2, U*] .  

This is called the independence of irrelevant alterna- 
tives axiom. This states that the Nash arbitration scheme 
of a game with a larger set of strategies is the same as 
that of the smaller game if the arbitration point is a valid 
point for the smaller game. The additional strategies are 
superfluous. 
Let U be symmetrical with respect to a subset J G 
{ 1 , 2 , 3 , .  . . , N} of indexes (i.e., let i, j E J and i < 
j ,  then {UI,  ~ 2 , .  . . , ~ ~ - 1 ,  u3, u,+I,. . . , ~ ~ - 1 ,  U,, u3+i, 

If U: = U;,  then (F[U,u*]) ,  = (F[U,u*]) ,  for 2 ,  

j E J. 
This is the axiom of symmetry which says that if 

the set of utilities is symmetric then for any two play- 
ers if the initial agreement point corresponds to equal 
performance then their arbitrated values are equal. 

"',UN} E U .  

Remark: Note that the above axioms guarantee that no user 
(or class) is denied access to the network if U* = 0 (provided 
superior points exist) and the arbitrated solution is at least as 
good as the Nash equilibrium if U* is taken to be the Nash 
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equilibrium. Thus, in particular, the axioms imply that a Nash 
arbitration strategy for the network in which the users have the 
same performance objectives will correspond to equal sharing 
if the set of admissible throughputs is symmetric and if the 
initial agreement point is chosen to be one which corresponds 
to equal throughputs by Axiom 4. 

The following theorem (due to Stefanescu and Stefanescu 
[21]) characterizes the Nash arbitration scheme. 

Theorem 1 (Nash Arbitration Scheme): Let fi : X + R 
i = 1 ,2 , .  . . , N be concave, upper bounded, functions defined 
on X a convex, closed, and bounded set of RN. 

Let U = { U  € R N  : 3 z E Xs.t .u 5 f(z)} and X ( U )  = 
{z : U 5 f(z)} and X O  = X ( U * ) .  

Then the Nash arbitration scheme is given by the point 
which maximizes the unique function 

111. OPTIMAL FAIR SOLUTIONS: EXISTENCE AND UNIQUENESS 

In this section we describe and analyze three performance 
measures for the design of optimal, fair flow control schemes 
in a packet switched integrated telecommunications envi- 
ronment. The first criterion is the product of user powers 
(PPC) where power is defined as the ratio of the average 
throughput over the average delay of a particular user or 
class. It is shown that the stationary point for the PPC is 
a Nash arbitration scheme and gives rise to a unique set of 
user throughputs. The second formulation is what we term 
the modified throughput/delay criterion (MTD) which is a 
generalization of a criterion originally proposed by Lazar [ 161. 
The final criterion is based on a barrier function approach 
in order to circumvent the constrained nonlinear optimization 
which results in the MTD formulation. 

A.  Product of Power Criterion 
The product of powers (PPC) as a network performance 

I 

criterion has been proposed in the context of performance- 

if X O  contains vectors z which results in the user objectives 
strictly superior to U*. If the vectors in X O  have the property 
that there exist z E X O  such that only k of the individual 
objectives are superior to the corresponding elements of U * ,  

then the unique function is taken as the product of the indi- 
vidual objectives for which there exist superior solutions. The 
remaining (n - I C )  components of U* are the user objectives 
at the Nash arbitration point. 

Remark: It is important to note that the solution in general 
depends on the initial agreement point. The point where V ( z )  
is maximized is defined as the fair network optimal operating 
point. 

The use of the power function as the ratio of the average 
throughput over the average delay has been used in the context 
of flow control for some time [14], [ll], [13]. In fact, it has 
been noted that the product of powers is a more appropriate 
optimization criterion [2] since the overall network power 
was not found to be suitable. In the following section we 
shall show that the inverse of the power function satisfies the 
assumptions of the theorem and thus the above result justifies 
the use of the product of powers as a network optimization 
criterion. 

Before concluding this section it is important to note that the 
Nash arbitration strategy is not the only fair arbitration scheme 
possible. In fact, standard criticisms of the Nash scheme (see 
Luce and Raiffa [17] for a complete discussion) led to the 
development of other arbitration schemes due to Raiffa [17] 
and Thompson [3]. However, it can be shown that these 
other schemes correspond to Nash arbitration schemes for 
performance objectives obtained by linear transformations of 
the original objectives [3] and thus we restrict ourselves to the 
Nash arbitration scheme. 

