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Abstract. We are interested in the problem of computing the aver-
age consensus in a distributed fashion on random geometric graphs. We
describe a new algorithm called Multi-scale Gossip which employs a hi-
erarchical decomposition of the graph to partition the computation into
tractable sub-problems. Using only pairwise messages of fixed size that

travel at most O(n
1
3 ) hops, our algorithm is robust and has communica-

tion cost of O(n log logn log ε−1) transmissions, which is order-optimal
up to the logarithmic factor in n. Simulated experiments verify the good
expected performance on graphs of many thousands of nodes.

1 Introduction

Applications in sensor networks often demand that nodes cooperatively accom-
plish a task without centralized coordination. Autonomy is often equated with
robustness and scalability in large-scale networked systems. This is especially
true in wireless networks, where fundamental limits on spatial and temporal
channel reuse limit the amount of communication possible at any instant in
time. Moreover, when nodes are battery-powered—a typical design element of
wireless sensor networks—each transmission consumes valuable energy resources.
This has stimulated research into resource-efficient algorithms for distributed
computing and coordination. Gossip algorithms are an attractive paradigm for
decentralized, autonomous computation. A classic and well-studied example is
gossiping to compute the average consensus: in a graph G = (V,E) with |V | = n
nodes, where each node initially has a value xi(0), the goal is to compute an es-
timate of the average xave = 1

n

∑n
i=1 xi(0) at all nodes. At each gossip iteration,

a random connected subset S(t) ⊂ V of nodes exchange their current estimates,
xi(t), and locally compute the update xi(t + 1) = 1

|S(t)|
∑
j∈S(t) xj(t). In the

original algorithm, described in [1] and revisited in [2] and [3], |S(t)| = 2 at
every iteration, and the pair of nodes that update are neighbors in G.

Gossip algorithms have the attractive properties that they run asynchronously,
do not require any specialized routing protocols, and therefore do not create bot-
tlenecks or single points of failure. In the original gossip algorithm, pairs of nodes
that communicate directly exchange information at each iteration. Consequently,



no special routing is needed, and the algorithm has been shown to be robust to
fluctuating availability of links, as well as other changes in topology.

Of course, robustness and autonomy come at a price. Standard pair-wise ran-
domized gossip is inefficient on topologies commonly used to model connectivity
in wireless networks, such as grids and random geometric graphs; the number of
messages per node scales linearly with the size of the network. In contrast, one
can imagine numerous other approaches to computing a linear combination of
the values at each node, assuming the existence of some specialized routing such
as a Hamilton cycle or spanning tree, in which the number of messages per node
remains constant as the network size tends to infinity. Although the overhead
involved in finding and maintaining these routes may be prohibitive, requiring
more centralized control and creating bottlenecks and single points of failure,
these observations have motivated substantial research to close the gap between
the two scaling regimes.

Motivated by the robust scaling properties exhibited by other hierarchical
systems, this paper describes a gossip algorithm that achieves nearly-optimal
performance in wireless networks. We partition the network computation hier-
archically in k different scales. At each scale, nodes gossip within their partition
until convergence; then one representative is elected within each partition, and
the representatives gossip. This is repeated, with representatives gossiping at
each higher scale, until the representatives at the coarsest scale have computed
xave. At that point the average is disseminated throughout the network.

The main contribution of this work is a new multi-scale gossip algorithm for
which we prove that the average number of messages per node needed to reach
average consensus in a grid or random geometric graph on n nodes, scales as
(k + 1)nδ(k), where δ(k) → 0 as k → ∞. Since larger graphs facilitate deeper
hierarchies, we show that we can take k = O(log log n) to obtain a scheme that
asymptotically requires a number of messages per node proportional to log log n.
In simulations of networks with thousands of nodes, two or three levels of hier-
archy suffice to achieve state-of-the-art performance. This is comparable to ex-
isting state-of-the art gossip algorithms. Similar to the existing state-of-the-art,
we assume the network implements geographic routing. This facilitates gossip
iterations between pairs of representatives that may not communicate directly
at higher levels of the hierarchy. However, unlike other fast gossip algorithms, we
do not require many gossip exchanges among nodes. For example, the path av-
eraging algorithm described in [4] gossips on average among |S(t)| ∝

√
n nodes

along a path at each iteration. In contrast, all gossip iterations in multi-scale
gossip are between pairs of nodes, so if a message is lost in transit through
the network, the amount of information lost is minimal. Moreover, the longest
distance individual messages must travel is on the order of n1/3 hops.

