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Abstract. We study the capacity allocation problem in service overlay networks (SON)s 

with state-dependent connection routing based on revenue maximization. We formulate the 

dimensioning problem as one in profit maximization and propose a novel model with several 

new features. In particular the proposed methodology employs an efficient approximation for 

state dependent routing that reduces the cardinality of the problem. Moreover, the new 

formulation also takes into account the concept of network shadow prices in the capacity 

allocation process to improve the efficacy of the solution scheme.  
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Section 1: Introduction:  

 
The key components of Service Overlay Networks, (SON)s, are the SON gateways 

and the interconnecting logical links that lie on the top of one or more physical links. 

SON gateways can be treated as routers that relay service specific data and perform 

control functions. SON logical links provide connectivity to the SON network 

through existing physical links. The SON gateways are connected to adjacent 

gateways by the logical links. To provide SON service, the SON provider has to 

purchase bandwidth and QoS guarantees from the corresponding network 

infrastructure owners via Service Level Agreements (SLA). It is clear that the 

optimum amount of capacity to be purchased from the infrastructure owners, so as to 

maximize the net revenue, is an important issue to be faced by the SON providers.  

The literature for the network dimensioning problem is usually related to circuit 

switched networks such as the telephone network. We shall introduce some of the 

works that are related to ours. In [21], Gavish and Neuman suggested a method based 

on Lagrangian relaxation to allocate network capacity and assign traffic in packet 

switching networks, but their model assumed that the traffic is routed through a single 

path. Medhi and Tipper did comparisons of four different approaches in [20] to a 

combinatorial optimization problem that describes a multi-hour network 

dimensioning problem for ATM networks, but their study was also based on the 

assumption that traffic is routed through a single path. Instead of maximizing the net 

income generated from the network, both of the papers chose to compute the 



minimum capacity allocation costs for the networks. Duan et al [22] investigated the 

capacity allocation problem of the SON network in order to maximize the net income 

gained by the SON network. Their model was also confined to networks with single 

fixed routes for the traffic. Girard proposed in [6] an optimization framework for 

dimensioning circuit-switched networks employing a more flexible load sharing 

alternative routing scheme. This framework was applied in [5] for the dimensioning 

of telephone networks. The formulations in [5] and [6] were problem specific in that 

they dimension circuit-switched networks consisting of only one-link and two-link 

paths. Shi and Turner presented in [7] a heuristic approach to size SON multicast 

networks. Their main focus was on the routing algorithms that optimize the delays 

and the bandwidth usage on the multicast service nodes. The dimensioning uses a 

simple algorithm that equalizes the residual capacities across the multicast network. 

In our study, we dimension the SON network based on revenue maximization. In 

this aspect we are not only considering the net income in the objective function, but 

we are also incorporating the notion of average network shadow price in the 

dimensioning process in order to reflect the sensitivity of net revenue to the 

dimensions of the links. We consider the SON network as a generic network and 

provide a framework for dimensioning based on the traffic rewards. The 

dimensioning problem is formulated as a constrained optimization problem for two 

distinct routing models. From the KKT conditions of the optimization formulation, we 

devise an iterative method that leads to near-optimal solutions. Compared with the 

previous studies reported in the literature, our models allow more flexible routing 

schemes whereas each path can be comprised of an arbitrary number of links. We also 

incorporate two sophisticated routing schemes to better approximate the state 

dependent routing scheme assumed in the SON environment. We present analytical 

optimization models, and include detailed discussions of the implementation issues, 

as well as numerical studies that verify the models’ accuracy. A novelty of our study 

is that we provide an economic integration of the control layer and the dimensioning 

layer through the use of average shadow price concept.  

This article is structured as follows: section 2 will be devoted to the description of 

routing algorithms used in later sections. The mathematical formulation is included in 

section 3 together with the details of the analytical models for the network 

dimensioning problem. We discuss implementation issues and present numerical 

results in section 4. The conclusion is given in section 5. 

 

Section 2: Routing Algorithms 

 
As mentioned above, in our SON framework we apply the state dependent reward 

maximization routing strategy; such as the MDPD strategy [4], in order to achieve 

integrated economic framework. Nevertheless, to simplify analytical performance 

evaluation, in our dimensioning model we approximate MDPD routing strategy by a 

routing based on a load sharing concept. The pure load sharing routing strategy is 

inefficient as calls can be lost even when valid available paths are present which is not 

the case with MDPD approach. To overcome this issue we employ two relatively 

simple yet efficient load sharing routing strategies to provide conservative 

approximations to the MDPD strategy. The blocking performances of these two 



strategies provide upper bounds for the MDPD strategy. The dimensioning solutions 

based on them are therefore conservative. 

