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1. Introduction

A considerable effort has gone into the synthesis and analysis of techniques for routing messages
(packets) in store-and-forward (S/F) networks [1-39]. This work has been motivated by the importance
of the routing protocol in respect to the delay performance, system cost and reliability. The arca
continues to attract attention due to the wide spectrum of choice in regard to routing protocol as well as
the numerous and subtie behavioral characteristics which these schemes exhibit. Routing schemes have
been implemented prior to a thorough understanding of their characteristics, with the result that system
instability and deadlocks have occurred and only were corrected after the fact {12]. To obviate these
difficulties, previous and ongoing research has sought an adequate theory for routing in store-and-
forward networks. '

Routing schemes in store-and-forward networks are described as being static (fixed), adaptive (or
equivalently, quasi-static) and dynamic, respectively. While all schemes are dynamic to some degree, as
pointed out by Schwartz and Stern [17), the static schemes employ a fixed routing, while the network
topology remains invariant. When links or nodes are added or the link capacity is augmented, a possibly
different static routing plan is employed. Adaptive or quasi-static schemes on the other hand do allow
the routing pattern to change if the required traffic demand changes or if links or nodes fail. These
changes occur much more slowly than the changes in the states of buffer occupancy. In a dynamic
routing scheme, as the term is used in connection with store-and-forward networks, the routes are
determined by the instantancous state of the buffers. .

This paper considers the quasi-static or adaptive routing problem., Studies on adaptive routing in S/F
networks date back as far as Boehm and Mobley {38] who were concerned with reducing the
vulnerability of message-switched military communication networks. Glorioso et. al. [39] applied
learning techniques to adaptively route traffic in message-switched networks. With the advent of packet
switching in the early 1970s a number of researchers again turned to adaptive routing techniques in the
hape of improving network performance [4]. These early studies employed Monte Carlo simulation
techniques to evaluate network behavior.

Fratta and Gerla and Kleinrock [S] posed the system optimal static routing problem as a convex
programming problem and introduced the flow deviation algorithm as s means of computing the system
optimal flow recursively in a centralized fashion. This marked the beginning of theoretical work of the
routing problem in packet switching networks. In the mid-1970s Gallager [7] continued this trend with a
classic paper on quasi-static routing. He formulated the optimal static routing problem as a convex
programming problem in the space of routing variables as opposed to path or link flows, and derived
necessary and sufficient conditions for its solution. He also proposed a protocol for on-line calculation
of the system optimal routing pattern, and derived. convergence properties of the scheme.
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Recently, Mars, Narendra and Chrystal [24, 35] have again taken up the learning approach, armed
with the recent results for learning automata operating in nonautonomous environments due to
Narendra and Thatachar [36]. Extensive theoretical and simulation studies have demonstrated that a
collection of Ly, automata controlling the routing of messages in a store-and-forward network provide a
potentially effective means of adaptive routing. Moreover, in 2 number of simulation experiments the
scheme tends to converge to a routing pattern which equalizes delays over the set of used paths [35, 37].
The present paper was inspired by the recent interest in the decentralized learning approach with the
emphasis placed on analysis as opposed to a simulation. The paper can be viewed as 4 contribution to
the area of learning in networks, as well as to the theory of nonlinear multicommodity flows.

Previous theoretical work on the routing problem in S/F networks emphasized the system optimiza-
tion problem as opposed to the user equilibrium problem. While much of the current theory on routing
can be adapted to the equilibrium problem with minor modification, as will be subsequently shown, we
have placed particular emphasis on the equilibrium problem because of its relevance to learning
automata routing schemes.

Previous algorithms for system optimal quasi-static routing assume or require the absence of loops or
cycles in the flow of messages. Protocols are set up to exchange marginal delay information, which is
then used to update the routing pattern or the path flows. The overall procedure is quite complex and
difficult to implement in large distributed networks.

By contrast, the recursive schemes described in this paper, which models the Ly, learning automaton
scheme as a special case, is very easy to implement, as only simple arithmetic operations are involved,
and the delay measurements are obtained directly from the round trip time for messages and their
acknowledgements. Hence no additional protocol for nodal information exchange is necessary. In
addition the approach does not require loop-freedom to operate properly. This is an important attribute
when only local topological information is available. Facility failures, for example, can introduce
uncertainty in regard to network topology. To determine a loop-free routing it is necessary to possess global
information on topology, which in turn requires a higher level protocol.

One of the potential drawbacks of our scheme is suboptimal performance under some conditions. It is
therefore important to quantify the magnitude of this performance deficit relative to an optimal scheme
as well as to characterize conditions under which the suboptimality can arise. Numerical studies and
analyses indicate that user equilibrium routing and system optimal routing both tend to minimum hop
routing under balanced or symmetric traffic conditions as well as under light asymmetric traffic
conditions. Differences appear in the two routing methods for asymmetric networks under moderate
and heave traffic, where bifurcated flows arise.

In Section 2 we summarize previous work on the system optimal routing problem. By modifying the
objective function in the manner described by Dafermos and Sparrow [11] most of these available
results and methods can be extended to the user equilibrium problem.

In Section 3 we describe the path and link flow formulations of the user equilibrium routing problem
in S/F networks. Properties of the equilibrium flows and routing patterns are discussed, along with
techniques for computing a solution.

In-Section 4 we define and characterize various classes of routing patterns. Properties of the various
classes are then derived. We then describe the route formulation of the user equilibrium problem and
the associated optimality conditions. The complications resulting from the presence of zero elements in
the traffic matrix are then discussed.

In Section 5 a recursion for updating the routing variables to compute an equilibrium routing and
flow pattern is described, along with proofs of its behavior. Specifically, it is shown that the stable fixed
points of the nonlinear recursion correspond to equilibrium routing patterns. Using the theory relating
the user and system optimal problems, a technique is described by which the recursion can be used to
compute the system optimal routing and its delay performance. '

The network and controller models have been implemented in software and a numerical study of a
store-and-forward network has been carried out. In Section 6 numerical results are presented which
corroborate the theory and demonstrate the potential of a large class of learning schemes.
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In Section 7 the issue of implementing the recursion in a network is discussed. The form of the
recursion, suggests other implementations in addition to the Ly, scheme already mentioned.

2. Review of optimal static and quasi-static routing

There are a number of different problem formulations, representations and solution methods
associated with the optimal static routing problem, in the transportation and communications literature.