2 Previous Work and Known Results

Our primary measure of performance is communication cost—the number of
messages (transmissions over a single hop) required to compute an estimate to



ε accuracy—which is also considered in [4, 5]. In the analysis of scaling laws
for gossip algorithms, a commonly studied measure of convergence rate is the
ε averaging time, denoted Tε(n), which is the number of iterations required to
reach an estimate with ε accuracy with high probability3. Tε(n) reflects the
idea that the complexity of gossiping on a particular class of network topologies
should depend both on the final accuracy and the network size. When only
neighbouring nodes communicate at each iteration, Tε(n) and communication
cost are identical up to a constant factor. Otherwise, communication cost can
generally be bounded by the product of Tε(n) and a bound on the number of
messages required per iteration.

Kempe, Dobra, and Gehrke [2] initiated the study of scaling laws for gossip
algorithms and showed that gossip requires Θ(n log ε−1) total messages to con-
verge on complete graphs. Note that at least n messages are required to compute
a function of n distributed data values in any network topology.

In wireless sensor network applications, random geometric graphs are a typ-
ical model for connectivity since communication is restricted to nearby nodes.
In a 2-dimensional random geometric graph, n nodes are randomly assigned co-
ordinates uniformly in unit square, and two nodes are connected with an edge
when their Euclidean distance is less than or equal to a connectivity radius, r [6,

7]. In [6] it is shown that if the connectivity radius scales as rcon(n) = Θ(
√

logn
n )

then the network is connected with high probability. Throughout this paper
when we refer to a random geometric graph, we mean one with the connectivity
rcon(n). Boyd, Ghosh, Prabhakar, and Shah [3] studied scaling laws for pairwise
randomized gossip on random geometric graphs and found that communication
cost scales as Θ( n2

logn log ε−1) messages even if the algorithm is optimized with
respect to the topology.

One approach for improving convergence rates is to introduce memory at
each node, creating higher-order updates [8, 9]. However, the only known scaling
laws for this approach are for a deterministic, synchronous variant of gossip [10],
leading to Θ( n1.5

√
logn

log ε−1) communication cost. Gossip algorithms based on
lifted Markov chains have been proposed that achieve similar scaling laws [11,
12].

A variant called geographic gossip, proposed by Dimakis, Sarwate, and Wain-
wright [5], achieves a similar communication cost of Θ( n1.5

√
logn

log ε−1) by allowing
distant (non-neighbouring) pairs of nodes to gossip at each iteration. Assuming
that each node knows its own coordinates and the coordinates of its neighbours
in the unit square, communication between arbitrary pairs of nodes is made pos-
sible using greedy geographic routing. Rather than addressing nodes directly, a
message is sent to a randomly chosen target (x, y)-location, and the recipient of
the message is the node closest to that target. To reach the target, a message is
forwarded from a node to its neighbour who is closest to the target. If a node
is closer to the target than all of its neighbours, this is the final message recipi-
ent. It is shown in [5] that for random geometric graphs with connectivity radius

3 A more rigorous definition is provided in the next section.



r(n) = rcon(n), greedy geographic routing succeeds with high probability. For an
alternative form of greedy geographic routing, which may be useful in implemen-
tations, see [13]. The main contribution of [5] is to illustrate that allowing nodes
to gossip over multiple hops can lead to significant improvements in communica-
tion cost. In follow-up work, Benezit, Dimakis, Thiran, and Vetterli [4] showed
that a modified version of geographic gossip, called path averaging, can achieve
Θ(n log ε−1) communication cost on random geometric graphs. To do this, all
nodes along the path from the source to the target participate in a gossip iter-
ation. If geographic routing finds a path of nodes S = {xi, . . . , xj} to deliver a
message from xi to xj , on the way to xj values of nodes in S are accumulated.
Then xj computes the average of all S values and sends the average back down
the same path towards xi. All nodes along the way update their values.

