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An Atmroximate Performance Model for a 
MGitislot Integrated Services System 

KE-QIANG LIAO AND LORNE G. MASON 

Abstract-In this paper, we present an approximate model (with finite 
or infinite waiting room) for an integrated service system with three types 
of traffic: a first offered narrow-band traffic, an overflow narrow-band 
traffic and a wide-band traffic. A narrow-band call requires a single 
server, while the number of servers required to serve a wide-band call is 
N .  The blocked narrow-band calls are lost while the blocked wide-band 
calls are delayed in a finite or infinite waiting room. Based on two 
assumptions with regard to the characteristics of the system, we resolve 
the system by decomposition. The corresponding improvements in 
numerical efficiency as well as in computational storage requirements are 
significant enough to enable use of the model within network optimiza- 
tion algorithms. The model provides a very good approximation for the 
system performance, that is the blocking probabilities of the two narrow- 
band traffics, the loss probability (in the case of finite waiting room), the 
probability of nonwaiting and the average waiting time of wide-band 
traffic. 

I. INTRODUCTION 
MONG the many architectures proposed for the ISDN A (Integrated Services Digital Network), those based on 

variable rate circuit switching (N x 64 kbits/s channels or 
slots) are attractive because they evolve naturally from the 
present telephone network. The centrally controlled digital 
cross-connect devices currently being deployed by most 
administrations provide an opportunity to offer new slow- 
switched services such as multimedia, multipoint telecon- 
ferencing and customer-controlled private networks. The 
similarities in functional requirements and traffic characteris- 
tics of these services suggests a potential for integration with 
existing circuit-switched services. 

Before introducing the contribution of this paper, we shall 
briefly review previous work in this area. A more extensive 
review of the pertinent queueing literature can be found in [2]. 
In [8], an architecture was proposed for integrating wide-band 
(WB) slow-switched calls, such as video teleconferences, with 
narrow-band (NB) calls such as telephone traffic. A method 
was described for computing end-to-end set-up delay, for 
multipoint WB calls, and loss probability, for point-to-point 
NB calls, in terms of link level models for these performance 
measures. 

An M-server queueing model was proposed for the trans- 
mission links. The demand consisted of two classes, W B  and 
NB, having Poisson arrival rates h2 and A I ,  respectively. WB 
and NB holding times are exponentially distributed with means 
p2-l and p ;  l ,  respectively. Each WB call requires N64 kbits/s 
channels which are seized and released simultaneously. If 
sufficient idle servers are not available at the arrival instant of 
a WB call, it is placed in an infinite queue until it can be served 
in order of arrival. A cutoff parameter ro specifies the 
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maximum number of WB calls which are allowed to be 
simultaneously connected. NB calls require a single 64 kbits/s 
server, and blocked calls are cleared from the system. 

A link performance model was derived, under the approxi- 
mating assumption of independent channel release for WB 
calls, using a technique originally due to Green [5]. Unfortu- 
nately, this model suffered from inaccuracy in some quantities 
of interest. In [2], exact results were derived, using Z- 
transform and matrix geometric techniques, and compared 
numerically. While these exact models provided insight into 
system behavior they involved considerable computation and 
were only applicable to trunk groups smaller than those 
typically found in practice. Problems of numerical stability 
were encountered for systems having a large number of 
servers. Fast accurate link performance models for a large 
range of server capacities are essential for network design 
purposes as these subroutines are typically called many times 
in the course of a routing optimization or network dimension- 
ing procedure. 

In our quest for accurate efficient performance models, a 
very successful approximation approach has been discovered 
and introduced in [lo]. It is this approach which is pursued and 
significantly extended in this paper. Stated informally, the 
approximation involves a decomposition on the number of WB 
calls in service and in queue. For each state of the WB 
process, the NB process is assumed to be in stochastic 
equilibrium, while the WB process is assumed to be Markov, 
with some transition rates dependent on the distribution and 
certain first passage times of the NB process. In [lo], a finite 
buffer system was analyzed where the stationary distribution 
of the WB Markov process was obtained by recursively 
solving the finite set of balance equations. An approximation 
to the infinite buffer system usig Welch’s results [12] for the 
special case where ro = 1, at most one WB call allowed in 
service, was also described. The analysis described in this 
paper differs in two important respects. First, we employ a 
generating function approach which permits the solution of 
both finite and infinite buffer systems. Moreover, the new 
method is more efficient in terms of computation time and 
storage for finite buffer systems as well. More importantly, we 
have extended the model to include two types of NB traffic, 
and have added two additional control parameters. This was 
found to be necessary when using the model in networks 
employing adaptive routing for NB traffic. We let A11 and 
denote the amval rates of first offered and overflow NB calls, 
respectively. While overflow traffic is peaked in conventional 
automatic alternate routing networks, the Poisson assumption 
is reasonable in the context of adaptive routing as state- 
dependent routing tends to smooth the overflow traffic offered 
to each trunk group [4]. First offered and overflow NB traffic 
must be handled differently, in nonhierarchical routing 
schemes, in order to avoid network instability as demonstrated 
in 111, [7], 191, [ 1 11. The control parameter introduced for this 
purpose rl is a static reservation parameter for first offered NB 
traffic. More precisely, an overflow NB call is lost if upon 
arrival, the number of occupied servers is L rl . The other 
control parameters r2 also introduced here for the first time, 
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protects the WB traffic from overload of the narrow-band 
traffic. More specifically, the system blocks NB calls when 
there are some WB calls waiting if the number of WB calls 
connected or in service is s r 2 .  It is shown that this flow 
control parameter improves link performance as quantified by 
a power measure. The model also includes the parameter ro of 
previous models, which protects NB traffic from overload of 
WB traffic and prevents bimodal instability with the attendant 
long blocking periods for NB traffic. 