In the next section, we define some additional performance 
objectives for the design of optimal, fair flow control schemes. 
These will be shown to satisfy the hypothesis of the theorem 
and thus the existence of the Nash arbitration scheme. More- 
over, we shall show that the optimization results in unique 
points in the throughput space. 

oriented flow control for single class packet switched networks 
by Bharathkumar and Jaffe [2]. This was due to the fact that 
the overall network power was found to be unsuitable as it was 
deemed as lacking fairness properties. It was also noted that 
there could be difficulties associated with the nonconcavity 
of the user power function. The results reported here show 
that the maximization of the PPC results in a Nash arbitration 
scheme and moreover the Nash arbitration scheme is unique 
in the space of throughputs, a strong result in light of the 
nonconcavity . 

When working with the user power function Theorem 1 
cannot be directly applied to show the existence of the Nash 
arbitration scheme due to the nonconcavity of the individual 
user power. We show, however, that the inverse of user power 
is convex with respect to the throughputs and using this 
property we show the existence of a Nash arbitration scheme. 
We then show that this result is also unique in the space of 
throughputs. 

Let s = [SI, s2, . . . , S N I T  denote the average throughputs 
for the N players in the network. We assume that the network 
is modeled as a Jackson network of M I M I 1  queues with loop- 
free routing. We also assume that there are L links with link 
capacities C = [cl, cg , . . . , C L $ .  

Let A = [A,, Ag, .  . . , A N ]  denote the vector of corre- 
sponding user delays. 

Let Pi = 5 i = 1,2 ,  . . . , N denote the power function of 
user i which is defined on the set of admissible throughputs 

T 

U = { S > O :  O < y l < q ;  l = l , 2 , L }  

where yl denotes the total throughput on link 1. 

the inverse of the power of user i, i = 1,2 ,  . . . , N defined by 
Lemma 2.1: For a Jackson network with loop-free routing 

is convex in the space of throughputs, i.e., PF1 is a convex 
function of S.  
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Proof: To prove the assertion we first decompose the 
expression for inverse power in terms of the link contributions. 
This is because the average user delay is additive over links. 
Thus 

where Ail is the contribution to the delay of user i by link 1. 
We now establish the convexity of P i 1  by showing that 

the Hessian matrix 

is positive semidefinite. 

Then the following expressions are easily shown: 
We first consider the case of fixed routing in the network. 

(3) 

where a is the mean packet length and S i j  denotes the 
Kronecker delta function. Hence, by direct calculation we 
obtain 

3 

(5 )  

For the purpose of notational simplicity we suppress the 
user index. This is legitimate since interchanging rows and 
corresponding columns of a matrix does not alter its character 
(i.e., positive semidefiniteness, etc.). Thus, the (1 , l )  element 

aZP-’ 

Let Ml, M2, Mk denote the leading principal minors of 
dimensions 1 x 1 , 2  x 2 ,  + . . , k x k. In general, k 5 N since 
all the different classes need not share the given link. Then it 
is straightforward to show that 

of Hi1 can be considered as a2;l for any i = 1 , 2 ,  .... N .  

for all feasible throughputs, i.e., S 2 0, c1 - 71 > 0. 
The second principal minor can be shown to be 

and hence 
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It can be shown that the higher order leading principal minors 
h f k  for k = 3,4,  .... N have the property that det Mk = 0. 
This follows from the fact that the Hessian matrix has the 
form 

. . . .  ~ - 2 b + c  U - b  U - b  U - b  0 . . .  0 
U - b  U U 0 0 

U - b  U U U a 0  0 
0 0 0 0 0 0 0 0  

U . . . .  . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . .  . . .  . . . .  .. . . .  

and hence for k 2 3 the minors contain repeated rows and 
thus are singular. The 0’s in the matrix arise if class j does 
not use link I which user i takes. From above it also follows 
that all the remaining principal minors have determinant 0. 

Hence, it follows that Hzl is positive semidefinite which 
demonstrates the convexity of P;’. Since Pap1 is the sum 
over all links 1 used by i ,  it too is convex. 

The convexity of Pa-’ in the case with random loop-free 
routing follows immediately since the corresponding Hessian 
is convex combination of the Hessian with fixed routing. 

Remark: The loop-free assumption is reasonable in commu- 
nication networks where the routing is usually feedforward. 

We now use the above result to show the existence of a 
Nash arbitration scheme for the case of PPC. 

Theorem 2.2: Consider a Jackson network with loop-free 
routing with N users. Let the performance objective of each 
user be the power function defined by 

where Si is the average throughput of user i ,  A i ( S )  represents 
the corresponding average delay, and S the vector of user 
throughputs. 