The multi-scale approach considered in this paper also assumes that the
network is capable of geographic routing in order to gossip among representa-
tive nodes at each scale. Below, we show that asymptotically, the communication
complexity of multi-scale gossip is O(n log log n log ε−1) messages, which is equiv-
alent to that of path averaging up to a logarithmic factor. However, in multi-scale
gossip, information is only exchanged between pairs of nodes, and there is no
averaging along paths. We believe that this makes our algorithm more fault tol-
erant, since each message only carries the information for a pair of nodes. If an
adversary wishes to disrupt gossip computation by forcing the network to drop
a particular message or by deactivating a node in the middle of an iteration,
a substantial amount of information can be lost in path averaging since each
iteration involves O(

√
n

logn ) nodes on average. In addition, the longest distance

a message travels in our multi-scale approach is O(n1/3) hops in comparison to
O(n1/2) hops for geographic gossip or path averaging.

Finally, we note that we are not the first to propose gossiping in a multi-scale
or hierarchical manner. Sarkar et al. [14] describe a hierarchical approach for
computing aggregates, including the average. However, because their algorithm
uses order and duplicate insensitive synopses to estimate the desired aggregate,
the size of each message exchanged between a pair of nodes must scale with the
size of the network. Other hierarchical distributed averaging schemes that have
been proposed in the literature focus on the synchronous form of gossip, and
they do not prove scaling laws for communication cost neither do they provide
rules for forming the hierarchy (i.e. assume the hierarchical decomposition is
given) [15–17].

3 Network Model and Problem Definition

Let G = (V,E) be a random geometric graph [7] of n nodes with connectivity
radius rcon(n). Each node in G holds an initial real value xi(0). Vector x(t) =
[x1(t)x2(t) . . . xn(t)]T describes the values on the network at time t. Our goal
is for nodes to communicate over graph edges to compute the average xave =
1
n

∑n
i=1 xi(0). In the end, all nodes should have knowledge of xave. To measure

performance of an averaging algorithm we use the following definition.



Definition 1. ε averaging time Tε(n). Given any desired accuracy ε > 0, the ε
averaging time is the earliest time at which vector x(t) is ε close to the normalized
true average with probability greater than 1− ε:

Tε(n) = supx(0)inft=0,1,2,...

{
P
(
||x(t)− xave||
||x(0)||

≥ ε
)
≤ ε
}

(1)

Convergence rate generally depends on the initial values x(0) and the def-
inition assumes the worst possible starting point. In practice, to eliminate the
possibility of favourable initial conditions when evaluating our algorithm, as
initial condition we assign to each node the sum of its geographic coordinates.

Notice that time is measured in discrete time moments until convergence.
As explained in [3] this facilitates the analysis of gossip algorithms but does
not force the actual implementation to be sequential. Multiple communication
events happen in parallel. Finally, for multi-scale gossip we use Tε(n) since the
consensus time characterization of convergence rate defined in [18] is not appli-
cable. Specifically, our averaging scheme proceeds in phases and changes over
time in a non-ergodic manner. Moreover, by definition our scheme stops after a
finite number of iterations. The approach in [18] is only defined asymptotically
as t→∞ and for averaging schemes that are ergodic.

4 Multi-scale Gossip

Multi-scale gossip performs averaging in a hierarchical manner. At each moment
only nodes in the same level of hierarchy are doing computations at a local scale
and computation at one level begins after the previous level has finished. By
hierarchically decomposing the initial graph into subgraphs, we impose an order
in the computation. As shown in the next section, for a specific decomposition it
is possible to divide the overall work into a small number of linear sub-problems
and thus obtain very close to linear complexity in the size of the network overall.