To state succintly , the integrated service system considered 
in this paper supports three types of traffic: a first offered NB 
traffic, an overflow NB traffic and a WB traffic. A narrow- 
band call requests a single server while each wide-band call 
requires concurrent service from N of the M servers. Servers 
allocated to a WB call are seized and released simultaneously. 
Blocked NB calls are lost but blocked WB calls are delayed in 
an infinite or finite waiting room. Eventually, in the finite 
waiting room case, WB calls are lost if they arrive when the 
queue is full. The three different traffics are generated 
according to Poisson process with rates A l l ,  X12, and X2. The 
service times are exponentially distributed and the mean 
service times of NB and WB calls are, respectively, p r 1  and 
p2-'. WB calls enter service in their order of arrival. 

The paper is organized as follows. In Section 11, the 
assumptions made, and the decomposition approach em- 
ployed, are stated precisely. The coupling between the 
narrow-band and wide-band processes is made explicit in 
terms of certain coupling parameters. In Section 111, distribu- 
tions and blocking probabilities are derived, for the two types 
of NB traffic, along with the coupling parameters which 
quantify NB interference effects on the WB process. In Section 
IV, the WB process is analyzed by the method of generating 
functions for both finite and infinite buffer systems. Expres- 
sions are given for the average number of WB calls in queue, 
the mean waiting time and the probability of nonwaiting for 
wide-band calls. The buffer overflow or loss probability for 
WB calls, in the case of a finite buffer, is also given. 
Numerical results are presented in Section V, which show the 
accuracy of the approximation relative to an exact solution. 
The effect of various system parameters on performance is 
also displayed. Section VI concludes. 

11. THE APPROXIMATE MODEL 
For the WB services considered, it is expected that service 

times will be significantly longer than that of NB calls. 
Consequently, the NB process will have sufficient time to 
approach equilibrium conditions for each state of the WB 
process. It is, therefore, natural to make the assumption that 
the NB process achieves steady state instantaneously for each 
state of the WB process. Clearly, the NB distribution depends 
upon the number of WB calls in service as these servers are 
unavailable to the NB traffic. If the number of WB calls in 
service is les than ro, the NB distribution also depends upon 
whether the WB queue is empty or not. If this queue is empty, 
then all servers not occupied by WB calls are available to the 
NB traffic. On the other hand, if there are WB calls queued, 
this implies that the number of free servers must be less than 
N, for otherwise, the WB call at the head of the queue would 
enter service. Accordingly, the distribution of NB calls in 
service must reflect this fact. 

The NB traffic also has an influence on the WB traffic. In 
particular, when a WB call arrives, and the WB queue is 
empty, it can only enter service immediately if there are at 
least N servers idle. Assuming that there are i WB calls in 
service when such a WB call arrives, it will be placed in the 
queue with probability B ( i ) ,  which depends upon the current 
distribution of NB calls. Also if there are j > 0 WB calls 
queued and i WB calls being served, the WB call at the head of 
the queue can only enter service when N servers become 
available. This can occur with a WB departure or when 

Fig. 1 .  State diagram and transition rates. 

sufficient NB calls depart to free up N servers. The latter event 
will occur at an average rate p ( i )  which is the inverse of the 
average first passage time of the NB call occupancy process, 
from states with fewer than N free servers to the state with N 
free servers. 

This interference time, also called the exceptional service 
time or exceptional delay, is distributed in a complex fashion. 
In order to make the WB process tractable, we approximate 
this complex distribution with an exponential distribution 
having the same mean. In cases tested, the approximation 
appears to be a good two moment approximation. This 
assumption, together with the previous assumptions of Poisson 
arrivals and exponential service times, enables us to model the 
WB process ( i (  t), j( t)) as a two-dimensional Markov process 
where i ( t )  denotes the number of WB calls in service, and j ( t )  
is the number in the queue at time t. The state transition 
diagram for this WB process is shown in Fig. 1 where the 
influence of the NB coupling parameters B ( i )  and p ( i )  
determine certain transition rates. In the following sections, 
we analyze the NB and WB process in detail and derive 
performance measures in terms of these processes. 