Dafermos and Sparrow {11] have considered two traffic assignment problems originally posed by
Wardrop [27] in connection with transportation networks. With minor modifications the formulations
are suitable for the optimal static routing in S/F communication networks as well. The problems
referred to are the system optimization and the user equilibrium problem mentioned previously. Since it
has been shown [11] that a user equilibrium problem can be posed us an equivalent system optimization
problem and vice versa by suitably modifying the cost functions, solution methods for either problem
can be adapted to the other problem formulation as well.

There are two major representations for network routing problems, where in the first instance the
problem is formulated in the space of flows, and in the second case in the space of the routing variables,
which are the flow fractions allocated to the link. Within the flow formulations there are the path flow
and the link flow forms. Representations in terms of routing variables are directly suitable for
implementation; however, the optimization problem is convex as opposed to being strictly convex for
the most general class of traffic matrix. This complicates the necessary and sufficient conditions (NSC) of
optimality. For objective functions where the optimal routing depends on destination node only, rather -
than on the origin destination pair, the route and link flow formulations can be simplified thereby
reducing the number of variables by a factor of N — 1. The path formulations, on the other hand cannot
be so reduced.

Path flow formulations are natural for virtual circuit operation as the path flow rates are the variables -
to be implemented. For datagram operation, a set of routing variables must be calculated once the path
flows are determined. For the route formulation the routing variables can be used directly in the
implementation. Link flow formulations, on the other hand, require additional auxiliary variables for
implementation is either datagram or virtual circuit environments. The objective function in the"spacc
of path flows is, however, strictly convex, leading to simpler optimality conditions than is the case for °
the route formulations.

While necessary and sufficient condmons have been derived for optimal static routing pohcms which
provide insight into the form of the optimal solution, closed form solutions have not been obtained.
This is because the optimality conditions lead to large systems of coupled nonlinear equations in the
routing variables which are notoriously difficuit to solve.

As an alternative approach, network theorists have proposed recursive algorithms, which converge in
the limit to the optimal static routing plan in stationary traffic conditions. Such algorithms can also be
used on-line for adaptive (quasi-static) control provided the ratc of convergence is sufficiently fast
compared to changes in the traffic demand.

Finally, several solution techniques have been proposed for the different formulations and represen-
tations. In the first class of solution techniques, necessary and sufficient conditions for optimality are
first derived, and following this an algorithm is proposed which adjusts the flows (or routing variables)
to converge to a policy such that the NSCs are satisfied. In the second approach the optimization
problem is tackled directly via some variation of the gradient search technique.

Within the class of approaches based on NSC, there are several solution techniques whose points of
departure are different NSCs. For example, Dafermos and Sparrow [11] state the NSC in terms of the
marginal costs along all paths where the cost derivatives are expressed in terms of the total link flows.
They then propose a centralized recursive scheme based on their equilibration operator, which converges
in the limit to a flow which satisfies these NSC.

Stern [9] on the other hand gives NSC in terms of marginal costs by commodity flow on all links. It is
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apparent that these differ from the NSC of [11] in that links are considered rather than paths, and the
derivatives are by commodity rather than by the total link flows. Stern’s NSCs lead to a large coupled
system of nonlinear equations which he then solves by relaxation to obtain the optimal static flow
pattern or equivalent routing plan. The method admits decentralized computation and is suitable for
implementing a decentralized quasi-static routing scheme. _

Yet another set of NSC is given by [5] which forms the basis of their flow deviation algorithm. Their
NSCs are expressed in terms of the marginal link costs with respect to the total link flows. As a result
these optimality conditions are more compact than those of Dafermos and Stern. These NSCs can be
tested for a given flow by a shortest path calculation using the link marginal costs as the distance metric.
The flow deviation method also employs this shortest path calculation to evaluate a direction for
deviating a nonoptimal flow to obtain an improved flow. The flow deviation algorithm is a centralized
recursive algorithm for calculating the optimal flow among the class of bifurcated flows. It can also be
employed in problems with nonconvex objective function to obtain local minimum flows. Fratta et al.
[5] have devised an efficient version of the flow deviation algorithm for computing the optimal
nonbifurcated flow. They observe that for large balanced networks, the optimal flow among the class of
bifurcated flows will be nonbifurcated. For the general class of networks, an optimal nonbifurcated
solution is only a heuristic solution. It is nevertheless of interest as nonbifurcated routing schemes avoid
certain sequencing and reassembly problems associated with bifurcated routing. In fact almost all
existing networks use nonbifurcated routing.

Gavish and Hantler [23] have recently introduced a technique for finding heuristic solutions and tight
lower bounds on the performance of nonbifurcated routing schemes. The method employs a Lagrangian

“relaxation of the mixed integer nonlinear programming problem to obtain the routes and bounds with a

moderate amount of computation. This approach belongs to class where the optimization problem is
tackled directly, in this case via a subgradient optimization of the relaxed problem, rather than by first
determining the NSC. '

Bertsekas [13] has considered gradient projection methods for solving the bifurcated system routing
problem in the space of path flows. A formulation in the space of link flows has also been considered
[14]. They claim a linear or superlinear convergence rate, and automatic scaling with respect to traffic
level. The algorithm can be implemented in either centralized or decentralized fashion, and it is claimed
to be the most efficient recursive solution, in terms of computational requirements, to the system
optimal routing problem.

3. Flow formulations of the user equilibrium problem

There are two flow based formulations of the routing problem. The first is referred to as the link flow
form, while the second is the path flow form. The link flow form admits a reduction in terms of the
number of commodity types in that one need only distinguish commodities by their point of destination
for minimum flow and minimum delay routing. In the path formulation both origin and destination are
implicitly involved in the notion of a path. :

The set of feasible link flows form a convex polyhedral sct, where the extreme points correspond to
minimum distance routing according to a metric. By varying the link lengths over all possible values the
extreme points of the feasible set can be generated by application of a shortest path algorithm. Fratta et
al. have used this property to advantage in their flow deviation method to be described in the sequel.
The set of feasible path flows, on the other hand, is the Cartesian product of a set of simplexes with one
simplex for each origin destination pair. Bertsekas [13] and Mason [18] have derived efficient search
schemes for such sets, which are used to advantage in their recursion formulae.

3.1. Notation

Let & ={1,2,... N} denote the set of nodes; £=1{1,2,..., B} be the set of oriented links; C, is the
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capacity of link / in bits/second; A; is the mean flow demand in bits/second, from source node i to
destination node j, %' = {(&, /)1 A; >0}. For each (i, /)= w € ¥ let A; = A,. Let P, be the set of directed
loop free paths originating at node i and terminating at node J- This is the set of paths that may carry
commodity w. Let f, be the flow on path p. Define f = { f,1p € P,, w € W} to be the vector of path flows.

3.2. Flow sets

The admissible flow set & is defined by flow conservation or

3=={fif,>0, > fp=/\,,,VpeP_,,we‘W}.