Assume a random geometric graph G = (V,E) where each node knows its
own coordinates in the unit square and the locations of its immediate neighbours.
Each node also knows the total number of nodes in the network n, and k, the
desired number of hierarchy levels4. Figure 1 illustrates an example with k = 3.
At level 1 the unit square is split into m1 small cells – denote them C1 cells.
The subgraphs G1 of G involving nodes inside a single C1 cell run standard
randomized gossip until convergence. Then, each C1 cell elects a representative
node5 L1. The representative selection can be randomized or deterministic as
explained in Section 7. Generally, not all G1 graphs have the same number of
nodes. For this reason, the value of each representative has to be reweighed
proportionally to its graph size. At level 2, the unit square is split into C2 cells.
4 As explained in Section 6, given n, k can be computed automatically.
5 Note that in level 1 as well as any other level d there are many Cd cells but for

simplicity we avoid denoting them Cd,i with i running from 1 to maximum number
of cells. Similarly for representatives Ld.
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Fig. 1. Hierarchical multiscale subdivision of the unit square. At each level, each cell
is split into equal numbers of smaller cells. Before the representatives of the cells can
gossip on a grid graph, we run gossip on each cell.

Each C2 contains the same number of C1 cells. The representatives of the C1 cells
form grid graphs G2 with two representatives L1,i and L1,j sharing an edge in
a G2 if cells C1,i and C1,j are adjacent and contained in the same C2 cell. Note
that representatives can determine which cells they are adjacent to given the
current level of hierarchy and n. Next, we run randomized gossip simultaneously
on all G2 grid graphs. Finally, we select a representative node L2 out of each
G2 and continue the next hierarchy level. The process repeats until we reach
level k at which point we have only one grid graph Gk contained in the single
cell Ck which coincides with the unit square. Once gossip on Gk is over, each
representative Lk−1 disseminates his final value to all the nodes in its cell.

Algorithm 1 describes multi-scale gossip in a recursive manner. The initial
call to the algorithm has as arguments, the vector of initial node values (xinit),
the unit square (C = [0, 1] × [0, 1]), the network size n, the desired number of
hierarchy levels k and the desired error tolerance tol. In a down-pass the unit
square is split into smaller and smaller cells all the way to the C1 cells. After
gossiping in the G1 graphs in Line 15, the representatives adjust their values
(Line 16 ). As explained in the next section, if k is large enough, the G1 are
complete graphs. Since each node knows the locations of its immediate neigh-
bours (needed for geographic routing), at level 1 it is easy to also compute the
size of each G1 which is needed for the reweighting. The up-pass begins with the
L1 representatives forming the G2 grid graphs (Line 8 ) and then running gossip
in all of them in parallel.. We use a parameter a = 2

3 to decide how many Cd−1

cells fit in each Cd cell. The motivation for this parameter and its specific value
is explained in the following section. Notice the pseudocode mimics a sequential
single processor execution which is in line with the analysis that follows in Sec-
tion 6. However, it should be emphasized that the algorithm is intended for and
can be implemented in a distributed fashion. The notation xinit(C) or xinit(L)



Algorithm 1 MultiscaleGossip(xinit, C, n, k, tol)
1: a = 2

3

2: if k > 1 then
3: Split C into mk−1 = n1−a cells: Ck−1,1, . . . , Ck−1,mk−1

4: Select a representative node Lk−1,i for each cell Ck−1,i, i ∈ {1, . . . ,mk−1}
5: for all cells Ck−1,i do
6: call HierarchicalGossip(xinit(Ck−1,i), Ck−1,i, n

a, k − 1, tol)
7: end for
8: Form grid graph Gk−1 of representatives Lk−1,i

9: call RandomizedGossip(xinit(Lk−1,1:mk−1), Gk−1, tol)
10: if at top level then
11: Spread value of Lk,i to all nodes in Ck,i

12: end if
13: else
14: Form graph G1 only of nodes in V (G) contained in C
15: call RandomizedGossip(xinit, G1, tol)

16: Reweight representative values as : x(L1,i) = x(L1,i)
|V (G1)|·m2
|V (G)|

17: end if

indicates that we only select the entries of xinit corresponding to nodes in cell
C or representatives L.