For the reader's convenience we now summarize the two 
assumptions and the parameters of the system considered. In 
effect, the approximate model is based on the following two 
assumptions. 

1) The narrow-band occupancy achieves the stationary 
distribution while there are a fixed number of wide-band calls 
in service except when the WB service protection control 
operates, since in that case, the NB process is a pure death 
process. 

2) The exceptional service times are exponentially distrib- 
uted. 

The system parameters of the model are as follows: 
1) total number of servers: M 
2) number of servers allocated to a WB call: N 
3) cutoff parameter, maximum number of WB calls that can 

4) trunk reservation parameter: rl 
5) wide-band service protection parameter r2 
6) arrival rates of NB and WB calls: XI I ,  X12, A2 
7) service rates of NB and WB calls: pI , p 2 .  
The integrated service system is considered to be in the 

stationary state. For the finite waiting room case, no condi- 
tions are required for the existence of steady state for the joint 
process. As for the infinite waiting room case, the steady state 
will exist under the stability condition X2 < rop2. No formal 
proof is provided here for this stability condition, but it can be 
justified as follows. If there are some WB calls in queue, and 
the number of WB calls in service is less than ro, whenever 
there are N idle servers, the first WB call in queue will seize 

be in service simultaneously: ro 
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them and the seized servers are not released until the queue 
empties. We can also see that for any values of X I l  and XI*. if 
the number of WB calls in service is less than ro ( ro 5 M / N  ), 
there is a nonzero probability of having N idle servers. The 
maximum rate at which the system can serve the wide-band 
traffic is therefore r0,u2. 

111. NARROW-BAND PROCESS 
We will first calculate the influence of NB traffic on the WB 

process using the two assumptions made in Section 11. This 
influence is characterized by p( i ) and B( i ) where B( i ) is the 
probability that a WB arrival must wait when there are i WB 
calls in service and the queue is empty. Let Xl be the number 
of narrow-band calls in service. Due to the two assumptions 
made in Section 11, p( i ) - I ,  the average first passage time to 
the state XI = M - ( i  + 1)N, while there are i WB calls in 
service and some WB calls in queue, can be written 

M - i N  
p ( i ) - ' =  p ( j ,  M - ( i + l ) N ) - '  Pr (j/i) (1) 

where Pr ( j / i )  is the conditional probability that there are j 
NB calls in the system, assuming that there are i WB calls and 
at least M - ( i  + l ) N  + 1 NB calls in service, and p ( j ,  M 
- ( i  + l ) N ) - '  denotes the average first passage time from 
the state XI = j to the state XI = M - ( i  + l ) N .  

Due to the assumption that the system is in the steady state 
for NB calls when the WB call arrives to an empty queue, one 
can calculate the conditional probabilities Pr ( j / i  ) by using the 
following formulae. 

j = M - ( i + l ) N + l  

If M - rl 2 N (the overflow NB calls are blocked), 

p: I 

J !  
Pr (j/i)=: C,-' M-(i+ 1 ) N +  1 s j s M - i N  (2) 

with 

otherwise 

J .  

M-(i+ 1)N+ 1 s j s r l - i N  

r l - i N + l s j s M - i N  

with 

where 

A11 
p11=- 

PI 

The average first passage time to the state Xi = M - ( i  + 
1)N, while there are i WB calls in service and some WB calls 
in queue, can be calculated as follows. If we denote the first 
passage time from the state X l  = j to the state X I  = j - k by 
6j , j -k  and define 

mi = E {e,,;- I 1 (4) 
then 

p ( j ,  j -  k) - '  =E{e; , ; -k}  = m, + * * + mj-k+ I .  ( 5 )  
In the case where 0 5 i 5 r2, since the narrow-band 

arrivals are blocked, we have the simple formula 

1 

JP I 
mi=_ M - ( i + l ) N + l s j s M - i N .  (6 )  

We note that during such a period, since all NB arrivals are 
blocked, the NB process is a pure death process and is not in 
stochastic equilibrium. We do not assume such stationarity . 

If i > r2, we can calculate the mi by using the following 
recurrence relation: 

(7) 

where 

A11 + A12 for M- (i+ 1)N+ 1 s j s r l  - iN- 1 
(8) 

for rl - iNc j s M -  iN. 
A*.=  

J , J  

Here, denotes the arrival rate of NB calls when there are i 
WB calls and j NB calls in service. During this period, the NB 
process is assumed to be in stochastic equilibrium. 