The flow control scheme which maximizes the product of 
the user powers (PPC) is an optimal, fair flow control scheme 
in the sense that it corresponds to a Nash arbitration scheme 
for -PT1 and given by 

Moreover, S* is unique. 
Proof: Note, from the previous lemma, PL1(S)  is con- 

vex for each i and hence - P c l ( S )  is concave. Working 
in the inverse power space precludes us from choosing the 
point [0, 0, . +  , OIT as the initial agreement point. Hence, 
we need to choose an initial agreement point U* in the 
inverse power space which is achievable in the set of feasible 
throughputs X. Before proceeding to show that S* indeed 
corresponds to a Nash arbitration scheme we first show that 
S* is pareto optimal and unique. 

Consider the functions Pi(S) and n y P i ( S ) .  Then since 
Pi(S) is defined on X which is compact and convex, n y P i ( S )  
is continuous, and hence achieves its maximum on X. Since 
Pi(S) is zero on the boundary of X it implies that the max- 
imum is achieved in the interior of X. Hence, the necessary 
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condition that S* satisfies is 
N 

Rewriting this in matrix form gives 

. . . . . . . . . . . .  . . .  . . .  I 

1% . . . . . .  

at S = S*. (8) 

where el = c1 - $ the residual flow in the link under S* and 
1 n s n i denotes the set {users s and i which use link I } .  

Similarly the product of the mean delays is given by (7) 

). 0 (E el - Clnsni 

a! 

Upon normalization with respect to the delays at the stationary 
point and rearrangement this can be written as 

Let J ( S )  denote the matrix above. Then from the obser- 
vation that Pi(S*) # 0 for all i, this implies that the matrix 
J ( S * )  is singular. But the matrix J ( S )  is the transpose of the 
Jacobian matrix for [PI (S) . P2( S) ..... PN ( S)lT and, hence, 
it implies that DetlJ(S*)l is zero. But this is the necessary 
condition for a point to be pareto optimal [22]. But from the 
fact that any (see the following) deviations from S* results in 
at least one player with lower power it is also sufficient and 
thus S* is the pareto optimal point. 

We now compare this point to the Nash equilibrium point. 
That the Nash equilibrium exists follows from the fact that 
the functions Pi(S) are concave in their own throughputs, i.e., 
w.r.t. Si (see Rosen [23]). The Nash equilibrium point for this 
case corresponds to the point S at which 

(9) 

Hence, it is readily seen that the Nash equilibrium is not pareto 
optimal and hence is pareto inefficient (see [9]). 

We now show the uniqueness of the point S* in the space 
of admissible throughputs. 

First note that from above it follows that the stationary 
point results in nonzero throughputs for each user. Define n (S) = nEl Pi(S). Then let S* denote that stationary point 
of n (S) then it is easy to show that the necessary condition 
that S* maximize n (S) is given by 

...... 1. (12) 

\ 

Now it is easy to show that this is greater than (strict if at 
least one of the k, is nonzero) 

By comparing (11) to (13) it can be easily seen that the 
normalized product of perturbed throughputs is less than the 
normalized product of perturbed delays implying that the 
perturbed PPC normalized around the stationary point is < 1. 
This implies that any perturbation of the stationary point is not 
optimal establishing the uniqueness of the maximizing point 
in the throughput space. 

Having established the uniqueness of the point S* we now 
show that it corresponds to a Nash arbitration point for the 
negative inverse power. 

Take as the initial agreement point U* the point where 
U: = -aP,-'(S*) i = 1,2; .., N for a > 1 sufficiently 
large. Then U* is a valid initial agreement point for a game 
played by N players with -P;'(S) as individual objectives. 
This is because if a is sufficiently large, then -aPcl(S*) < 
maxS -Pcl(S) and the maximum of the individual negative 
inverse powers exists since the functions are concave over 
a convex, compact domain of feasible throughputs X and 
attain the value -cc on the boundary of X. Now in order 
to apply Theorem 1 to the concave, upperbounded (because 
of the comment above) functions -PF1(S) we need to show 
the convexity and compactness of the set 

1 a n  - -(S*) i = 1,2, .  * f , N .  (10) 
s,* JJ(S*) as, 

X O ( U * )  = { S  : U E U s.t. U ;  2 Uf i = 1,2,  * * .  , N }  1 

where 
Consider a perturbation of the point S* given by 

U = {U : 3 s E x s.t. U i  5 -PF'(S), 
S = S* + K E  

for some feasible direction in the space of throughputs, i.e., 

i = 1 ,2 , .  . .  , N } .  