The ideal scenario for multi-scale gossip is if computation inside each cell
stops automatically when the desired accuracy is reached. This way no messages
are wasted. However in practice cells at the same level we may need to gossip
on graphs of different sizes that take different numbers of messages to converge.
This creates a need for node synchronization so that all computation in one level
is finished before the next level can begin. To overcome the need for synchro-
nization, we can fix the number of randomized gossip iterations per level. Given
that nodes are deployed uniformly at random in the unit square, we can make a
worst case estimate of how many nodes are expected to be in a cell of a certain
area. Since by construction all cells at the same level have equal area, we gossip
on all graphs at that level for a fixed number of iterations. Usually, at level 1,
we have less nodes than expected so we end up wasting messages running gossip
for longer than necessary.

5 Evaluation of Multi-scale Gossip

Before proceeding with the formal analysis of the algorithm complexity, we show
in this section that Multi-scale Gossip performs very well against Path Averaging
[4], a recent state-of-the-art gossip algorithm that requires linear number mes-
sages in the size of the network to converge to the average with ε accuracy. Figure
2 (left) shows the number of messages needed to converge within ε = 0.0001 error
for graphs of sizes 500 to 8000. The bottom curve tagged MultiscaleGossip shows
the ideal case where computation inside each cell stops automatically when the
desired accuracy is reached. The curve tagged MultiscaleGossipFI was gener-
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Fig. 2. (left) Comparison of MultiscaleGossip to PathAveraging. Total number of mes-
sages to converge with ε = 0.0001 accuracy on random geometric graphs of increasing
sizes. Results are averages over 20 runs. MultiscaleGossip used with 5 levels of hierar-
chy. MultiscaleGossipFI is the version using a fixed number of iterations for gossiping
at a specific level. MultiscaleGossip2level is a version using only two levels of Hierarchy
and is explained in Section 7. (right) Increasing the levels of Hierarchy yields a dimin-
ishing reward. Results are averages over 10 random geometric graphs with 5000 nodes

and final desired accuracy ε = 0.0001. All graphs are created with radius r =
q

3 log n
n

.

ated using fixed number of iterations per level based on worst case graph sizes
as explained in Section 4. One reason why path averaging seems to be slower is

because we use a smaller connectivity radius for our graphs (r =
√

3 logn
n instead

of r =
√

10 logn
n which is described in [4]).

Multi-scale Gossip has several advantages over Path Averaging. All the infor-
mation relies on pairwise messages. In contrast, averaging over paths of length
more than two has two main disadvantages. First, if a message is lost, a large
number of nodes (potentially O(

√
n

logn )) are affected by the information loss.

Second, when messages are sent to a remote location over many hops, they
increase in size as the message body accumulates the information of all the in-
termediate nodes. Besides being variable, the message size now depends on the
length of the path and ultimately on the network size. Our messages are always
of constant size and independent of the hop distance or network size. More-
over, as will be shown in the next section, the maximum number of hops any
message has to travel is O(n

1
3 ) at worst. This should be compared to distance

O(
√
n) which is necessary for Path Averaging to achieve linear scaling. Finally,

Multi-scale Gossip is relatively easy to analyze and implement using standard
randomized gossip as a building block for the averaging computations.

