
Reinforcement Learning-based Load Shared

Sequential Routing

Fariba Heidari, Shie Mannor and Lorne G. Mason

Department of Electrical and Computer Engineering,
McGill University, Montreal, Quebec, Canada

fariba.heidari@mail.mcgill.ca, shie.mannor@mcgill.ca, lorne.mason@mcgill.ca

Abstract. We consider event dependent routing algorithms for on-line
explicit source routing in MPLS networks. The proposed methods are
based on load shared sequential routing in which load sharing factors are
updated using learning algorithms. The learning algorithms we employ
are either based on learning automata or on online learning algorithms
that were originally devised for solving the adversarial multi-armed ban-
dit problem. While simple to implement, the performance of the proposed
learning algorithms in terms of blocking probability compares favorably
with the performance of other event dependent routing methods pro-
posed for MPLS routing such as the success to the top algorithm. We
demonstrate the convergence of one of the learning algorithms to the
user equilibrium within a set of discrete event simulations.

1 Introduction

In the early days of packet switching much attention was given to the rout-
ing problem. See [1] for an early survey. With the emergence of the Internet,
destination-based IP routing was widely adopted for reasons of scalability and
stability in spite of the fact that destination-based routing gives the user little
control over how his/her traffic is routed. This in turn means that traffic may
be routed over congested links (paths) while at the same time alternative less
congested paths are available. The need for better control of traffic routing, also
referred to as “traffic engineering”, gave rise to the Multi Protocol Label Switch-
ing (MPLS) standard. MPLS is a connection oriented framework proposed by
the IETF to enable traffic engineering, congestion management and QoS provi-
sioning in traditional IP networks [2, 3, 4].

In the MPLS framework, constraint-based routing and label swapping re-
places the hop-by-hop destination-based routing mechanism used in traditional
IP networks. In MPLS the route selection can employ either hop by hop rout-
ing or explicit routing. In the explicit routing method, a single Label Switching
Router (LSR) specifies all (or some of) the hops along the path. Explicit routing
gives the designer the ability to control the traffic load distribution in the net-
work. The purpose of this work is to introduce an adaptive method for explicit
source routing in MPLS networks.

Most of the algorithms proposed for traffic engineering in MPLS networks
are state dependent algorithms where traffic routing is based on the information
about the current status of the network [5, 6, 7]. These methods impose an in-
formation flooding overhead on the network. Event dependent routing methods,
on the other hand, update their knowledge about the status of the network from
the observed events. In [8] and later in [9], it was shown that the MPLS protocol
and signaling extensions for crank back permits the use of source based dynamic
routing schemes in the Internet. Such routing schemes have been widely used
in TDM networks and proposed for ATM networks. Results presented in the
aforementioned references demonstrate the merits of event dependent routing
schemes in MPLS networks in terms of performance and scalability. In particu-
lar, the presented blocking probability performance of the Success To the Top
(STT) algorithm makes it a viable routing method for a realistic network. Con-
sequently, the STT algorithm was proposed by AT&T as an event dependent
routing method in AT&Ts IP network.

In this paper, we present an event dependent routing scheme with the ap-
plication to explicit source routing in MPLS networks. The proposed method is
based on Load Shared Sequential Routing (LSSR) where load sharing factors are
updated using learning techniques [10]. Learning automata and techniques that
were developed for the multi-armed bandit problem are the learning algorithms
used in this study. These algorithms are suitable choices in applications where
the system has incomplete information about the environment and learns via
trial and error. The algorithms are extremely simple to implement and compu-
tationally efficient. The application of learning automata in dynamic routing has
been widely studied in different applications such as telephone routing [11], [12],
wavelength routing in WDM networks [13] and MPLS routing [14]. An appli-
cation of multi-armed bandit algorithms in adaptive routing was presented in
[15].

The paper is organized as follows. We present an overview of user equilib-
rium in Section 2. The reinforcement learning algorithms used in this work are
reviewed in Section 3. The the proposed routing algorithm is explained in Section
4. Simulation results for two simple network topologies are presented in Section
5. A summary and conclusions are given in Section 6.

2 User Equilibrium

The concept of Nash equilibrium is commonly used in non-cooperative strategic
games. In a Nash equilibrium, there is no incentive in terms of cost decrease
for an individual user to unilaterally change his/her strategy. Before defining a
Nash equilibrium, let us define the cost structure of the model we consider in
this paper.