PEP,

For a flow, £, to be feasible, it must satisfy the flow conservation constraints as well as the link capacity
constraints. The total link flows can be expressed in terms of the path flows by the equation

=2 X 86, Vijee,

wEW pEP,

where §,(i, j) = 1 if path p contains link (i, /), and 8,(i, j) = 0 otherwise. For the flow, f, to be feasible,
no total link flows f, can exceed the link capacity or

fsC vies.

Here C is the capacity of link / in bits/second. The vector of total link flows is given by
F={flie=.

The link capacity constraints can be expressed explicitly in terms of the path flows f, as

0< 3 I 5,/ <C VIEL.

wEW pEP,

Let &, be the set of feasible flows, and ?, be the set of feasible total link flows. &, is convex since it is
the intersection of the convex capacity constraint set with the convex flow requirement or admissible
set. & is also convex by virtue of the linear mapping from ¥ - &,

3.3 Link cost functions

For S/F telecommunication networks, the measure of link cost is the mean link delay, 4, in
seconds/message. Kleinrock [20] has applied results for queuning theory to obtain expressions for the
mean link delay and the total link delay in terms of the network and traffic parameters. Models have
been proposed which include effects of nodal processing delay, link propagation and transmission delay
as well as queuing delay. In the sequel we shall focus on the simplest and most commonly employed
formula which neglects the node processing and propagation delays. It can be shown that the results can
be easily extended to the more complex delay models as well:

A N [ 1
a1
where a is the mean message length in bits. The total link delay in seconds is given by the expression
s oh
D = = =.
' = [y C-7
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The total network or system delay is obtained by summing the total delay on all links:

B B af‘
D= D, = —_—
z ! Eq—f,

The mean delay of path p is given by

B B
o
A=348,=6,—=.
et AT G-

3.4. User equilibrium flows

Dafermos and Sparrow define the user equilibrium flow as a Nash strategy for the noncooperative
game where a player is associated with each origin destination pair. They also give an alternative
characterization in terms of the path delays which is more usefut for our purposes.

Definition. A flow f, is an equilibrium fow iff f, satisfies the following constraints expressed in terms of
the path delays:

APEP.,=II'W v{pifp>0}s PEPW. WE W,
AQEP..?’FLN V{‘I'fq"'o}s QE'P“,, wE W:

where u, is a positive multiplier associated with commodity w.
3.5, Optimization formulations of user equilibrium problem

In ref. [11] it is shown that equilibrium problems can be cast in an optimization form via the
introduction of a modified link cost function 43(f,) which is related to the mean link cost function by
the equation

L
45(f)=1 Afx)dx.
o

For the delay function considered previously we obtain:

_ -G
A‘,‘(f,)=alnq_'ﬁ.

The optimization formulation of the equilibrium problem in path flow form is then

-} Cv
min 3 o In —=
J€F; =) G-fi

and the link flow form is
B
. C
min > & In —1=.
fe® =1 G-1

The link flow formulation has a unique equilibrium total flow vector f. when #, is not empty.
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This result follows from the fact that the objective function is strictly convex in f; and the constraint
set is a convex polytope. Identical results were reported by Fratta, Gerla and Kleinrock [5) for the
system optimal problem, which differs from our problem only in the form of the objective function.

To obtain the optimality conditions in terms of the path flows, apply the Kuhn-Tucker results to the
path flow formulation. The resulting necessary conditions are identical to the characterization of the
equilibrium conditions. Sufficiency of these conditions follows from the fact that every path flow f
satisfying the necessary conditions has a unique image in % which satisfies the sufficiency condition.

The set of equilibrium path flow vectors is denoted by &, This set is convex due to the linear
mapping ¥ - &, and the uniqueness of %,.

While the equilibrium total link flow vector is unique, the set of equilibrium path flow solutions is not
necessarily unique. This fact was first noted in ref. | 11} where an example is given.

3.6. Solution methods

The literature describes several techniques which can be used to compute a solution to the above
optimization formulations of the equilibrium problem. For example, flow deviation can be used to
compute a f,.€ &. Alternatively, Stern’s relaxation technique [9] can be applied to the path flow
formulation to compute an equilibrium flow. In both instances, once the equilibrium flow is determined
the actual system performance is obtained in terms of this flow and the true link delay function by

5oL
G fu
It should be emphasized that the above-mentioned methods are suitable only for an off-line
calculation as they depend upon the fictitious link cost function a In(C/(C, - f,)) which cannot be
determined from local delay measurements. In Section 5 we introduce an alternative approach using a
recursion which requires path delfay information which is easily obtained from local measurements in an.
on-line setting, or can be computed from a link delay model in off-line applications.

4. Route formulations

We now consider programming models where the decision variables are expressed directly in terms of
the fractions allocated to the outgoing links, the so-called routing variables. Models of this sort have
been described by Gallager [7] and Segall [25]. The approach of Gallager is intended for message
switched or datagram networks. It has been extended by Segall [25] to virtual circuit S/F networks as
well. Mason [18] also studied such formulations for a class of decentralized control problems which
includes the S/F network routing problem as a special case.

4.1. Classification of routing patterns
We define a routing paitern as a collection on N, N X N matrices

R = {R(l)’ R(Z), teey N‘N)} y
whpre

RO=[/", ijew.

The routing variables, r|}” denote the fraction of messages (packets) arriving at node i with destination 4
which are routed directly to node j.
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4.1.1. Admissible routing patterns
An admissible routing pattern satisfies the following conditions:

N
Srf=1, r=0, Vi#d Vj#i

- r®=0, vd,
rf}‘? =0, Vj.
Let & be the set of all admissible routing patterns.

4.1.2. Feasible, equilibrium, and optimal routing patterns '

To qualify as being feasible a routing pattern must be admissible and the resulting flow must be
feasible, i.e. it must satisfy the flow conservation and the link capacity constraints. Let &, denote the set
of feasible routing patterns.

Complications arise when some off-diagonal elements in the demand matrix are zero. Here we restrict
attention to the case where all point-to-point demands are strictly positive. Later we will discuss the
more general case. ' :

For nonzero demands we can define a routing pattern uniquely in terms of the link flows. The routing
variables are simply the flow fractions or

d) .
=19/
i

where f@ is the flow on link ij with destination d. These multicommodity link flows are uniquely
determined from the path flows by the equation:

=2 2 fa

i=t peP,, wE(id)

We can therefore define the feasible routing patterns %, by the mapping %, R,. Equilibrium and
optimal routing patterns can be similarly defined in terms of the corresponding preimages in the path
flow space. Let R, denote the set of equilibrium routing patterns and $#* denote the set of system
optimal routing patterns.