6 Analysis of Multi-scale Gossip

The motivation behind multi-scale gossip is to divide the computation into stages
each of which takes no more than linear number of messages in the size of



the network. This allows the overall algorithm to scale very close to linear as
established by the following theorem:

Theorem 1. Let a random geometric graph G of size n and an ε > 0 be given.
As the graph size n → ∞, the communication cost of the multi-scale gossip
scheme described above with scaling constant α = 2

3 behaves as follows:

1. If the number of hierarchy levels k remains fixed as n → ∞, then the com-
munication cost of multi-scale gossip is O

(
(kn+n1+( 2

3 )k

) log ε−1
)

messages.
2. If k = Θ(log log n), then the communication cost of multi-scale gossip is

O(n log logm log ε−1) messages.

Proof. Suppose we run Multi-scale Gossip (Algorithm 1) on a random geometric

graph G = (V,E) with |V | = n and connecting radius is r(n) =
√

c logn
n . Call the

unit square cell Ck for a total of k hierarchy levels. At the highest level, we split
the unit square into mk−1 = n1−a cells Ck−1,i each of dimensions n

a−1
2 × n a−1

2

where a = 2
3 as explained below. On a grid of p nodes, randomized gossip re-

quires O(p2) or by including the dependence on final accuracy, O(p2 log ε−1)
messages to converge (e.g. see [3]). The grid graph Gk−1 formed by the repre-
sentatives of the Ck−1,i cells has n1−a nodes. Moreover, for appropriately large
c (e.g. c = 3), graph G is geo-dense [19] and a patch of area na−1 is expected to
have Θ(na−1n) = Θ(na) nodes in it. The maximum distance between two rep-
resentatives in Gk−1 will be

√
5n

a−1
2 = O(n

a−1
2 ). If we divide by r(n), we get a

worst case estimate of the cost for multi-hop messages between representatives:
MsgCostk−1 = O(n

a
2 ). Now the total number of pairwise messages on Gk−1 will

be O((n1−a)2 log ε−1) ·O(n
a
2 ). This number is O(n) if a = 2

3 .
At the next level of hierarchy, we subdivide each Ck−1,i cell of q = Θ(na)

nodes into q1−a
′

cells in a recursive manner. Each Ck−2,i cell will have dimen-

sions q
a′−1

2 × q a′−1
2 . Using the exact same analysis as above, we will have n1−a

grid graphs GGk−2 and each has q1−a
′

(representative) nodes. The communica-
tion cost between Lk−2,i representatives is MsgCostk−2 = O(q

a′
2 ). To make the

total number of messages at level k− 2 linear, we get n1−a ·O((q1−a
′
)2 log ε−1) ·

O(q
a′
2 ) = n ⇒ a′ = 2

3 as well. A simple induction proves that in general a
subdivision of each cell of size q into q1−a subcells yields linear performance
for that level if a = 2

3 . Finally, after k levels, the algorithm runs gossip on
each subgraph of G with nodes contained inside each of the C1 cells. We have
O(n1−( 2

3 )k

) C1 cells, each containing n( 2
3 )k

nodes. Since we run randomized
gossip on each subgraph, the total number of messages at the last level is
O(n1+( 2

3 )k). Summing up all levels, plus n messages to spread the final re-
sult back to all nodes,the total number of messages for Multi-scale Gossip is
O
(
(kn+ n1+( 2

3 )k

) log ε−1) + n
)

= O
(
(kn+ n1+( 2

3 )k

) log ε−1)
)
.

For the second part of the theorem, observe that at level 1 each cell contains
a subgraph of n( 2

3 )k

nodes in expectation. We can choose k so that each cell
contains at least m ≥ 2 nodes for randomized gossip to be non-trivial and no



more than M ≥ m nodes so that the cost per cell is bounded by M2 log ε−1. In
other words, choose k such that:

m ≤ n( 2
3 )k

≤M ⇒ log logM − log log n
log 2

3

≤ k ≤ log logm− log log n
log 2

3

Since the cost per level 1 cell is now bounded by a constant for k = Θ(log log n),
the total level 1 cost is O(n1−( 2

3 )k

log ε−1) and the overall cost is O
(
(kn +

n1−( 2
3 )k

) log ε−1) + n
)

= O(n log log nε−1) ut

In practice we only need a few levels of hierarchy. Figure 2 (right) investigates
the effect of increasing the levels of hierarchy. The figure shows the number of
messages until convergence within 0.0001 error, averaged over ten graphs of 5000
nodes. More levels yield a diminishing reward and we don’t need more than 4
or 5 levels. As discussed in Section 7 these observation lead us to try a scheme
with only two levels of hierarchy which still produces an efficient algorithm.