Given a network that uses LSSR type routing we let λo,d represent the total
traffic from origin ’o’ to destination ’d’. The load sharing model assumes that
for every origin-destination pair (o− d), there is a load sharing vector αo,d such

that:
|T (od)|
∑

ℓ=1

α
o,d
ℓ = 1, and α

o,d
ℓ ≥ 0, ℓ = 1, 2, . . . , |T (od)|,

where T (od) is the set of route trees from ’o’ to ’d’ and α
o,d
ℓ is the load sharing

factor of the ℓth route tree from ’o’ to ’d’. We further assume that given the
load sharing factors, there is a cost associated with every route tree. We let this
cost be denoted by L

o,d
ℓ and note that it depends, generally in a non-linear way,

on load sharing factors of other origin-destination pairs. This cost represents
the blocking probability between ’o’ and ’d’ via the ℓth route tree. With some
abuse of notation, we denote the total cost incurred from ’o’ to ’d’ when the load
sharing factors are (αo,d

1), (αo,d
2), . . . , (αo,d

|T (od)|) by:

L(αo,d) =

|T (od)|
∑

ℓ=1

α
o,d
ℓ L

o,d
ℓ ,

and we note that L(αo,d) depends in general on all the sharing factors of all the
pairs in the network.

The set of load sharing factors α is a Nash Equilibrium if and only if for
each pair ’o’ and ’d’, given the load sharing factors of other pairs, there is no
incentive in terms of decreasing the cost to change the load sharing vector αo,d

to αo,d 6= αo,d. We note that the players in this game are the pairs of nodes
and not the individual nodes, that is, every origin-destination pair is assumed
to act selfishly with respect to other pairs, even if the other pairs include the
same origin or destination. In other words, the set of load sharing factors α is
a Nash Equilibrium solution if and only if, for every pair ’o’ and ’d’, given the
load sharing factors of other pairs,

L(αo,d) ≥ L(αo,d) ∀αo,d 6= αo,d.

User equilibrium can also be explained in terms of Wardrop equilibrium [16].
The Wardrop equilibrium assumes the contribution of each user’s traffic to the
cost is negligible. It is therefore not surprising that as the number of users
increases to infinity with constant total traffic, the Nash Equilibrium converges to
the Wardrop equilibrium [17]. For the routing problem, the Wardrop Equilibrium
is the solution to a non-linear minimization problem that is described in [18]. It
is straightforward to show that at the Wardrop equilibrium the cost on all the
route-trees on which there is traffic (i.e., α

o,d
k > 0) is the same. The centralized

solution for the load share optimization problem is studied in [18], where both
user and system optimization perspectives are considered. We refer the reader
to that paper and references therein.

3 Reinforcement Learning

The reinforcement learning framework [10] considers an agent that interacts with
a dynamic unknown environment and attempts to learn an optimal, or at least

reasonable, policy via a sequence of trials. At each stage (t), based on his policy,
the agent selects one of the possible actions ai ∈ A. The agent receives a reward
(x(t) ∈ X) which is a measure of the desirability of the selected action. The
agent may use this signal to update his policy.

In the following subsections the policy updating scheme used in two standard
simple reinforcement learning approaches is explained. We start with learning
automata and then discuss algorithms for the multi-armed bandit problem.

3.1 Learning Automata

Learning automata is one of the earliest frameworks dealing with learning the
optimal behavior via trial and error [19, 20]. Formally, a learning automaton
is described as a quadruple {A,P ,X, T} where A is the set of actions with
K = |A|, P is the probability distribution over the set of actions, X is the
response from the environment and T : P ×A×X → P is the updating scheme.

Based on their Markovian behavior, updating schemes are categorized as
either ergodic or absorbing algorithms. Absorbing schemes converge to specific
states and are more suitable choices in stationary environments. Ergodic schemes
converge in distribution independent of the initial states and are preferred in non-
stationary environments. In this work, the set of possible values for the reward
signal is equal to X = {0, 1}. One of the most well-known updating schemes for
this case is the following linear mapping:
Let a(t) = ai :

x(t) = 1 : pj(t + 1) =

{

(1 − G)pj(t) ∀j 6= i

pj(t) + G(1 − pj(t)) j = i

x(t) = 0 : pj(t + 1) =

{

B
K−1 + (1 − B)pj(t) ∀j 6= i

(1 − B)pi(t) j = i ,

where G and B are parameters. The parameter G represents the gain in the case
of a positive reward, while the parameter B represents the gain if the reward is
0.