B ( i ) ,  is the probability that a WB arrival must wait, when 
there are i WB calls in service and there is no WB call in 
queue. Noting that B ( i )  is the probability that M - ( i  + l ) N  
+ 1 5 XI 5 M - iN, we can therefore write 

where A:. are given by (8). 
The cafculation of conditional blocking probability of the 

two types of NB traffic can be decomposed into two regions as 
follows. In the first region, the NB process is assumed to be 
stationary and all NB blocking occurs because of no available 
servers where we take into account that (M - r l )  servers are 
reserved for first offered NB traffic. The states of the wide- 
band process defining this region are given by { i( t) > rz } and 
{ i (  t ) ,  5 r2, j (  t )  = 0} where i (  t) denotes the number of WB 
calls in service and J (  t )  the number in queue. In this region, 
the conditional blocking probability of the two NB traffic 
types, given that there are i WB calls in service, can be written 
(see [l]) if rl > iN, 

A12 
p12=-. 

Po( i) - (10) 
(PI1 + P l 2 ) "  

n! 

r l - i N - 1  

PB12(i)= 1 - 
n = O  



214 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 37, NO. 3,  MARCH 1989 

A .  Infinite Waiting Room Case 
Fig. 1 gives the state diagram in the case of infinite waiting 

room. We can obtain the global balance equations by equating 
the total rate at which the process leaves a state to the total rate 
at which it enters that state. We give here the balance 
equations. 

In the case where i = 0, 

XZP(0, 0) = pzP(1, 0)  

(P(0) + h2)P(O, 1) = XZB(OP(0, 0)  

where 

If rl I iN, 

M - I N  

PO(i ) - '  P I I  PBll (i) = 
( M -  iN)! 

where 

In the second region, all the NB calls are blocked due to the 
WB service protection control associated with the parameter 
r2 .  The set of the states of the WB process is the complement 
of that in the first region and is given by { i (  t )  I r2,  j (  t )  > 

Summing the conditional probabilities for these two com- 
01. 

plementary sets gives 

m 

o)+ C P(i,  j )  
i = O  j =  1 

rn m + c  
i=r*+l  j = O  

m 

PB12=C PB12(i)P(i, O)+C P(i,  j )  
1 = O  r2 I ; = I  

+ PB12(i)  i P ( i , j )  (12) 

where P ( i ,  J )  denotes the probability that there are i wide- 
band calls in service and j in queue. Evidently, if the number 
of waiting places is limited, for example, K ,  we have P ( i ,  j )  
= 0 for; > K .  

IV . WIDE-BAND PROCESS 
Now, we consider the wide-band process. With the two 

assumptions, exponentially distributed exceptional service 
times and stationary distribution for NB calls, the system 
characterizing the WB process can be modeled as a two 
dimensional Markov process ( i ( t ) ,  j ( t ) )  where i ( t )  is the 
number of WB calls in service and;( t )  is the number in queue. 
The state space is then the set {(i, j ) / O  I i I ro, 0 I j I K }  
in the case of finite waiting room ( K  is the number of waiting 
places) and { ( i ,  j ) / O  I i 5 ro, 0 I j I m} if the queue is 
infinite. The steady-state probability that the system is in state 
( i ,  j )  is denoted by P ( i ,  j ) .  

Welch [ 121 analyzed a generalized M / G /  1 queue system in 
which the first customer of each busy period receives an 
exceptional service. The model studied here can be considered 
as a generalization of his model with regard to the number of 
servers in the special case where the exceptional service times 
and service times are exponentially distributed. 

We will now develop the analysis for the two cases of 
infinite and finite waiting room. 

i = r 2 + l  J = o  

( p ( O ) + X z ) P ( O ,  j)=hzP(O, j -  1) 2 I j .  (13) 

In the case where 0 < i < ro, 

(X,+ipz)P(i, O ) = ( i +  l )p ,P( i+  1, O)+ip#( i ,  1) 

(b+iPZ+P(i))P(i ,  1) 

+h2(l -B( i -  l ) )P( i -  1 ,  O ) + p ( i -  l ) P ( i -  1, 1) 

=ipzP(i, 2)+X2B(i)P(i ,  O ) + p ( i -  l ) P ( i -  1 ,  2) 

(A2 + ipz + p( i ) )P( i ,  j )  = ipzP(i, j +  1) + X2P(i, j -  1) 

+ p ( i -  1)P(i-  1, j +  1) 2 I j .  (14) 

In the case where i = ro, 

m 

Q ; ( z ) = C  P(i ,  j ) ~ ' .  (16) 
J = o  

In order to calculate the blocking probabilities of NB traffics 
and the probability of nonwaiting of WB traffic, we need the 
probability of having i WB calls in service 

Qi(U = i PG, j )  (17) 
J = o  

and the probability that there are i WB calls in service and no 
WB calls in queue 

Q;(O)=P(i,  0). (18) 
From the balance (13), we obtain 

In the case where 0 < i < ro. we have 

+ p ( i ) P ( i ,  O ) + ( i +  l ) p 2 P ( i +  1 ,  0)  