7 Practical Considerations

There is a number of practical considerations that we would like to bring to the
reader’s attention. We list them in the form of questions below:

Does Multi-scale gossip computation scheme affect the final error?
This is a valid concern since our algorithm essentially uses randomized gossip
as a lossy averaging operator over subsets of the network nodes. At each level
the representatives trust the ε approximate values of the previous level. Fortu-
nately the error deteriorates only linearly with the number of levels. If ave(·)
is an ε accuracy averaging operator, ave(a1, . . . .am) = a ± ε. At the next level,
ave(a1±ε, . . . , am±ε) = a±ε±ε. After k levels the final error will be at worst±kε.

How can we detect convergence in a subgraph or cluster? Do the nodes
need to be synchronized? At each hierarchy level, representatives know how
big the grid that they are gossiping over is (function of n and k only). Moreover,
all grids at the same level are of the same size and we have tight bounds on the
number of messages needed to obtain ε accuracy on grids w.h.p. We can thus
gossip on all grids for a fixed number or rounds and synchronization is implicit.
At level 1 however, in general we need to gossip on random geometric subgraphs
which are not of exactly the same size. As n gets large though, random geo-
metric graphs tend to become regular and uniformly spaced on the unit square.
Therefore, the subgraphs contained in cells at level 1 all have sizes very close to
the expected value of n( 2

3 )k

. Thus, we run gossip for a fixed number of rounds
using the theoretical bound for graphs of the size n( 2

3 )k

. As discussed in Section
4, fixing the number of iterations leads to redundant transmissions, however the
algorithm is still very efficient.



What happens with disconnected subgraphs or grids due to empty
grid cells? Technically this is possible since the division of the unit square into
grid cells does not mean that each cell is guaranteed to contain any nodes of the
initial graph. Representatives use multi-hop communication and connected grids
can always be constructed as long as the initial random geometric graph is con-
nected. At level 1 the subgraphs of the initial graph contained in each cell could
still be disconnected if edges that go outside the cell are not allowed. However, as
explained in Section 6 we can use enough hierarchy levels so that each C1 cell is a
complete graph and the probability of getting disconnected C1 cells tends to zero.

How can we select representatives in a natural way? The easiest solution
is to pick the point pc that is geographically at the centre of each cell. Again,
knowledge of n, k uniquely identifies the position of each cell and also pc. By
sending all messages to pc, geographic routing will deliver them to the unique
node that is closest to that location w.h.p. To change representatives, we can
deterministically pick a location pc + u which will cause a new node to be the
closest to that location. A more sophisticated solution would be to employ a
randomized auction mechanism. Each node in a cell generates a random number
and the largest number is the representative. Once a new message enters a cell,
the nodes knowing their neighbours values, route the message to the cell rep-
resentative. Notice that determining cell leaders this way does not incur more
than linear cost.

Are representatives bottlenecks and single points of failure? This is
not an issue. There might be a small imbalance in the amount of work done
by each node, but it can be alleviated by selecting different representatives at
each hierarchy level. Moreover, for increased robustness, at a linear cost we can
disseminate the representative’s values to all the nodes in its cell. This way if a
representative dies, another node in the cell can take its place. The new represen-
tative will have a value very similar (within ε) to that of the initial representative
at the beginning of the computation at the current level. Thus node failure is
expected to only cause small delay in convergence at that level. We should em-
phasize however that the effect of node failures has received little attention so
far and still asks for a more systematic investigation.