Note that by our choice of xo(.*) is nonempty. Choose 
any arbitrary points u1 and u2 in U .  Then to show that 
Xo(u*)  is convex it is enough to show that U is convex. 
TO show that U is convex we need to show that U3 

S i = S f + k i € ,  i = l , 2 , * . . , N .  

Then the product of throughputs is given by nr (Si). Nor- 
malizing this at the point S* gives the normalized product of 
throughputs as 

U1 + ( l  - cl U2, for 5 5 is in 
Let S1 and S2 be two throughput vectors corresponding to 

u1 and u2, respectively. Then from the definition of U we 
have 

C(-P;l(sl)) + (1 - c)(-P;'(s2)) 2 US 
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and from the concavity of -PC1(S) over X we have PPC is a Nash arbitration scheme for the power criterion. This 
is due to the difficulty of showing that the set U of allowable 
powers is convex and compact. However, several nontrivial 
examples have been worked out which show that the set U 

-Pi-1 (s3) = - 'C1 (csl -k ( l  - c)s2)  
- (1 - C)PF1(S2) 2 U?. 

-cPC1 ("1 

is in fact convex and compact. This leads us to conjecture 
The convexity of X implies that S3 is a valid throughput and that the maximization point of the ppc is in fact the Nash 

Compactness follows from the fact that the set is closed and the initial agreement point. For the of MIMll queues 
bounded. the convexity and compactness of the set of achievable powers 

over the set of feasible throughputs has been shown in [6 ] .  Hence, applying Theorem 1 to the user functions -PF1 (S), 
i = l , 2 , . . . , N  with initial agreement point U*, the Nash The above results provide the rationalization for the use 

of the PPC. An advantage in using the power criterion is arbitration scheme exists and is the point which maximizes 

mum is always attained in the interior of the set of feasible for this are 

hence 'U3 to the set X o ( U * )  is convex* arbitration scheme for the power function with [O, 0, . . . , 01 as 

n? (-';'(') - Over xo(U*)* The necessary conditions that the optimization problem is unconstrained since the maxi- 

at the stationary point J ( S )  is the matrix defined above and 
corresponds to the transpose of the Jacobian for the vector 
of powers. Note that P,(S) # 0 at the stationary point since 
XO(U*) excludes the point [O,O, .  . ,O]. 

Multiply the vector on the LHS of (14) by (-l)N-l (n; Pi(S))2,  then the LHS of (14) evaluated at the point 
S* can be written as 

But from the definition of S* we see that the vector [n,,, :j(S*), . , njZN Pj(S*)] belongs to the null space 
of J(S ) and hence S* satisfies the necessary condition for 
it to be the stationary point of n? (-P;'(S) - U:>. The 
concavity of the functions -PC1(S) - U: implies that the 
condition is also sufficient and hence S* is the Nash arbitration 
scheme for the negative inverse powers and the proof is done. 

Remarks: In the proof of the theorem we noted that the 
Nash equilibrium point is pareto inefficient. This implies that 
there exist points at which the user powers are superior to 
those achieved at the Nash equilibrium. Hence, let U* = 
COl[U';, U;, ., ., U>] denote the Nash equilibrium point. Then 
the point 

N 

s** = a r g m a x n  ( P ~ ( s )  - U,') 

will correspond to the pareto point strictly superior to the 
Nash equilibrium point, i.e., it corresponds to the case where 
the Nash equilibrium point is chosen as the initial agreement 
point. Note S** is unique. 

The lack of concavity of the user power function presents 
difficulties in concluding that the point which maximizes the 

i=l 

throughputs. However, one serious drawback is that in real 
applications there are usually constraints on the allowable 
user delays which power does not take into account. Power 
introduces weak constraints in that it is inversely proportional 
to the delays and thus the maximum of the product may be 
achieved at throughputs which violate delay constraints. What 
is needed is a network performance criterion which explicitly 
takes into account the delay constraints while ensuring that the 
resulting solution is fair. We now focus attention on defining 
such a network criterion. 

B. Modijied Throughput /Delay Criterion 

In the context of flow control of queueing networks, Lazar 
[ 161 introduced the throughput/delay criterion which seeks 
to maximize the average throughput subject to bounds on the 
average delay. In the context of optimum, fair schemes we can 
generalize this notion to define a modified throughput/delay 
(MTD) criterion whose optimum is achieved by a Nash 
arbitration scheme. This will be the cooperative equilibrium 
when each user's objective is the maximization of its own 
throughput subject to constraints on the delay. 

Let Si denote the user throughputs with Ai(S) the cor- 
responding delays. Let 6 = [61,62,...,6~]~ denote the 
vector of constraints on the delay, i.e., Ai(S)  < Si for 

Lemma 2.3: The user delays A;(S) for i = 1,2,  . . . , N are 
convex in S and increasing in each Si. 