The first routing strategy used here is known as the “combined load sharing and 

alternate routing” strategy [11]. We denote this strategy as routing strategy I and the 

corresponding optimization model as model I throughout the article. In this routing 

strategy, the potential paths for a traffic flow are ordered to form a set of routing 

sequences. Each of these routing sequences consists of all the potential paths for the 

traffic flow. The paths are arranged in different orders in different routing sequences. 

Every routing sequence bears a load sharing coefficient; the traffic flow is assigned to 

a routing sequence with probability proportional to the load sharing coefficient of that 

sequence. The traffic flow must attempt all the paths in its assigned sequence before 

declaring connection failure. A connection would fail if and only if all the paths in the 

assigned sequence are blocked. Figure 1 shows an instance of such a scheme for the 

traffic flow between the nodes S and D, fSD. In that example, the first routing sequence 

carries a fraction a1/(a1+a2+a3) of the total traffic between nodes S and D, and the 

flow fSD must attempt paths in the order P1, P2, P3. The second sequence in the 

example carries a2/(a1+a2+a3) of the traffic and the paths must be attempted in the 

order P2, P3, P1. The third sequence carries a3/(a1+a2+a3) of the traffic flow fSD, and 

the paths must be attempted in the order P3, P1, P2.  

 

 
In the second strategy considered for approximation of MDPD routing, each 

potential path for a particular traffic flow is assigned a routing coefficient. First, the 

traffic flow is assigned to a path with probability proportional to the routing 

coefficients. If this path is blocked, the scheme will attempt the remaining n-1 paths 

with probabilities proportional to the paths’ original routing coefficients. If the new 

path chosen by the scheme also turns out to be blocked, the traffic will attempt the 

remaining n-2 paths with probabilities proportional to their original routing 

coefficients. This process continues until either the traffic flow is routed or until the 

scheme discovers that all n paths are blocked. Figure 2 depicts a case of such a 

routing scheme. In that scenario, path P1 is discovered blocked by a traffic flow 

assigned to it. The traffic therefore overflows to the remaining paths P2 and P3, with 

probabilities directly proportional to their routing coefficients a2 and a3. In the 

remainder of this paper the second strategy is referred to as routing strategy II and the 

corresponding optimization model as model II. 



 
 

Section 3: The Optimization Models 
 

We treat the SON network as a generic network and the SON gateways as generic 

networking nodes that ship data to generate revenues. In the following discussion we 

shall use “SON gateways” and “nodes” inter-changeably. The traffics considered here 

are homogenous traffics with the same bandwidth requirement following the 

exponential distribution for both their inter-arrival time and service time. We assume, 

at this stage, that the network topologies, the traffic intensities, the GoS requirements, 

and traffic revenues (or service prices) are all given parameters. We also assume that 

there exists at most one physical link between any pair of nodes in the underlying 

network, although it is possible that there exist more than one physical links. The GoS 

requirements are specified in the form of blocking probabilities. We formulate the 

problem as a dimensioning problem for the links in the network. For the sake of 

implementation, we leave most of the partial derivatives in the equations so as to 

enable numerical methods such as the finite difference method to be employed.  

Without loss of generality, let’s assume the paths in the sequence set q are indexed 

by the order they will be attempted in routing scheme I. It is easy to see that because 

we assumed every routing sequence for a particular flow fij. contains all the 

corresponding end to end paths, the blocking probability for a particular traffic flow fij. 

under strategy I can be written as:  
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where αq
ij 

is the probability of selecting the sequence q for traffic pair fij., rk
q
 is a 

particular path indexed by k in the routing sequence q of the traffic pair fij., Rij are all 

the end-to-end paths for the flow fij.. To further simplify (1), we can assume 

independence of the paths rk
q
, k=1,2,…|Rij|. As a consequence of this assumption, all 

the conditional probabilities of (1) are reduced to the unconditional probabilities, 

equation (1) is now given by: 
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where Br is the blocking probability for a particular path r. The approximation of (2) 

is exact when none of the paths r shares a common link. For the sake of simplicity we 

use (2) in the formulation of our model. A sidebar note is that the calculation of (1) 



can be equivalently viewed as finding the probability such that at least one of the cut 

sets with respect to Rij has all its elements failed, in our case it is possible to use a 

recursive technique to tackle that without the need of finding the sets explicitly, we 

shall have a short discussion about this in section 3. 