Here, we use the Linear Reward Inaction method (LRI) as the first choice for
updating load sharing factors. In the LRI method, the probability distribution is
updated only when the selected action is rewarded. This can be derived from the
above formula by choosing B=0. The LRI method is known to be ǫ−optimal [19]
if the reward stream is stationary. That is, if the reward process (for each action)
is stationary and if one of the actions leads to a higher reward in expectation,
by choosing G arbitrarily small, P{limt→∞ pi(t) = 1} can be as close to unity
as desired (where i is the action leading to the highest reward). However, if G

is not small enough, the algorithm converges to a wrong solution with non-zero
probability.

Another variation for updating load sharing factors is the ergodic Linear
Reward-ǫ Penalty (LRǫP) method. The LRǫP is derived from the above formula

by choosing B << G. LRǫP is sub-optimal in comparison with the LRI algorithm
in stationary environments. However, it avoids being locked in a state and is a
better choice for non-stationary environments. For the LRǫP algorithm, a large
a value of G will result in a large variance in the steady state distribution.

3.2 Algorithms for the Multi-Armed Bandit Problem

The multi-armed bandit problem is the problem of learning the optimal action-
selection policy through a sequence of trials and errors. The variant of the multi-
armed bandit problem we consider is the so-called adversarial multi-armed ban-
dit problem. The reward process is non-stochastic and is assumed to be generated
by Nature or even by an adversary. The reward associated with the selected ac-
tion at tth trial may depend on the actions selected in the previous trials. This
formulation is reminiscent of online learning problems and leads to performance
guarantees even when stationarity assumptions cannot be made. This is espe-
cially useful when considering multi-agent learning where each agent follows a
regret minimizing algorithm; see [21] and references therein.

Exponential weighting-type algorithms were proposed to solve the multi-
armed bandit problem. We used an exponential weighing algorithm proposed
to solve the problem in the non-stochastic case ([22]). In the real networks, the
blocking probability of the links depend on their traffic load and the routing
policies of different (o − d) pairs. This makes the EXP3.P algorithm as a suit-
able candidate for updating load sharing factors. A pseudocode of the EXP3.P
algorithm taken from [22] is as follows:

Algorithm 1: Algorithm EXP3.P

1. Parameters: α > 0 and γ ∈ (0, 1]

2. Initialization: For i=1,...,K wi(1) = exp(αγ
3

√

T
K

).

At each stage t = 1, ..., T :

(a) For i = 1, ...,K set pi(t) = (1 − γ) wi(t)
K
j=1

wj(T)
+ γ

K
.

(b) Choose a(t) = ai randomly according to the distribution p1(t), ..., pK(t).
(c) Receive reward xi(t) ∈ [0, 1].
(d) For j=1,...,K set

x̂j(t) =

{

xj(t)
pj(t)

j = i

0 otherwise

wj(t + 1) = wj(t) exp

(

γ

3K
(x̂j(t) +

α

pj(t)
√

KT
)

)

.

The parameters α and γ control the amount of exploration done by the al-
gorithm initially (α) and persistently (γ). The choice of these parameters leads
to a difference between the cumulative reward of the optimal action over the
hindsight (consistently choosing the best action as if it was known) and the

cumulative reward obtained from the learning algorithm. By selecting the pa-
rameters appropriately, the per round value of this difference can be made to go
to zero as the number of stages goes to infinity.

4 A Reinforcement Learning Approach to Load Shared

Sequential Routing

Load Shared Sequential Routing (LSSR) randomly partitions the traffic load
(λo,d) associated with an origin-destination pair (o−d) into n sub-streams using

a set of load sharing factors ({αo,d
1 , ..., α

o,d

|T (od)|}). Each sub-stream is then offered

to a route-tree which consists of one or more alternate paths. The number and
the order of the alternate paths can be different from one route-tree to the other.
The alternate paths of the selected route-tree are then tried sequentially. If there
is not enough bandwidth available on at least one link of a path, an MPLS
notification message is sent to the origin node and the origin node forwards the
request to the next alternate path. Sending the notification messages can be done
using the extensions of constraint-based routing using label distribution protocol
([23]) and the resource reservation protocol ([24]). This process is repeated until
the requested bandwidth is allocated on one alternate path or all alternate paths
have been tried unsuccessfully. If all paths have been tried unsuccessfully, the
request is lost and rejected from the network. A pictorial representation of the
LSSR model is provided in Fig. 1.