Proposition 1: Convexity of routing pattern sets. The sets ¥,, ¥, and & are convex.

Proof. Since the sets ¥, %, and F* have been shown to be convex it is sufficient to show that a
convexity in the space of path flows implies convexity in the image sets in the space of routing patterns.
Consider any two distinct path flows, f’ and f”, in any convex set of path flows. By definition the flow f*
is also an element of the set where

= A A=)

-and 0<A<1. Let R, R" and R" be the corresponding images in the space of routing patterns. To

establish convexity of the image sets in & it is sufficient to show that there exist scalars 0 < p<1Vi d
such that

dwe _ pld) (d d ]y pld
b = U 8 4 (1 — G
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Notice that 6{* can vary with node and commodity index as each of the ri) are disjoint sets for distinct i
and d. To simplify the presentation we shall delete the indices i and d in the following since the same
analysis holds for all cases. Expressing the convexity condition for 7 in terms of the flows f; we must
show that

/3ol )

To verify the above choose
A

6= .
=020 /5,5)

It is clear that 0<@ <1 since 0<aA <1 and 2,./"/2,.f;. >0 by the premise of positive traffic. This
completes the proof.

4.1.3. Loop-free and deadlocked routing patlterns
A routing pattern is loop free iff the following is true for all cyclic paths in the network:

[T /=0 vd.
Ui XEcycle

This obvious necessary and sufficient condition is difficult to verify due to the enormous number of
distinct cycles in networks of practical size. An alternative characterization is given by the foliowing
proposition.

Proposition 2: Loop-free routing condition. A routing is loop-free with respect to commodity d if the
Jollowing matrix equation holds:

[ R (d):]N - O ,
where the prime denotes the transpose.

Proof. To verify this claim, consider the effect of the matrix R“” as an operator on traffic A, For nodes
i# d the operator shifts a portion r” from node i to node j. For i = d all traffic at d leaves the network.

¥
Thus, we can view the matrix multiplication as a shift operation in the network. In an N node network
there can be at most N —1 hops or shifts in a sequence if a cycle or loop is to be avoided. Hence, if
[R“'}¥ >0 a loop would be formed. Thus a loop-free routing implies that the condition on R holds.
Proposition 3: Loop strength. For a loop-free routing the following holds:
Det(d)=[I-R“)|=1.
The nodal flow vector,

={d) _ d d
F9O=1y®, ..y,

satisfies the matrix equation:




e e

T
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,)—,(d) = [I - R"”‘]"X"“ ]
where A is the column vector of traffic demand with destination d.
Proof. For a finite nodal flow vector to exist the matrix [I — R} must be nonsingular. This condition is

equivalent to the conservation of flow. When this matrix is singular for some d the routing pattern is
said to be deadlocked. For deadlock-free routing patterns we can expand the inverse matrix as a

geometric matrix series:
[I _ R(d)l]—l — 21': [R(d’)r]k .
k=U .
In particular, for loop-free routing we have the finite sum:
N-1
I-ROY'= 3[R,
k=0

where [R“]'= I, the identiy matrix. For ease of notation let us define the matrix A = R“*_ From
matrix theory the inverse can be expressed by the following matrix identity:

Adi[I-A] A+ (1+a)A"?+---(1+a+ at---ay )]
11— Al l1+a,+a,+- - +ay )

[I-A]"'=

But by our previous result this is equal to

Since this equality holds for any loop-free routing, this implies that ;= 0, 1 = 1,2,..., N, which in turn
implies:

- R“}=|I-R“|=1,

as claimed.
For deadlocked routing patterns, this determinant vanishes as the corresponding matrix is singular.

This suggests the following measure for the strength or magnitude of the routing loop associated with
commodity 4.

Definition. The loop strength for commodity d is defined as 1-|I-R“). For loop-free. routing the
strength is zero while for deadlocked loops the strength is unity. For intermediate cases the determinant

takes on values in the open interval 0 <|I - R“} < 1.

4.1.4. Bifurcated routing patterns
By definition a bifurcated routing pattern R, is one in which for some i, j, d the following strict

“inequality holds:

o<ri’<1.

The complementary set of nonbifurcated routing patterns which are inherently deterministic or fixed
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has the following characterization:
rﬁ,‘-”e 0,1} Vijd.

4.2. Route formulations of the equilibrium rdttlr'ng problem -

5 G

. 1

min > an =
RER; = C.: - fp

Notice that the feasibility condition involves nonlinear inequalities in the routing variables since the
link capacity constraints are

0<f=3 yirg<cC, Vij,
d

and the flow conservation constraints are
,)-’d = [I _ R(d)’]-'A—d .

In spite of these apparent difficulties, in view of the fact that R, is convex the above problem is one of
convex programming. .
A relaxed version of this problem is based on the fact that the objective function implicitly includes
the link capacity and flow conservation constraints, since the cost tends to infinity when these
constraints are approached from the feasible side. Gallager [7] employed this approach for the system
optimal static routing problem. Our formulation differs only in the form of the objective function:

B
G
min > a In =
RER |- q_fr

The constraints R € & are linear in the variables ri and hence are convex.
The Kuhn-Tucker necessary conditions take the form:

a & C .
rg)(’zla]n—c",_lf_’)=pf {:.d]rg.”>0}
¥ = "

zu! {i,d]rP=0}.

For nonzero demands these conditions are also sufficient since every equilibrium routing pattern
induces a total link flow which is unique and sufficient. For cases with zero demand elements, these
necessary .conditions are not sufficient, but can correspond to points of inflection. The Kuhn—Tucker
conditions result in a Jarge coupled nonlinear system in the routing variables. The recursion given in the
next section is shown to converge to the equilibrium routing pattern, provided it is appropriately
initialized.

Some demands are null

If &, =0 for some i# d, then several complications arise. It is then possible for E,- f f,‘.’ Y= 0 and we
cannot define a routing pattern in terms of the flows. On the other hand, any admissible assignment of
the routing variables rg;” produces the same flow, namely zero, so in a sense this is a ‘don’t care’
condition. Interpreted in this way the property of convexity of the sets R, ®,, and R* extends to the
zero demand case.
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A related complication concerns the sufficiency condition for the equilibrium routing patterns. As
pointed out by Gallager [7], the necessary conditions may define inflection points rather than a
minimum. Interestingly, this property has implications for the rate of convergence in the case where
some demands are positive but small as ‘near inflection’ points reduce the rate of convergence of
gradient-based search schemes.