 Now let’s go to derive the overflow traffic generated by routing strategy I. We 

can see the amount of traffic overflowing to a particular link s, as a result of routing 

scheme I, is as follows:  
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where rm are all the paths preceding rk in the sequence q. We define r0 to be a dummy 

path that does not consist of any physical links, and we artificially defined 
0r

B =1 for 

consistency. Note that we use the same independence assumption as that of (2) in 

formulating the blocking probabilities. In the expression (3), δA = 1 if event A is true, 

and δA = 0 if event A is false, q refers to a particular sequence of paths, and Qij is the 

set containing all the sequences of paths for the flow fij. A particular traffic flow fij. 

will overflow to the link s if this link is used by a path rk which is contained in one of 

the sequences, q, inside the set Qij, and all the paths rm  before the path rk in the 

sequence q are blocked. This results in the expression (3) which will be useful in 

calculating the link blocking probabilities for our model.   

We present the optimization model for routing strategy I first, and denote it as 

model I throughout this article. Optimization model II for the routing strategy II is 

similar although the expression for overflow traffic is more complicated. Let’s first 

define the variables being used in model I in the table below: 

 
Table 1. The set of expressions used. 

 

Cs(Ns) = the cost function for having a capacity of Ns on link s. 

wr
ij  = the revenue generated by traffic flow fij. (i.e. traffic from node i to node j) through 

path r. 

Br   = the blocking probability of path r. 

λij    = the offered traffic in terms of number of connections for the flow fij . 

λr
ij   = the carried traffic for flow fij. on a path r, it is equal to λijΣq (αq

ijP(Cr
q)), where αq

ij 

is the load sharing coefficient corresponding to a sequence q, and P(Cr
q) is the 

probability that the traffic is being admitted at route r of the sequence q, where 

q∈Qij. 
ij

L  = the upper bound for the end-to-end blocking probability of the flow fij.. 

αq
ij = the probability of selecting sequence q for the flow fij.. 

E(as,Ns)= the Erlang-B equation for the link s, with offered traffic as and capacity Ns. 

Rij = the set containing all the possible end-to-end paths for the flow fij.. 

Rs = the average shadow price for the link s, this is a sensitivity measurement of the total 

revenue with respect to the link capacity of link s. 

 

The optimization formulation is shown in equation (4), where x
ij
, v

ij
, uq

ij
, ys, zs are the 

KKT multipliers. The Lagrange equation for (4) is shown in equation (5).The first 

order KKT conditions of (5) are listed in equation (6). Equation (6.III) involves the 

term R
s
, which is the sensitivity of the total revenue with respect to the link capacity 



of link s and is derived as a partial derivative of the revenue with respect to the link 

capacity. This term tends to be ignored in some of the literature, but we discovered 

that the addition of this term enables our methodology to yield better results, since it 

takes into account of the impact of the link capacities on the total revenue generated 

and reflects the knock-on effects of dimensioning link s over the total revenue. This 

term is also known as the average network shadow price [4] for the link s. Link 

shadow price is being used extensively in the routing literature as a control parameter 

to improve network resource utilization and therefore the incorporation of the average 

link shadow price in the dimensioning process forms an economic framework that 

integrates the dimensioning model with the control model of the SON network. 
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Note that the KKT multiplier vij at left hand side of equation (6.I) is independent of 

the path taken, r. As a consequence, the expression at the right hand side of the 

equation should have the same value for all the paths carrying a non-zero traffic 

portion of the flow fij.. This equation can be treated as the optimality equation for the 

optimal routing problem. This implies that all the paths with a positive share of the 

traffic fij. should have the same marginal cost for the flows they carry. This is a well 

known fact for system optimality in the literature. Because of the complementary 

slackness conditions, we can further conclude from (4) that all paths with positive 

shares of traffic fij. should have the multiplier uq
ij being 0. Together with the 

multipliers ys from the previous iteration (or from the initial values) we can solve (6.I) 

for αq
ij. With the routing coefficients αq

ij and the multipliers x
ij
 (from the previous 

iteration or from the initial values) we can calculate the multipliers ys from (6.II). 