Fig. 1. LSSR Model: Different paths between O and D may be tried.

The LSSR model imposes no restriction on the load-sharing factors other
than non-negativity and

∑

k

α
o,d
k = 1 .

In Reinforcement Learning-based Load Shared Sequential Routing (abbreviated

RL-based LSSR), load sharing factors α
o,d
k are updated using learning tech-

niques. Here, the set of actions is equal to the set of available route-trees, re-
sponse from the environment is the {0, 1} rejected / accepted feedback from the
network and the probability distribution over the set of actions is the set of load
sharing factors {αo,d

k }.

5 Simulation Results

In this section, the performance of the RL-based LSSR algorithm is compared
with that of another event dependent routing algorithm, Success to the Top (see
the Introduction for references). STT is a decentralized on-line routing algorithm
with a random updating scheme. In this algorithm, the bandwidth request be-
tween an (o− d) pair is first sent through the primary path. In the case there is
a direct link between (o − d), the primary path would be the direct path. If the
request is blocked on this path, it is sent through the last successful secondary
path. If the bandwidth request is blocked on both the primary and the last suc-
cessful secondary, another alternate path is selected at random and the request
is forwarded through this path. The algorithm allows a maximum of N crank
backs. If the request is accepted on one of the alternate paths, that path is la-
belled as the last successful path and will be used in routing the next bandwidth
request between this (o − d) pair.

As a measure of performance, we have used an estimation of the overall
blocking probability. The blocking probability is estimated using exponential
smoothing. The following calculation is done recursively whenever a bandwidth
request is received:

R = SR + (1 − S)(1 − X) .

Here, R is bandwidth request blocking probability. X takes a value of ’1’ when
the current bandwidth request is accepted and ’0’ otherwise. S is the smoothing
constant. The larger the S, the slower R converges and the smoother the con-
vergence curve appears. In our experiments S is set to 0.9999. The confidence
interval used in this set of simulations is 90-th percentile.

In the first experiment a fully connected 4-node network is used. Between
each (o − d) pair, there are 5 route-trees. The first route-tree includes only the
direct path; the second and third route-trees each include the direct path and
one of the two-hop alternate paths. The last two route-trees include the direct
path and both two-hop alternate paths. In the last two route-trees, the order of
alternate paths is different. The capacity of each of the unidirectional links is
equal to 50 trunks and traffic on each (o − d) pair is 45 Erlangs. Sessions arrive
according to a Poisson process and holding times are exponential distributed.
All bandwidth requests are equal to 1 trunk. For the learning automaton model,
the parameter ’G’ is set to 0.001 and the parameter ’B’ = .1G. Discrete event
simulations are performed using OPNET Modeler 11.5.

A comparison of RL-based LSSR using different learning algorithms is il-
lustrated in Fig. 2. The results of LRI-based LSSR simulation shows that load
sharing factors converge to the user equilibrium solution of the problem as can
be seen in Fig. 3. This is not the case for the LRǫP and EXP3.P algorithm and
these algorithms do not necessarily converge to user equilibrium. In EXP3.P
algorithm, the probability of selecting each action is lower bounded by a small
value. Still, all the learning algorithms behave more or less the same in terms of
performance.

In the next experiment, a more realistic non-symmetrical network with 9
nodes is used. The capacity and offered traffic matrices are listed in Appendix A.
Here again, capacities are expressed in number of trunks (bandwidth units) and
the offered traffic is in Erlangs. In order to have a reasonable comparison between
STT and RL-based LSSR, the same set of alternate paths is used for RL-based
LSSR and STT. Each route-tree has one direct link and three alternate paths
and the maximum number of crank backs for STT is equal to three. The total
blocking probability of RL-based LSSR and STT are compared with each other
in Fig. 4. As can be seen in the figure, there is not much difference in performance
of the different learning based algorithms. However, RL-based LSSR algorithms
have better performance in terms of blocking probability in comparison with
STT.

0 500 1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time(sec)

T
ot

al
 B

lo
ck

in
g

P
ro

ba
bi

lit
y

LRI
LReP
EXP3.P

EXP3.P

LReP

LRI

Fig. 2. Performance comparison in 4-
Node network.

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Calls x 10

Lo
ad

 S
ha

rin
g

F
ac

to
rs

O−D:1−3

RT1
RT2
RT3
RT4
RT5

RT5

RT4

RT2

RT3

RT1

Fig. 3. Load Sharing Factors of 1-3 in
4-Node network using LRI learning.