A third complication concerns the definitions of feasible and loop-free routing patterns. For positive
demand elements, singularity of the matrix [I ~ R’} implies that the flow conservation condition is not
satisfied, while the presence of routing loops implies cyclic flows. Such is not the case if some demand
elements are zero.

5. Distributed recursion for equilibrium routing

The following recursion was first described in [18] where it was applied to a general class of problems
which includes the optimal S/F routing problem as a special case. Convergence results were given for
the general problem. Here we apply the algorithm to the minimal system average delay and user
equilibrium problems in a S/F network.

If the recursion is implemented on-line in a network, only equations (5) and (6) need be computed,
since the delays are obtained from measurements of acknowledgement delays on the actual network.
When the recursion is used off-line we will in addition compute the expected link, point-to-point, and
network delays as well. It is significant that the bulk of the computation concerns the delay calculations,
which are obviated in the case of on-line operation. The following equations consider the off-line case as
this includes the on-line version as a subset. :

First compute the nodal flow vector {messages/second) in terms of the current routing variables by the
matrix equation:

FO=[1-RT'A? ViVd#i. (1)
Then compute the total link flows (bits/second) on all links by equation (2):

5= vria Vi Vi, @
d

Then compute the average delay on link if for commodity 4 by the following equations. It is the same
for all commaodities:

Vi Vj#i. . 3

ioJi

Now compute the nodal delays as follows:
AD={I-RY'T ria® Vi | @)
y , :

Define SY as the reward strength associated with routing commodity d on link ij from node i. 4{ is
the average delay in seconds/message for commodity d from node i. Then compute the reward strengths
which are defined as the 1's complement of the normalized delays associated with selecting link ij, or

SH=1-@P+49Y4,,, ViV &)
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Now update the routing variables according to the nonlinear recursion:
e+ D=1+ 6(si0- 2 siario)), ©
L3

where G is a positive constant. Return to step 1 and repeat until a stopping condition is satisfied.
The values of G and 4,,, remain to be defined. We choose the normalizing constant as follows:

A9 = max{A}"’+ max{d " } )
i i

We choose the parameter G in the range, 0< G < 1. Actually, we can generalize the constant to make
G a function of node number, commodity, and time. The effect of such extensions on convergence rate
and stability remain to be investigated.

5.1, Initiglization

The initial routing variables must be specified to start the procedure, as well as to compute the
constant 4, as defined above. For reasons to be discussed below, it is desirable to choose an initial
routing which is deadlock free, loop free and feasible, if possible. Deadlock freedom and feasibility are
essential, while loop freedom is not mandatory for correct operation of the algorithm. Loop freedomi is
desirable, however, since it reduces the computational requirements. This point will be elaborated on
below. The method of demand scaling [5] can be employed to assure feasibility if indeed a feasible
solution exists.

5.2. System optimization

To compute the system optimal routing using the above recursion one need on ly replace equation (3)
above with the following equation (3');

8= aC(C;-f,F Vi j#i. 3)
35.3. Applications and extensions .

The above procedure can be used for other cost functions such as might arise in circuit switched
networks, or transportation networks, for example by replacing equations (3) or (3') and (4) with a
suitable cost function. For example, the total link flow function might be used if one seeks minimal hop
routing on either a capacitated or uncapacitated network.

The 2bove algorithm updates all commodities at all nodes at a given stage before proceeding to the
next. This is an all-parallel operation. One can also consider other variations, where nodes or
commodities are computed to their stationary values, one at time, while others remain fixed. This
corresponds to a purely sequential operation. Combinations of parallel and sequential operations are
also possible. Studies of the stability and convergence of such schemes remain to be carried out.

5.4." Discussion of numerical aspects

The major computational effort is associated with the matrix inversion to model the performance.
This complexity is not due to the proposed control algorithm but is common to all algorithms. It can be
shown the matrix requiring inversion can be expressed as a geometric series by
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[I-RT'=23(RY.
n=0

Since this series converges exponentially for any initial deadlock-free routing, an approximate
expression to any desired degree of accuracy can be obtained by a sum of finite terms involving only
matrix multiplications. In the case where the routing is loop free, the series contains only a finite
number of terms. Hence, the sum of the first N terms, where N is the number of nodes in the network,
yields the exact value of the required inverse. We also note that both deadlock freedom and loop
freedom can be checked in the course of the series evaluation. Deadlock corresponds to periodic
behavior in n of elements of (R’)", while the system is loop free if the (R’Y" = 0, the zero matrix.

5.5. Properties of the recursion

Proposition 4: Routing pattern class preservation. Admissibility is preserved by the recursion iff 0< G < 1.
The properties of loop freedom, deadlock freedom and bifurcation are preserved if 0< G <1.

Proof. In what follows the indices d and i have been deleted for notational convenience. The proof
consists of two parts. First we show that the recursion preserves the condition Eirj =1 for all ¢ and
second that it preserves the condition r, >0 for all ¢ iff r,(0)>0. If r,(0)= 0, then the condition r; = {) is
preserved for all ¢

The first part follows immediately from summing both sides of the recursion over j and usmg the
premise that 2, r.(0)= 1.

For proof of the second part define the first dxﬂ'erence as follows:

An())=r(t+1)- r(t)—rG( 2,5,‘“)

where the ¢ has been omitted from the right-hand side of the expression to simplify the description. The
second admissibility condition is equivalent to the inequality

—r<Ar.<1l-r
r,-Ar,Ir,.

We assert that

-(A-r)sS-2 8 <1-1,.
k

. The central expression takes on its maximum value when S; =1 and all other S,,; = 0 resulting in the
upper bound gwen above. The expression t'lkes on its mlmmum value when §; =0 and all other
S,‘,., 1, resulting in the lower bound since Z = 1-r. From this inequality the following holds:
-Gl —n)<dr<rG(l-r).

Hence, if ,G <1 and —r,G(1 - r)> r, then 4r; is admissible. Both conditions are satisfied f0sGsl
as stated i m the premise. Thls completu; the proof regarding the preservation of the admissible property.