With the multipliers ys we can solve the optimal dimension sub-problem in (6.III).  
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Then with all the multipliers and the optimization variables, we can solve the dual of 

(5) for the multipliers x
ij
 which is: max( ( ))

x
L x , where L(x) is the function 

,
min
N

L
α

 

with x as the variable, L(x) is continuous and concave for any primal, but if the primal 

problem has non-unique solutions. L(x) is non-differentiable. To get around with this, 

we employ the sub-gradient method to maximize L(x). With the new multipliers x
ij
, 

we can go back to equation (6.I) and restart the whole process again until the solution 

converges. When the solution converges, that means equations (6.I), (6.II) and (6.III) 

will all be satisfied, which implies the first order KKT conditions of the optimization 

problem are satisfied and the solution of the dimensioning problem arrives at a 

stationary point. It is always possible to perform a second order optimality condition 

check to test for local optimality, although the computation of the Hessian matrix for 

the Lagrange equation (5) can be expensive as the size of the Hessian is of order |S|
2
, 

where S is the set containing all the links of the network. The main solution given by 

this model is the dimension of the individual links. The iterative solution scheme 

employed here is similar to that of [6], but the formulation of [6] would be 

exceedingly complicated if it is restructured to suit the multi-link paths in the SON 

environment. Our formulation, on the other hand, can tackle paths consisting of an 

arbitrary number of links without making any modification. Moreover, we take into 

account the notion of average shadow price in dimensioning each of the individual 

links. This is something missing in other studies. Additionally, the more sophisticated 

routing schemes used here also improve the network resource utilization, which in 

turn helps to alleviate the problem of over-dimensioning in the final solutions. 

Though routing strategy II appears to be more complicated in the sense that it 

attempts the paths to choose a route, it can be proven that the blocking performance 

expressions are the same as strategy I. Both strategies would declare connection 

failure for a particular traffic pair fij., if and only if all the possible paths are blocked. 

In other words, we can use the same approximation (2) to represent the blocking 

performance for strategy II. The expression for overflow traffic of traffic fij., however 

turns out to be more complicated for strategy II. We assume that strategy II only 

overflows unblocked paths, which is the result of maintaining an up-to-date path 

status table. We can show that the expression for overflow traffic to a link s, is 

represented by (7). Note that in this equation, |Rij| is the cardinality of the set Rij. ij

k
Θ is 

a set that contains some particular sets as elements - each of the elements is itself a set 



that contains k different paths for the traffic fij., we denote these elements by bk
ij
 , and 

ij

kΘ  holds all the possible bk
ij
. 
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Ar in the above equation denotes the event “path r is not blocked”, and Bk denotes the 

event “only the k paths in bk
ij
 are blocked”.  
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The optimization model for routing strategy II is similar to that of strategy I 

although the equations are more complicated because of the overflow pattern. To save 

space, we shall only list the set of first order KKT conditions in (8). Again R
s
 is the 

sensitivity of the total revenue with respect to the link capacity of link s. The above 

KKT conditions can be solved by using an iterative approach as was done in model I.  

 

Section 4: Numerical Results and Discussions 

 
We conducted a series of numerical studies with the mathematical models. We feel it 

is useful to give a brief discussion of some of implementation issues of both models. 

In our implementations we use the Frank-Wolfe method to compute the load sharing 

coefficients. As the Frank-Wolfe method may converge very slowly when it is close 

to the optimal solution; we artificially supply an upper bound for the number of 

iterations. This slightly decreases the accuracy of the solution, but in general the 

efficiency of Frank-Wolfe method is improved. 

We use the Erlang B formula extensively in the models here. Direct implementation 

of the Erlang B formula suffers from two major problems. First, the magnitude of its 

components explode with the capacity and the offered traffic. Second, direct 



calculation of the Erlang formula would require a time complexity of O(n
2
) where n is 

the capacity of the link. Both problems can be circumvented by the method mentioned 

in [18], and the time complexity is reduced to O(n) in our implementation. One 

further difficulty related to the original Erlang formula is that it is a discrete function 

in the capacity. A continuous version of Erlang B equation available in the literature[8] 

involves complicated components that make the computation inefficient. We take 

advantage of the fact that the Erlang B formula is a strictly decreasing function in the 

capacity, and use the linear interpolation method to approximate the continuous 

valued capacity. 