+Xz(l -B( i -  l ) )P(i-  1, 0). (20) 
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To obtain the various performance quantities of interest, we 
first must evaluate the quantities P ( i ,  0), Qi( l ) ,  Q/ (1) and 
Qj2)(1) [ Q /  (1) and Qj2)(1) are, respectively, the first and 
second derivatives of Qi(z) at z = 11. These quantities are 
computed recursively, iterating on i by using (21), (23), (24), 
and (25) for i < ro and (21), (26), and (28) for i = ro. The 
recursion is initiated by using the closed-form expression for 
Qo(z) given by (19) and its derivatives. P(0, 0) is initially set 
to a constant and, following the calculation of the recursion, 
the probabilities are normalized. For a fixed value of i, the 
above quantities are computed in the order listed. The 
quantities P ( i ,  0), Qi(l) ,  and Q/ (1) are used directly in the 
calculation of performance measures, whereas the quantities 
Qj2)(1) for 0 5 i 5 ro - 1 are not directly used for 
performance evaluation but are required to evaluate Qro( 1) by 
L’Hospital’s rule. 

From the state diagram given in Fig. 1, we obtain the 
following recurrence relations: 

ip2P(ir O)=A2(1 -B( i -  l ) )P( i -  1, 0) 

Differentiating (22) and evaluating at z = 1 for 1 I i < ro, 
we then have the following equation: 

~ ( i ) Q j ’  (1) = (A, - i d Q i ( 1 )  + ~ ( i -  1)Q;- 1(1) 

-A2(l -B(i))P(i ,  0)+X2(1 -B( i -  l ) )P( i -  1, 0). (24) 

In the same manner, differentiating (22) twice and evaluating 
at z = 1, we obtain 

p( i )Qf) ( l )  = p ( i -  1) Q T, (1) + 2X2(Qi(l) 

- (1 - B(i))P(i ,  0)) - 2{ i p 2  + p ( i -  1) - X2> Q/  (1 ) .  (25) 
In the case where i = ro, we have p ( i )  = 0. By using 

L’Hospital’s rule, it is easy to obtain 

~ ( r o -  1)Qr’,-,(1)+X2(1 -B(ro- l ) )P( ro- l ,  0) 

ropz - hz 
Qro ( 1) = 

(26) 
The first derivative of Qro(z) can be written 

Hr’, ( z )  Gro ( z )  - G :o (2) H r o  ( z )  
Gro(z)’ 

(27) - - since the rate at which the process goes from the state (i, 0) to 
the state ( i  - 1, 0) must equal to the rate at which it changes 
from the state set { ( i  - 1, j ), j = 1 ,  * 1 ,  m} to the state set 
{ ( i , j ) , j  = 0, - e . ,  a}. 

where 

Hq(z )  = P (ro - 1NQro- 1 ( z )  - Qro- I (1)) Applying (21), we can obtain 

-A2(1-z)(1-B(r0-1))P(r0-1, 0) 

Gro(z)= - X 2 z 2 + ( X 2 + r o p z ) ~ - r 0 ~ 2 .  

where Using L’Hospital’s rule, we therefore have 

Gi(z)= - X 2 z 2 + ( h 2 + p ( i ) + i p 2 ) z - i p z .  

As for the case i = rot we can derive Qro(z) in a similar 
manner and the expression is the same as (22) except that p( ro) 
= OandB(ro)  = 1. 

Given Qi- ( z ) ,  we have two unknowns P ( i ,  0) and Qi( l )  in 
(22). However, we can calculate P ( i ,  0) by applying formula 
(21) and then it leaves us only one unknown to determine. 
According to the definition of a generating function, Qi(z) 
should be regular for I z I < 1, continuous for 1 z 1 I 1. Hence, 
every zero z of the denominator of Qi(z) must be a zero of its 
numerator if IzI 5 1. 

We can easily demonstrate that both the zeros of the 
denominator are real and that there must be at least one zero on 
or inside the unit circle. Therefore, Qi(l)  for 1 5 i < ro can 
be determined in a recursive manner. Following the above 
mentioned line of reasoning, if - 1 I t i  5 1 and 

-Az[; + ( X 2 + p ( i )  + ipz)&- ip2 = 0 

we have the following relation: 

P ( ~ o -  1)Q t- - 2X2Qro(1) 

2(ropz - X2) 
(28) - - 

If we denote the average number of waiting customers by 
AWN, the following relation is evident: 

‘0 

AWN = Q( (1). (29) 
, = a  

We can therefore calculate the average waiting time by using 
Little’s formula 

AWN 
AWT=-. (30) 

A 2  

The probability of nonwaiting is given by the following 
equation: 

‘0- I 

PNW= (1 -B( i ) )P( i ,  0). (31) 
i = O  
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B. Finite Waiting Room Case 
We consider now the finite waiting room model. The system 

is almost the same as in the case of infinite waiting room 
except that the queue length is limited to K .  In a similar 
manner, we can easily write the balance equations. 

In the case where i = 0, 

h2P(O, 0) = pCzP(1, 0)  

( P ( 0 )  + X2)P(O, 1) = X,~(O)P(O, 0) 

p ( O ) P ( O ,  K )  = X,P(O, K -  1). 