Proofi This assertion can be proved in an analogous 
manner to Lemma 2.1. This is done by decomposing the flows 
on links assuming fixed routing and using the fact that delays 
are additive on links. It can then be shown that the delay 
component along each link in convex by showing that the 
Hessian is nonnegative definite. From this and the fact that the 
Hessian in the case with random loop-free routing is a convex 
combination of the Hessian in a fixed case it will follow that 
the Hessian matrix is nonnegative definite. Thus, convexity is 
proved. The increasing property follows from the fact that the 
gradient is positive. 

Lemma 2.4: The set of admissible throughputs for the 
constrained problem 

i = 1 , 2 , - . . , N .  

U = {S feasible : Ai(S)  5 Si, i = 1 , 2 , . . . , N }  

is a convex and compact set. 
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Proof: The convexity of U follows from the convexity of 
Ai(S) .  That the set is closed and bounded (compact) follows 
from the fact that A;(S )  is increasing in Si and thus there 
exists an Si at which the constraint is achieved if the constraint 
is active if not Si is bounded by the maximum feasible flow 
for stability. 

Theorem 2.5: Define the modified throughput/delay func- 
tion 

N 

MTD(S) = fi Si 
i=l  

subject to A ( S )  5 S and S being feasible. 
Then the MTD is the unique function that determines the 

Nash arbitration scheme for user throughput maximization 
subject to constraints on the average user delay. Moreover, 
it results in a unique set of user throughputs. 

Note A 5 S is to be understood as componentwise. 
Proof: We now take the initial agreement point U* = 

[0, O , O , .  . . , OIT which implies that every user desires nonzero 
throughput. Then the proof follows directly from Theorem 1 
since Si is linear and hence concave. It is upperbounded 
since the set U is compact. Also since U is convex from 
Theorem 1, nf Si is the unique function that determines the 
Nash arbitration scheme. The uniqueness of the maximizing 
point in the space of throughputs follows since MTD(S) is a 
multilinear function defined on a convex, compact set and thus 
achieves its maximum at a unique point. 

C. Discussion 

The drawback of the MTD criterion is that the Nash arbi- 
tration strategy is determined by solving a nonlinear program 
with convex constraints. Thus, although the criterion captures 
the essence of the flow control problem, in practice for large 
networks the nonlinear program can be quite cumbersome. 
To circumvent this difficulty we present an approximate for- 
mulation which is exact in the limit such that the modified 
problem results in an unconstrained problem. (Note there are 
constraints due to feasibility of flows but the maximum of 
products is achieved in the interior of the feasible set and 
thus the feasibility constraints will be inactive.) This is based 
on a barrier function approach to solve the MTD problem. 
In this connection, it should be pointed out that Giessler et al. 
[ 111 suggested using the generalized power criterion where the 
throughputs are weighted by a factor of the form Sf. However, 
there is no reasonable way to guarantee that a particular choice 
of the weighting factor will satisfy the delay constraints. It 
is known that there exist (throughput,delay) pairs which are 
feasible but cannot be achieved by choice of weighting factors 
for each user, i.e., the weak constraint problem still exists in 
the generalized power case. 

Hence, define the bamer function as 

where the P,!s are weighting factors chosen such that the 
sequence of P,!s are monotone decreasing and converge to 
zero. Then it can be shown that the solution converges to 

the solution of the MTD criterion [24]. The advantage is that 
we now have an unconstrained problem. We note that other 
formulations based on the penalty function can be also used 
to approximate the MTD solutions. 

IV. CONCLUSION 
In this paper we have presented a precise mathematical 

formulation and characterization of the issue of the design 
criteria for network optimal flow control and the related issue 
of fairness. By using the game theoretic framework, we have 
identified the Nash arbitration scheme as a desirable optimal, 
fair operating point for the individual users. Furthermore, the 
strategy can be obtained by only knowing the individual user 
performance criteria. We have provided a proof of why the 
product of powers is indeed a reasonable design criterion 
and shown some new convexity properties of the power 
function and user delay functions. We have also given a 
more appropriate criterion in the context of packet switched 
networks which solves the optimum, fair flow control issue 
when there are constraints on user delays. 

These result could be tliought of as the first concrete attempt 
at providing a mathematical basis for optimal flow control 
and fairness in the network context. An important issue which 
arises is the design of decentralized algorithms to achieve these 
operating points and the extension of these ideas to the general 
environment where there is mixed type of traffic. 
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