Using the argument given in connection with admissibility but limiting the gains to the semi-
open interval 0=<G <1, it is apparent that the fixed or nonbifurcated, and the bifurcated
properties are also preserved by the recursion, as in the latter case the extreme values r(tyE{1,0} are
only attained as { — . Fixed routings are preserved as these can be shown to correspond to fixed points
of the recursion. The preservation of the bifurcated property in turn implies that the properties of
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loop-freedom and its complement, as well as deadlock freedom and its complement, are preserved
under the recursion. _

The preservation of routing pattern properties is a very important attribute of the routing algorithm
as it allows the designer to eliminate undesirable routing patterns at the time of initiation. For example,
it is relatively easy to produce an initial deadlock-free routing. The algorithm then assures that the
routing will be deadlock free for all time. Also, if one desires to fix certain routing variabies at 0 or 1 at
initiation, they will remain fixed at these values for all time. In this way any initial information about the
equilibrium routing pattern can be programmed in at initiation, which can accelerate convergence. On
the other hand, one must be careful not to overconstrain the solution set as the best routing strategy can
be eliminated at the outset. By choosing all routing variables to be initially bifurcated we are assured
that the algorithm will converge asymptotically to the equilibrium solution. However, the rate of
convergence can be decelerated due to the introduction of loops at initiation which are preserved
although reduced in strength as time progresses. Only in the limit as - are these loops eliminated
entirely. These and other claims will subsequently be verified. Before doing this, however, it is desirable
to discuss the issue of feasibility. ) '

In the relaxed versions of the optimization formulations of the equilibrium problem we have tacitly
assumed that a feasible solution exists. It is a nontrivial problem to determine an initial feasible routing
pattern. One approach is based on the method of demand scaling due to Fratta et al. [S]. Other
approaches are conceivable and this issue is now under study. Once an initially feasible routing has been
found it must be maintained at each step of the recursion. We have already noted that the recursion

- preserves deadlock freedom which implies that the flow conservation constraint is satisfied. On the

other hand the link capacity constraints are not necessarily satisfied by the discrete time recursion. Since
the feasibility conditions are complex when expressed in terms of the routing variables, we have elected
to simply check the capacity constraint at each stage. If it is violated, the step size G is reduced. This is
continued until a feasible routing pattern results. It should be emphasized that in an actual im-
plementation of the recursion in a network, this problem will not arise as the measured delays can never
be negative. The possibility of jumping over ‘the delay barrier is an artifact of the stationary model
employed for the queuing network in our numerical studies.

In the following we suppress the node and destination index for ease of presentation. However, it
should be understood that we are considering the multicommodity, multinode case.

Proposition 5: Fixed points of the recursion. (1) The extreme points of the simplex of admissible set of
routing variables are fixed points. These vertices correspond to deterministic routing. (2) Bifurcated routing
patterns such that

S(R)=p {q|r, >0},
SR)<p {plr, =0},

are fixed points of the recursion. Both claims are easily verified by substitution of the fixed points into the
recursion. It is relatively easy to show that no other fixed points exist.

5.6. Stability analysis

The stability properties of the continuous time version of the recursion were investigated in [18] for
the multicommodity case, while the stability properties of the discrete version of the recursion were
given in [19] for a stationary environment. The method employed to establish whether a fixed point is
stable or unstable involves linearization about the fixed point. Alternatively, nonlinear stability theory
employing Lyapunov functions can be applied. We do not include a complete analysis here due to space
limitations as the general proof requires considering many cases and is quite tedious. Instead, we will
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illustrate how the result is obtained in some of the cases. Before doing this, however, we wish to remark
that a stability analysis is useful in establishing that the fixed points of the recursion, which correspond
to user equilibrivm routing patterns, are stable while fixed points that are not equilibrium routing
patterns are unstable. Stability analysis is also useful in selecting values for the adaptive loop gains G to
obtain good transient performance.

Propesition 6: On the stability of fixed points. Among the set of extreme points of the admissible set of
routing variables only the exireme points correponding to the maximum of S; are stable.

Proof. To prove this we shall show that all points 7, = 8, are unstable where
k # argmax,{S;}

and the extreme point r, = 8;,; is stable where
j*=argmax;{S;}.

First consider j# j* and set r,=1-¢, 7. = ¢, all other r,,;;-= 0. Direct substitution into the recursion
reveals that

r(t+1)< AON

proving the assertion that & j=j« is unstable.
Now consider 7, = 8;. and let r,. = l-£and 2 e =86 n>0. Substitution into the recursion yields.

the inequality:

= r,..(1 + G(S(R)e — £ max(S, (R ))) :

By hypotheses if the maximum §;. is unique:

S;.(R)> max(S; {R)).

it

Hence, r,.(t+1)>r.(1) as required for stability of the point r; = ;.. It can be shown that if the
maximum strength is not unique, any convex combination of the set of maximizing choices is stable.

It can also be shown that the equilibrium bifurcated routing patterns are the only stable bifurcated
fixed points of the recursion. The method of proof involves linearizing the recursion about its fixed
points and applying discrete time linear stability theory. We summarize the main result in the following
proposition.

Proposition 7: Equilibrium routing pattern — stable fixed point equivalence. Equilibrium routing patterns
map uniquely into the stable fixed points of the recursion and vice versa. This is an important result for it
shows that if the initial routing pattern is bifurcated in all of its routing variables, then the routing pattern
will converge asymptotically 1o an equilibrium routing patiern.

6. Numerical results

The network delay model and recursion have been implemented in software and a variety of
numerical calculations were performed to investigate the transient as well as the stationary behavior of
the proposed system. Only a small but representative sample of these results is included here.
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Fig. 1. Network performance.,

The network topologies studied include the 10-node, 28-link petwork shown in Fig. 1 as well as two
small subnetworks containing three, and four nodes, respectively. The 10-node network was selected
since it has previously been used in stadies of learning automata routing schemes [35]. This choice
enabled certain comparisons to be made with our results. The small networks were selected to itlustrate
certain characteristics of the recursive scheme which can arise in the general case but were not evident
in the 10-node networks studied. A range of traffic loads, both uniform and nonuniform, were tested.
Various initial routing patterns and gain parameters were selected to exhibit the influence of these
parameters of system behavior.

The first set of experiments attempted to reproduce the case studied by simulation in ref. [35) where a
single nonzero demand A, was involved. System delay results for random routing, fixed minimum hop
routing, equilibrium routing, and system optimum routing are shown in Table 1.

Some disparity in the results is to be expected since we have employed a single exponential
distribution to model all packets, rather than two distinct constant packet sizes. The packet arrival rate
was set at A, = 21.48 packets/second, with a mean packet size of 256 bits. This resulted in a traffic
demand of 5500 bits/second.

The equilibrium and system optimal delays given for our model were those obtained after 25 iterations

* of the recursion. While there was some difference in the transient response for the user equilibrium and

system optimal cases, the stationary values were essentially the same. Fig. 2 shows the transient
response for the equilibrium case. We should mention that the system optimal curves were obtained
from applications of our recursion to a model with the link costs modified as described in Section 5.