(p(O)+X2)P(O, j )=X2P(0,  j -  1) 2 1 j < K  

(32) 
In the case where 0 < i < ro, 

(X2+ip2)P( i ,  O)=(i+ l ) p 2 P ( i +  1 ,  O)+ip2P(i, 1 )  

+X,(l - B ( i -  l ) )P ( i -  1, O ) + p ( i -  1)P(i-  1, 1) 

(X2+ip2+pIiI)P(i, 2)=ip2P(i,  2) 

+X2B(i)P(i ,  O ) + p ( i -  I )P( i -  1, 2) 

( A 2  + ip2  + p(i))P(i ,  j )  = ip2P(i ,  j +  1 )  + X2P(i, j -  1) 

+ p ( i -  I )P( i -  1, j +  1) 2 1 j < K  

( i p 2 + p ( i ) ) P ( i ,  K)=X2P(i ,  K -  1). (33) 
In the case where i = ro, 

(rolr2 + A2)P(ro, 0)  = rop2P(ro, 1 )  

( ~ O P Z +  W Y ~ O ,  j ) = r 0 ~ 2 P ( r 0 ,  j +  1 )  

+p(ro- I)P(ro- 1, 1)+X,(1 -B(ro- l))P(ro- 1, 0) 

+p(ro-  l ) P ( r o - l , j +  l )+A2P(ro , j - l )  l l j < K  

(34) ropzP(r0, K )  = XzP(r0, K -  1). 
As in the preceding section, we define 

K 

Ql(z)= C P(i,  j ) z J .  (35) 
J = o  

In order to calculate the various performance measures of 
the system, besides the P( i ,  0), Qf(l), Q,' (1)- and Q?)(l), we 
must also calculate P (  i ,  K ) for obtaining the loss probability 
of WB traffic. We compute these quantities in a similar way as 
in the infinite waiting room case. The recursion equations are 
(38), (40), (42), and (43) for i < ro and (38), (41), (44), and 
(46) for i = ro .  

It is easy to obtain from the balance equation (32) 

In the case where 0 < i < ro,  we have 

+p(i)P(i ,  O ) + ( i +  I )p2P( i+ 1, 0) 

+X2(1-B( i -  I ) )P(i-  1 ,  O)+X,(l - z ) z K P ( i ,  K ) .  

(37) 
Since we have the following relation as (21) in Section IV-A 

ipzP(i, O)=h2(l -B( i -  l ) ) P ( i -  1, 0)  
K 

+p( i -  1) P(i-  1, j )  (38) 
J =  I 

we can write 

(39) 
where 

Hi(z>=P(i)Qi(l)Z + ~ ( i -  1)(Qi- I (z) -  Qi- I (1)) 

+X2(1 -z){(l -B(i))P(i ,  O)z-(1 - B ( i -  1)) 

P(i -  1, 0)} +A, ( ]  - z ) zK+IP( i ,  K )  

Gi(z) = - X2z2+ ( A 2 +  p ( i )  + ipz)z-  ip2. 

As for the case i = ro ,  we can derive Qro(z) in a similar 
manner and the expression is the same as (39) except that p( ro) 
= OandB(ro)  = 1 .  

We can see that given Qi- (z), there are three unknowns 
P(  i ,  0), P (  i, K ) and Ql( 1 )  in (39) instead of two in the infinite 
waiting room case. We can calculate P( i, 0) by applying (38) 
and then it leaves only two unknowns to determine. According 
to the definition of Qi(z), Q;(z) are polynomials of degree K 
and, therefore, they should be bounded in the complex plane 
{ z ,  I z I < m}. It follows that all the zeros of Gi(z) must also 
be zeros of Hi(z) .  

It is easy to show that the denominator G,(z) has just two 
zeros and that both of them are real. Then we can determine 
Qi(1) and P(i ,  K )  for 1 5 i < ro in a recursive manner as in 
the preceding section. Denoting the two zeros of G,(z) by < , , I  

and we then have 

H (Ei.1)  = 0 
Hi(Ei,2) 0. (40) 

This is a linear system of two equations from which we can 
calculate the two unknowns P(i ,  K )  and Q,(l). In the case 
where i = ro ,  one of the two roots Ero,l is 1 and the other Er0,2 

equals rop2X;I .  Since we should determine P(r0, K ), we can 
not use the root 1 which nullifies the term associated with 
P(r0, K ) .  Therefore, we use the following equality: 

Hro(tro.2) = O  (41) 
to calculate P(ro ,  K ) .  

we then have the following equation: 
Differentiating (39) and evaluating at z = 1 for 1 5 i < ro, 

p( i )Q , :  (1) 

= ( X2 - ip2)  Q;( 1 )  + p ( i  - 1 ) Q;- I (1 1 
-h2(1 -B( i ) )P( i ,  O)+h2(l - B ( i -  1)) 

P(i -  1, 0) - X2P(i, K ) .  

p(i)Q:)(l)  = p ( i  - 1) Q y!, (1) + 2h2(Q,(1) 