For model II, a great deal of the difficulty lies in the computation of the expression 

P(Bk|Ar). A recursive style algorithm can be used to calculate the overflow traffic 

elegantly. We employ a recursive DFS (Depth First Search) algorithm [19] to search 

through all combinations of path failures that can result in k path failures so as to 

avoid the complexities involved in calculating the sets ij

k
Θ  explicitly. The same  

code can also be exploited to find all the cut sets between node i and node j. 

Preliminary numerical studies were conducted on two relatively small sample 

networks for both of the models. The first sample network is illustrated in figure 5. 

For this network, we assume there are two pairs of traffic, one is from node A to node 

B, with an average connection rate of 6 units and revenue of 7 units for each carried 

connection, and the other traffic is from node A to node C, with an average connection 

rate of 5 units and revenue of 8 units per connection. The GoS requirement is 0.1 for 

both traffic demands.  

 
The following table summarizes results obtained by the two models, the results are 

rounded to integers: 

 
Table 2. Results for the sample network in figure 5. 

 
Link index 1 2 3 4 5 Cost Net reward 

Model I 0 0 13 20 9 51 28 

Model II 0 0 12 20 9 50 29 

 

The GoS constraints are satisfied by both assignments. Model II generates slightly 

more net reward than model I. A plausible explanation to this phenomenon is that in 

general the routing strategy I can generate different load distribution on the 

considered path when compared with the routing strategy II. This fact, combined with 

significantly larger number of variables to optimize in case of strategy I, may lead to a 

more suboptimal solution in model I. The convergence graphs for both models are 

shown in figure 6 below, the y-axis corresponds to the net revenue, while the x-axis 



corresponds to the iteration number. As we can see, both of them converge in 

approximately 5 iterations, and each iteration takes around 6 seconds of time on a 

1.4Ghz P4 machine for the both models.  

 
We also considered a larger problem as shown in figure 7. This problem has 5 pairs 

of traffic flows, the traffic details are listed in table 3 and the dimensioning results are 

depicted in table 4. 

 
Table 3. Traffic matrix for the network in figure 7. 

 
 Average Rate Revenue per connection Possible routes 

(indexes of the links) 

GoS 

Traffic A-> B 25 units 18 units 1 0.1 

   4->5->2  

Traffic B->A 15 units 12 units 1 0.1 

Traffic A->C 18 units 25 units 1->2 0.1 

   4->5  

   4->7->6  
Traffic B->C 30 units 17 units 2 0.1 

   1->4->5  

Traffic E->D 12  units 18 units 7->8 0.1 

   5->3  

   7->6->3  

 

Table 4. Dimensioning results for the network in figure 7. 

 
Link index 1 2 3 4 5 6 7 8 Cost Net reward 
Model I 74 51 9 0 0 24 30 13 563 1209 
Model II 75 55 0 0 0 0 30 16 524 1227 

 



 
It takes approximately 30 iterations for both models to converge in this larger network, 

with each iteration taking approximately 8 seconds. Model II again gives higher net 

revenue while satisfying all the GoS requirements. This is to be expected as according 

to our performance models, model II generates less overflow traffic. As a result, less 

resource is needed for model II to meet the GoS Constraints, which becomes more 

trivial in this example. Depending on the implementation, model I might further 

suffer from the problem of large cardinality in generating sequences, as the number of 

sequence grows as a factorial function of the possible paths. One may have to limit 

the number of sequences generated by model I in large examples and this could be 

another disadvantage of model I for large-size real-world networks,  

 

Section 5: Conclusions 

 
We studied the problem of SON dimensioning problem by employing an iterative 

process based on two different routing models. A major contribution of this study is 

that we provide an approach to dimension the SON network by considering the SON 

network as a generic network based on the traffic revenues. Moreover the concept of 

average link shadow price is also incorporated in the SON dimensioning models. We 

also provided numerical results to offer insights into the efficacy of the theoretical 

models. The numerical results are promising on the small sample networks tested, and 

convergence usually occurs within a few iterations. The current effort is to capture the 

key features of the solution scheme so as to improve computational performance. The 

verification of the solution quality through state dependent routing simulations and 

the convergence studies are both in progress. Overall the study reported here  

provides, under the new perspective of profit maximization, an economic integration 

of the control and dimensioning layers when allocating capacities in the SON network. 
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