Table }

Routing pattern Average packet delay  Average message delay (35)

Fixed 250 ms 211.8ms
Random 180 ms . 193.0ms
Equilibrium 144 ms 1473 ms
Optimal 144 ms -
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Fig. 2. Equilibrium routing transient response-

The next set of experiments was performed for a complete uniform traffic matrix. The demand per
origin destination pair was varied over the range 0.1-3.0 packets/second. The system average delay
versus load curves is displayed in Fig. 1 for the fixed, random, equilibrium, and system optimal routing.
Again it is apparent that there is no significant difference in the delay performance of the equilibrium
and the optimum routing patterns. Under light traffic conditions both schemes tend to minimum hop
routing, while under moderate to heavy traffic the routing patterns are bifurcated and not minimum hop
routing.
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Fig. 3. Sub-optimal equilibrium routing.
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To illustrate cases where the system optimal routing and the equilibrium routing differ significantly,
an asymmetric three node network (shown in Fig. 3) was considered. Link capacity was set at
56 kb/second for all oriented links. The only nonzero demand is Az = 90 pkts/second with a mean
packet length of 1024 bits. The initial routing matrix for commodity 3 was randomized, with each
outgoing link being selected with a probability of 0.5.

The approach to equilibrium is shown in Fig. 3 for four different values of the gain parameter, namely
G =(0.0,0.1,0.2,0.3). The effect of an increase in gain on the rate of convergence is apparent. For
equilibrium routing, the convergence is not generally monotone. In this particular case the approach to
equilibrium passed through the system optimal routing where delay is minimum and continued until the
path delay was equalized for the direct and the alternate route. During the latter phase the system delay
performance was deteriorating. Delay performance improved monotonically and exponentially for
system optimization, as shown in Fig. 4, the final difference between optimal routing delay and
equilibrium routing delay being of the order of 6%. The system optimum routing equalized the
marginal delays on the direct and the alternate path which resulted in more traffic being carried on the
alternate route.

The final set of experiments used the four node network shown in Fig. 5. These experiments were
performed to assess the impact on convergence of an initial routing pattern which is a quasi-inflection
point. A single nonzero traffic demand of A, = 21.48 packets/second was selected. The initial- routing
pattern for commodity 9 was as follows: 78 = 0.9, r§) = 0.1, r§) = 0.01, and r¥, = 0.99.

The transient behavior of the equilibrium and optimat schemes is shown in Figs. 5 and 6, respectively.
A plateau in the approach to the optimal routing pattern is apparent which is due to the quasi-infiection
point previously mentioned. The equilibrium scheme shows an initial degradation in performance but
ultimately improves performance to match that of optimal routing after 25 iterations. This particular
example demonstrates the importance of initial routing pattern in regard to the transient response. In
particular it suggests using an unbiased randomized pattern to avoid the quasi-inflection point con-
ditions.

In the version of the algorithm used to produce the above results, there was no check for feasibility.
In spite of this, in the vast majority of runs the algorithm did not violate the capacity constraints, There
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Fig. 4. System optimal routing transient response.,
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Fig. 5. Equilibrium routing transient response.

were exceptions, however, and in general it is necessary to reduce the step size parameter G sufficiently
to avoid hopping over the capacity constraint barrier. While admissibility is only assured for0=G <1,
it has been found experimentally that it is usually possible to increase the gain factor to 2 or 3 without
violating admissibility or introducing instability. Larger gains resulted in oscillatory behavior which
ultimately violated the feasibility or the admissibility constraints. This phenomenon should be studied in
more depth as it can be used to accelerate convergence of the scheme. In all of the runs the gain
parameter was fixed during the run, and equal for all nodes and commodities. The routing variables
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Fig. 6. System optimal routing transient response.
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were updated in a synchronous fashion at all nodes. Recursive schemes with time, commodity, or node
dependent gains, as well as asynchronous routing paramcter updates, are areas which remain to be
explored.

7. Implementations

The expected behavior of the cross-correlation learning algorithm under slow-learning conditions
(small G) has the same form as the recursion described in Section 5 [18, 19]. Accordingly, this learning
automaton scheme can be used to implement the recursion. Viswanathan and Narendra [38] have
described a technique for extending the L., automaton to S-model environments by appropriately
transforming the S-model responses into penalty strengths. It turns out that this resuits in the identical
equations for the action probability updates as does the corss-correlation scheme which operates
directly on the S-model responses. Accordingly, the recursion given in this paper models the behavior
of the learning scheme reported in [24] and [35] under slow-learning conditions as well. Other
implementations via sample mean automata are also possible, whereby several delay measurements are
taken between routing updates and the sample mean delays are used to compute the updated routing
pattern.

An alternative view of our recursion is, therefore, a model of the expected behavior of a class of
learning automata routing schemes. The fixed points of the recursion correspond to the stationary
distribution of the automata network combination. By using a sufficiently small G¢ which is propor-
tional to the mean nodal flow rate ¥ our recursion can be used to model the transient behavior of these
learning schemes as well. This is felt to be a major contribution of this paper as our analytic approach
is a cost-effective alternative to event simulation.

8. Conclusion

Analytic models for the equilibrium routing in store-and-forward networks have been described and
properties of the equilibrium solution have been derived. A decentralized nonlinear recursion has been
presented and its behavior has been characterized. The major result states that the set of equilibrium
routing patterns corresponds to the stable fixed points of the recursion. By appropriately modifying the
link delay function, the recursion has been used off-line to compute the system optimum routing pattern
as well. This enables comparison in terms of mean system delay performance with the equilibrium
routing pattern.

Numerical studies have been carried out which demonstrate the practicality of the approach. A
number of learning automaton schemes provide a means of implementing the recursion and, conversely,
the recursion can be used to model the expected transient and stationary performance of such schemes
under slow-learning conditions. This provides a cost-effective alternative to Monte Carlo simulation
when designing and evaluating such learning systems.

So far only fixed gains and synchronous updates have been studied numerically, although it is
apparent that generalizations are possible. An area requiring further research involves the study of
time-, node-, and traffic-dependent gain parameters as well as asynchronous updates in various orders.
The effect of these variations on convergence and stability is the major point of interest.