(42) 
In the same manner, differentiating (39) twice and evaluating 
at z = 1, we obtain 

- ( 1  -B ( i ) )P( i ,  0 ) - ( K +  1)P(i, K ) )  

- 2{ ip,+p(i- 1 ) -  X2} Qc (1). (43) 
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In the case where i = TO,  we have p ( i )  = 0. By using AWN, the following relation is evident: 
L'Hospital's rule, it is easy to obtain 

' 0  

~ ( r o -  1)Qrb-l(l)+X2(1-B(r0- 1))Wro-13 0) A W N = C  Q,'( l ) .  (47) 
Qro( l )  = , = O  

rOP2 - A2 
Letting PB2 be the loss probability of WB customers, we have 

(44) 
'0 

PB2 = P(i ,  K ) .  (48) The first derivative of Qro(z) can be written 

where 

H r o  ( z )  = P (ro - Qro - I ( z )  - Qro - I (1 1) 
-Xz(l - z ) ( l  -B(ro- l ) )P(ro- l ,  0) 

+ ( 1  -z)zKP(ro, K )  

Gro(z) = - X 2 z 2  + (A2  + r0p2)z - ~ O P Z .  

Using L'Hospital's rule, we therefore have 

1=0 

We can, therefore, calculate the average waiting time by using 
Little's formula 

AWN 
AWT = 

X 2 ( l -  PB2) ' 
(49) 

The probability of nonwaiting is given by the following 
equation: 

'0- I 

PNW = ( 1  - B(i))Qi(0) .  
i = O  

v. NUMERICAL RESULTS AND DISCUSSION 
In this section, the results of the approximate calculations 

are compared to the values determined from an exact analysis. 
The exact values are calculated by a method based on solving a 
set of balance equations for a finite waiting room system. The 
same technique was used by Gimpelson [3] to analyze a similar 
integrated services system but without any service protection 
mechanism. For the infinite waiting room case, in order that 
we can consider a finite waiting room system as approximately 
an infinite system, we choose the number of waiting places in 
such a way that the loss of wide-band traffic is negligible (< 
0.0001). For convenience, we define the following parame- 
ters: 

1) direct narrow-band traffic: A l l  = XII/pl 
2 )  overflow narrow-band traffic: A12 = X12fp1 

3) total narrow-band traffic: A I  = A l l  + Alz 
4) wide-band traffic: A2 = N X 2 / p 2  
5) ratio of service times: p = pI  /p2  . 
Figs. 2-3 show the corresponding approximate and exact 
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Fig. 4. Effect of @ on the approximation. 

curves for the blocking probabilities PBI I , PB12, respec- 
tively, for direct and overflow NB traffics, the loss probability 
PB2 (in the case of finite waiting room), the probability of 
nonwaiting PNW and the average waiting time AWT for WB 
traffic. The system parameters are 1) M = 96, N = 24, ro = 
3,  rl = 94, r2 = 0, @ = 10; 2) M = 96, N = 16, K = 10, ro 
= 5 ,  r l  = 94, r2 = 1 ,  @ = 10. The offered traffics are A I  = 

40a. The approximate results are presented by dotted curves. 
In these figures, we calculate the system performance with the 
parameter pl set to one. The unit of waiting time is therefore 
the mean service time of NB calls. 

Since wide-band service times are generally longer than 
narrow-band service, we have assumed that narrow-band 
occupancy achieves the stationary distribution while the 
number of WB calls in service is fixed. It would be interesting 

20 + 40(1 - a), All = 0.8A1, Ai2 = 0.2.41, A2 = 10 + 

to see the effect of the ratio of service times @ on the proposed 
approximation. For the infinite waiting room case, Fig. 4 
gives a comparison of the approximate and exact results as a 
function of @. In these graphs, we take the same system 
parameters as Fig. 2, but the offered traffics remain fixed: A l I  
= 32, A12 = 8, and A2 = 30. 

From these figures, we can see that the models give a very 
good approximation to the system performance. In the case of 
equal service rates pl = p 2 ,  which is in contradiction with the 
assumptions, the approximation also gives extremely good 
results, except for P B I I  and PBI2 (the relative errors are, 
respectively, 0.134 and 0.089). From the cases we have 
tested, we noted that the relative errors concerning the 
probability of nonwaiting for WB traffic increase as the total 
traffic is raised (the relative error passes beyond 0.05 when the 
total traffic > M ) .  However, throughout the useful range of 
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operation (the blocking probability of direct NB traffic is less 
than 0.2), the agreement is very good (relative error ~ 0 . 0 5 )  
for all the cases we have tested. 

In the following, all the numerical results are calculated by 
the approximation. The systems we consider are with an 
infinite waiting room and rl = M .  It follows that PBll  = PBI2 
and PB2 = 0. 