In the last set of simulations the performance of the STT and RL-based
LSSR algorithms are compared with each other in the case where there is a link
failure in the system. As can be seen in the results (Fig. 5), STT has the highest
blocking probability before and after the change has occurred. However, none of
these algorithms react fast enough to be used in the link failure recovery and
other restoration schemes such as the method presented in [25] can be used to
improve the performance of the system.

0.5 1 1.5 2 2.5

x 10
4

1

2

3

4

5

6

7

8

9

x 10
−3

Time (sec)

T
ot

al
 B

lo
ck

in
g

P
ro

ba
bi

lit
y

LRI
STT
LReP
EXP3.P

LRI

STT

EXP3.P LReP

Fig. 4. Performance comparison in 9-
Node network.

1400 1600 1800 2000 2200 2400

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time(sec)

T
ot

al
 B

lo
ck

in
g

R
at

e

LRI
EXP3.P
LReP
STT

EXP3.P

LRI

LReP

STT

Fig. 5. Performance comparison when
a link fails at T = 1800 seconds.

6 Discussion and Conclusion

In this paper, adaptive on-line routing algorithms for explicit source routing
were presented. The proposed algorithmic framework (called RL-based LSSR)
is based on load share sequential routing and uses reinforcement learning tech-
niques to update the load sharing factors. We considered three learning algo-
rithms: LRI, LRǫP and EXP3.P. The LRI algorithm is a suitable choice for
stationary environments and by a suitable choice of learning parameter, the re-
sulting load sharing factors converge to the user equilibrium solution. The LRǫP
and EXP3.P algorithms are better choices for non-stationary environments. The
EXP3.P algorithm has additional performance guarantees for the worst cases
where the reward generation may be adversarial. In real networks, the blocking
probability is a function of the traffic load and the routing policy of different
(o−d) pairs. This makes EXP3.P algorithm a suitable choice for routing in such
environments.

The performance of the RL-based LSSR was compared with STT, another
event dependent routing algorithm also proposed for routing in MPLS networks.
The discrete event simulation results in some example networks show that RL-
based LSSR compare favorably with STT in terms of network blocking probabil-
ity. RL-based LSSR algorithms track the smooth changes in the traffic pattern.
However, they are not fast enough for link failure recovery. One future area of
research is addressing the problem of improving the response time to abrupt
changes such as link failure.

The learning algorithms that were presented are rather simple. While this
simplicity has the advantage of low computational cost and low informational
needs, one may consider more complex algorithms that take the state of the
network into account. Of course, since the complete state of the network is
not known to each node, some reasoning in terms the uncertainty of the state
estimate is needed. The advantage of such state dependent schemes may be

in their ability to synchronize between the different nodes as well as detecting
abnormal traffic patterns.

In this paper, the analytical formulation of user equilibrium load sharing
factors in LSSR model was also reviewed and it was shown that in the user
equilibrium solution, for each (o− d) pair, the traffic loss probability of all used
route trees are equal and less than the traffic loss probability of other route trees.
The simulation results presented in Section 5 confirm that by suitable choice of
learning parameter, LRI-based LSSR converges to the user equilibrium solution.

Acknowledgements

This work was partially supported in part by the NSERC Strategic Project
Grant STPGP 269449 03 and by the Canada Research Chairs Program. The
authors thank Hanhui Zhang for supplying code and results which were useful
in the research reported here.

References

[1] Mason, L.G.: Equilibrium Flows, Routing Patterns and Algorithms for Store-and-
Forward Networks. Journal of Large Scale systems 8 (1985) 187–209

[2] Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol Label Switching Architec-
ture. RFC 3031 (2001)

[3] Awduche, D.O.: MPLS and Traffic Engineering in IP Networks. IEEE Commu-
nications Magazine 37(12) (1999) 42–47

[4] LeFaucheur, F., Lai, W.: Requirements for Support of Differentiated Services-
aware MPLS Traffic Engineering. RFC 3564 (2003)

[5] Kar, K., Kodialam, M., Lakshman, T.: Minimum Interference Routing of Band-
width Guaranteed Tunnels with MPLS Traffic Engineering Applications. IEEE
Journal on Selected Areas in Communications 18(12) (2000) 2566–2579

[6] Suri, S., Waldvogel, M., Bauer, D., Warkhede, P.R.: Profile-Based Routing and
Traffic Engineering. Computer Communications 26 (2003) 351–365