-

Acknowledgements

The research was supported in part by NSERC grant A1344. The author also wishes to express his
appreciation to students, G. Gauthier and T. Darveau who coded an earlier version of the model.




e

208 L.G. Masun | Store-and-forward networks
References

[1) R.G. Gallager and J. Golestaani, Flow control and routing algorithms for data networks, Proc. ICCC Atlanta, Ga. (Oct.
1980).
[2] M. Gerla and P.O. Nilsson, Routing and flow control interplay in computer networks, Proc. ICCC Atlanta, Ga. (Oct. 1980).
[3] H. Frank and W. Chau, Routing in computer networks, Networks | (1971} 99-112.
[4] J.M. Mcquillan, Routing algorithms for computer nctworks —a survey, NTC-77 28:1-1.
{5] L. Fratta, M. Gerta and L. Kleinrock, The flow deviation method: an approach to store-and-forward communication nctwork
design, Networks 3 (1973): 97-133. :
[6] A. Segall, The modeling of adaptive routing in data-communication networks, TEEE Trans. on Com. COM-25 (1) (1977).
[7] R.G. Gallager, A minimum delay routing algorithm using distributed computation, IEEE Trans. on Com. COM-25 (1)
(1977).
{8] F.H. Moss andt A. Segall, An optimal control approach to dynamic routing in data communication networks, IEEE Trans on
Automatic Control AC-27 (1982) 329-334.
[9] T.E. Stern, A class of decentralized routing algorithms using relaxation, IEEE Trans. on Com. COM-25 (10} (1977).
[10} M.A. Hall, Properties of the equilibrium state in transportation networks. Transportation Sci. 12 (3) (1978).
[11] S.C. Dufermos and F.T. Sparrow, The traffic assignment problem for a general network, J. N.B.S.-B. Mathematical Sci. 73B
(2) (1969).
[12) J.M. McQuillan, 1. Richer and E.C. Rosen, The new routing algorithm for the ARPANET, IEEE Trans. on Com. COM-28
(5) (1980). '
[13] D.P. Bertsekas, A class of optimal routing algorithms for communication networks, ICCC Atlanta (Oct. 1980).
[14] D.P. Bertsckas and E.M. Gafni, Projection methods for varational inequalities with application to the traffic assignment
problem, DARPA Report (Sept. 1980). -
[15] G.J). Foschini and J. Salz, A basic dynamic routing problem and diffusion, IEEE Trans. on Com. COM-26 (3) (1478).
[16] 1..G. Mason, Learning automata and telecommunications switching, Proc. of The Third Yale Workshop on the Applications
of Adaptive Systems Theory, New Haven (June 1983). ) .
{17} M. Schwartz and T.E. Stern, Routing techniqucs used in computer communication networks, IEEE Trans. on Com. COM-28
(4) (1980). .
[18] L.G. Mason, Self-optimizing allocation systems, Ph.D. Thesis, Univ. of Saskatchewan, Saskatoon (1972).
[19] L.G. Mason. An optimal learning algorithm for S-maodel environments, IEEE Trans. Automatic Control (1973).
[20] L. Kleinrock, Communication Nets: Stochastic Message Flow and Delay {McGraw-Hill Book Co., New York, 1964).
[21] P.). Burke. The output of a queueing system, Operations Rescarch 4 {1966) 699-704.
[22] F. Baskett, F.M. Chandy, R.P. Muntz and F.G. Palacios, Open. closed and mixed networks of queues with different classes of
customers, JACM 22 (1975) 248-260. April 1975.
(23] B. Gavish and S.L. Hantler, An algorithm for optimal route selection in SNA networks, IEEE Trans. on Commun. COM-31
(10) (1983). .
[24] M.S. Chrystall and P. Mars, Adaptive routing in computer communication networks using learning automata, ICCC Atlanta
{Oct. 1980).
[25] A. Segall, Optimal distributed routing for virtual line-switched data nerworks, IEEE Trans. on Commun. COM-27 (1) (1979).
{26} K.S. Narendra. A. Wright and L.G. Mason, Application of lcarning automata to telephone traffic routing and control. IEEE
Trans. on Systems, Man and Cybernetics SMC-7 (11) (1977).
[27] 1.G. Wardrop, Some theoretical aspects of road traffic research, Proc. Inst. Civ. Eng. Part I1, I (1952) pp. 325-378.
[28] D.P. Bertsekas and EM. Gafni, Projected Newton methods and optimization of multicommodity flows, Proc. 23rd
Conference on Decision and Control, Orlando, Fla. (Dec. 1982).
[29) C.E. Agnew, Dynamic modeling and control of congestion-prone systems, Dept. Eng.-Econ. Systems, Stanford University,
Stanford California, Tech. Report 10 (Jun, 1974).
[30] E.F. Wunderlich, L: Kaufman and B. Gopinath, The control of store and forward congestion in packet switching networks,
‘Proc. ICCC, Atlanta, Ga. (Oct. 1980).
{31] D.P. Bertsckas, Dynamic behavior of shortest path routing algorithms for communication networks, 1IEEE Transactions on
Automatic Control AC-27 (1982).
[32] B. Hajek and R.G. Ogier. Optimal dynamic routing in communication networks with continuous traffic, Proc. 23rd CDC,
Orlando, Fla. (Dec. 1982).
[33] P.E. Sarachik, A dynamic alternate route strategy for traffic networks, Proc. TEEE Conference on Decision and Control,
Orlando, Fla. (Dec. 1982).

“[34} P. Chu, R. Boorstyn and A. Kershenbaum, A simulation study of a dynamic routing scheme, Proc. IEEE Conf. (1981).

[35] P. Mars, K.S. Narendra and M. Chrystal, Learning automata control of computer communications networks, Proe. Third
Yale Workshop on Applications of Adaptive Systems Theory, New Haven (June 1983).

[36] K.S. Narendra and M.A.L. Thatachar, On the behavior of a learning automaton in a changing environment with application
to telephone traffic routing, IEEE Trans. on Systems, Man, and Cybernetics SMC-10 (5) (1980).




yta, Gu. (Oct.

L. (Ocl 1980)

ation network

{97,
COM-25 (1)

:EE Trans on
‘1977).

sical Sci. 73B
“om. COM-28

X
fic assignment

(1978).
= Applications

Jom. COM-28
3).

1964).
:rent classes of
mun. COM-31
ICCC Atlanta

£-27 (1) (1979).
control, IEEE

~-378.
s, Proc. 23rd

srd University,
hing networks,
‘ransactions on
oc. 23rd CDC,
n and Coatrol,

nf. (1981).
«s, Proc. Third

vith application

L.G. Mason | Store-and-forwurd networks 209

[37] O. Nedzelnitsky, Learning automata routing in data communication networks, Proc. Th
of Aduptive Systems Theory, New Haven (June 1983).

[3%] B.W. Boehm and R.L. Mobley, Adusptive routing techniques for distributed communications systems. Rand Corp.
Memorandum RM-4781-PR, ADG3027] (Feb. 1966). )

[39] RM. Glorioso, G.R. Gruenich and J.C. Dunn, Self-orgunization and adaptive routing for commumication networks, Proc.
EASCON. publication 69C31-AES (1969).

ird Yale Workshop on Applications