The oscillatory variation of the blocking probability of NB 
traffic was discovered by Gimpelson [3]. In [2], De Serres and 
Mason pointed out that the oscillatory variation appears in 
both the blocking probability of NB traffic and the mean 
waiting time of WB traffic in a delay/loss model. The 
oscillations can be explained by the fact that a single NB call 
can keep a WB call out of service by effectively reserving a 
number of servers for narrow-band traffic. The degree of 
oscillation depends on the number of servers required by a WB 
call as shown by Figs. 5-6. In these two graphs, the total 
number of servers M is 120 and there is no protection of the 
wide-band traffic (rz = - 1). (Here we use r2 = - 1 to 
indicate the case without wide-band protection; in fact, - 1 
has no meaning.) The offered traffics are A I = 20 + 60( 1 - 
a), A2 = 10 + 60a and the total traffic is 90. This 
characteristic feature of systems carrying mixtures of traffic 
with different bandwidth requirements can result in dramatic 
consequences since the relative percentage of traffic generally 
varies with time. It can also complicate dimensioning proce- 
dures. 

At the cost of degradation of the grade of service of narrow- 
band traffic, we can remove this undesirable feature by using a 
large r2.  Figs. 7-8 present the curves of the blocking 
probability of the NB traffic and the average waiting time of 
WB traffic for different r2. In the two graphs, we choose the 
system parameters: M = 120, N = 24, ro = 4 and the total 
offered traffic is 90. It is easy to understand that the protection 
of wide-band traffic prevents the case where a small number of 
NB calls keep a WB call out of service from lasting. As 
mentioned in Section 11, the parameter r2 protects the wide- 
band traffic against overload of the narrow-band traffic. 
Augmenting this parameter results in smaller wide-band delay 

m 
e. 

~ ~- 

0 . 1 .  

0 .08 .  

0 .06 .  ,.,,I 
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Fig. 7. Effect of r2 on narrow-band blocking. 
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Fig. 8.  Effect of r2 on the average waiting time. 
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Fig. 9. Effect of r2 on narrow-band blocking 

and larger narrow-band blocking. In order to choose a suitable 
r2 ,  it is necessary to characterize the combined effect of 
blocking and delay. As in [2] and [6], the combined effect is 
measured by 

(51) 
Xll(1 -PB11)+h2(1 -PB12) 

(XI1 + X12)(1 + PZA W T )  
PR = 

called power factor. Figs. 9-11 present, for different r2, the 
curves of blocking probability of NB traffic, the average 
waiting time of WB traffic and the power as a function of the 
narrow-band traffic. The system parameters are M = 120, N 
= 24, ro = 4 and the wide-band traffic remains fixed A2 = 
50. From these figures, we can see that the parameter r2 does 
protect WB traffic against NB traffic. If we measure the 
combined effect of blocking and delay by the power factor, 
without constraint concerning the narrow-band blocking, it 
seems to us that r2 = ro - 1 is the best solution. 

Fig. 12 presents the effect of the narrow-band protection 
parameter ro on the power factor as a function of wide-band 
traffic Az. The NB traffic remains fixed A I  = 40 and the 
system parameters are M = 120, N = 24, r2 = - 1, p = 10. 
We can see from this figure that reducing ro results in smaller 
power factor, which is the price paid to protect the narrow- 
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band traffic. We note that the protection mechanism of 
narrow-band traffic has always an effect on the wide-band 
traffic process since ro operates irrespective of the state of 
system. This is not the case for wide-band protection which 
operates as a function of the state of system (the queue is 
empty or not). This is why the protection of wide-band traffic 
results in larger power factor. 

VI. CONCLUSION 
An approximate performance model for an integrated 

service system in which some calls require concurrent service 
by more than one server has been presented. The model is 
based on two assumptions: 1) the narrow-band occupancy 
attains the stationary distribution for a fixed number of WB 
calls in service and 2) the exceptional service times are 
exponentially distributed. From the numerical results, we can 
see that the approximation gives extremely good results 
throughout the useful range of operation. Since there is no 
linear system to solve, this model is efficient in calculation 
speed and the memory spare is no longer a limitation. These 
important improvements enable its use within network optimi- 
zation algorithms. 

The cutoff priority parameter ro, which protects narrow- 
band traffic results in smaller power factor. The feasible range 
of choice for ro is limited by the requirement for system 
stability, hz < Top?.  However, it is renuired to prevent long 
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blocking periods and bistable behavior for some values of the 
system parameters [ 101. The trunk reservation parameter rl 
will result in a smaller power factor for a single link, but it 
significantly improves the overall performance of an inte- 
grated service network employing alternative routing for NB 
traffic. The introduction of the wide-band traffic protection 
parameter r2 protects WB traffic against overload of NB traffic 
and improves the overall system performance even in the case 
where NB traffic is not unusually heavy. We have also shown 
that using a large r2 can remove the undesirable feature of 
oscillation. 

The results to date indicate the importance of properly 
selecting the control parameters ro. r l ,  and r2 .  We are 
currently investigating the problem of optimal control of this 
and other multiservice networks. 
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