[7] Szeto, W., Boutaba, R., Iraqi, Y.: Dynamic Online Routing Algorithm for MPLS
Traffic Engineering. Lecture Notes in Computer Science (2002) 936–946

[8] Ash, G.R.: Performance evaluation of QoS-routing methods for IP-based multi-
service networks. Computer Communications 26(8) (2003) 817–833

[9] Ash, G.R.: Traffic Engineering and QoS Optimization of Integrated Voice & Data
Networks. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2006)

[10] Sutton, R.S., Barto, A.G.: Reinforcement Learning: an Introduction. MIT Press,
Cambridge, MA (1998)

[11] Narendra, K.S., Wright, E.A., Mason, L.G.: Application of learning automata to
telephone traffic routing and control. IEEE Trans. on Systems, Man and Cyber-
netics 7(11) (1977) 785–792

[12] Brunet, G.: Optimisation de l’acheminement séquentiel non hiérarchique par au-
tomates intelligents. Master’s thesis, INRS-Telecommunication (1991)

[13] Alyatama, A.: Dynamic routing and wavelength assignment using learning au-
tomata technique [all optical networks]. In: Proceedings of IEEE GLOBCOM.
(2004) 1912–1917

[14] Zhang, H.: Simulation of learning Automata Load Shared Sequential Routing in
MPLS network. Master’s Project Report, Electrical and Computer Engineering,
McGill University (2003)

[15] György, A., Ottucsák, G.: Adaptive routing using expert advice. The Computer
Journal 49(2) (2006) 180–189

[16] Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proceedings
of the Institution of Civil Engineers, Part II. (1952) 325–378

[17] Haurie, A.B., Marcotte, P.: On the relationship between Nash-Cournot and
Wardrop Equilibria. Networks 15 (1985) 295–308

[18] Brunet, G., Heidari, F., Mason, L.G.: Load Shared Sequential Routing in MPLS
Networks: System and User Optimal Solutions. EuroFGI Net-COOP, to appear
(2007)

[19] Narendra, K.S., Thathachar, M.A.L.: Learning Automata: an Introduction. Pren-
tice Hall, Upper Saddle River, NJ, USA (1989)

[20] Lakshmivarahan, S.: Learning Algorithms: Theory and Applications. Springer,
New York (1981)

[21] Cesa-Bianchi, N., Lugosi, G.: Prediction, learning, and games. Cambridge Uni-
versity Press (2006)

[22] Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing 32(1) (2002) 48–77

[23] Jamoussi, B., Andersson, L., Callon, R., Dantu, R., Wu, L., Doolan, P., Worster,
T., Feldman, N., Fredette, A., Girish, M., Gray, E., Heinanen, J., Kilty, T., Malis,
A.: Constraint-Based LSP Setup using LDP. RFC 3212 (2002)

[24] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., Swallow, G.: RSVP-TE:
Extension to RSVP for LSP tunnels. RFC 3209 (2001)

[25] Qin, Y., Mason, L.G., Jia, K.: Study on a joint multiple layer restoration scheme
for IP over WDM networks. IEEE Network Magazine 17(2) (2003) 43–48

A Appendix

Table 1. Traffic Matrix of 9-Node Network

0 9552 12976 0 0 3680 13856 8224 5104
8672 0 1376 5872 8176 0 3280 1824 0
12000 2848 0 19504 18000 1104 2224 4928 0

0 40480 17152 0 0 4848 5072 2704 2400
0 4576 12832 0 0 1728 6624 3776 2304

2976 0 1376 3200 5072 0 6352 4480 1232
13056 1696 2000 5504 5472 4848 0 5024 1056
5728 752 1952 2576 1776 4448 4304 0 3200
4304 704 1472 3152 976 672 3472 5024 0

Table 2. Capacity Matrix of 9-Node Network

0 9000 13000 0 0 6000 22000 9000 5000
7000 0 4000 6000 6000 0 2000 4000 3000
15000 3000 0 24000 15000 4000 3000 4000 8000

0 6000 24000 0 0 4000 7000 6000 4000
0 7000 20000 0 0 6000 7000 5000 5000

5000 0 3000 4000 5000 0 7000 7000 2000
10000 3000 4000 6000 9000 9000 0 6000 5000
5000 2000 4000 3000 6000 4000 4000 0 8000
8000 3000 5000 5000 5000 3000 3000 10000 0