How much extra energy do the representatives need to spend? This
question is hard to answer analytically. We use simulation to get a feel for it.
Figure 3 shows the number of messages sent by each of the 5000 nodes in a
random geometric graph. For this case we used five levels of hierarchy. The first
3200 nodes were representatives at some point in the computation and the rest
only participated in gossiping at level 1. As we go down the hierarchy the cells
get smaller and the options for representatives are less so it is expected that
some nodes will be doing more computation. Here the average number of mes-
sages per representative is about 16 with a standard deviation of 14. However,
only less than 10% of the representative nodes send more than 30 messages. For
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Fig. 3. Node utilization on a random geometric graphs with 5000 nodes and final
desired accuracy ε = 0.0001. For each node plot the total number of sent messages.
Nodes 0 to 3200 have had at least one representative node role and the rest only
participated at level 1. Both types of nodes may have participated as indermediates in
multi-hop communication as well.

the level 1, nodes have an average of 5 messages with standard deviation of 3.

Don’t many levels of hierarchy make it harder to implement and keep
the nodes synchronized? This is a valid concern. Given our observations in
Section 6 we tried an algorithm with just 2 levels of hierarchy. In this case, for
graphs of size a few thousand nodes, splitting the unit square into n1−a cells with
a = 2

3 is not a good choice as it produces a very small grid of representatives
and quite large level 1 cells. To achieve better load balancing between the two
levels, we use a = 1

2 . This choice has the advantage that the maximum number
of hops any message has to travel is O(n

1
4 ). To see this, observe that each cell

C1 has area 1
na = n−

1
2 = n−

1
4 × n−

1
4 . Thus the maximum distance between

representatves is O(n−
1
4 ). If we divide by the connecting radius r(n) =

√
c logn
n

we get the result. Another interesting finding is that for moderate sized graphs,
using cells of area n−

1
2 produces subgraphs which are very well connected. Since

nodes are deployed uniformly at random, an area n−
1
2 is expected to contain

n
1
2 nodes. A subgraph inside a C1 cell is still a random geometric graph with

t = n
1
2 nodes, but for which the radius used to connect nodes is not

√
c log t
t . It

is
√

c logn
n . This is equivalent to creating a random geometric graph of t nodes in

the unit square but with a scaled up radius of rt =
√

c logn
t . From [19] we know

that a random geometric graph of t nodes is rapidly mixing (i.e. linear number
of messages for convergence) if the connecting radius is rrapid = 1

poly(log t) . Now,
e.g. for c = 3 and n ≤ 9 ∗ 106, we get rt ≥ 1

log t ≥ rrapid for t =
√
n ≤ 3000.

Consequently, the C1 cells are rapidly mixing for networks of less than a few
millions of sensors. In Figure 2 verifies this analysis. For graphs from 500 to
8000 nodes and final error 0.0001, we see that MultiscaleGossip2level performs



very close to Multi-scale Gossip with more levels of hierarchy and better than
path averaging.

8 Discussion and Future Work

We have presented a new algorithm for distributed averaging exploiting hier-
archical computation. Multi-scale gossip separates the computation in linear
phases and achieves very close to linear complexity overall (O((k + 1)n1+δ(k))).
Moreover, the maximum distance any message has to travel is O(n

1
3 ) as opposed

to O(
√
n) needed by path averaging which is the other existing gossip algorithm

with linear complexity. Finally, multi-scale gossip uses fixed size messages inde-
pendent of the graph size and does not rely on longer that pairwise averaging
operations. There is a number of interesting future directions that we see. In our
present description, computation happens on grids which are known to require
quadratic number of messages. Since these grids use multi-hop communication
anyway, it might be possible to further increase performance by devising other
overlay graphs between representatives with better convergence properties, i.e.
expander graphs [20]. Moreover, the subdivision of the unit square into grid
cells is not necessarily natural with respect to the topology of the graph. One
could use other methods for clustering. So far, we have some preliminary results
with spectral clustering which seem promising in simulation. It is however not
clear how to do spectral clustering in a distributed way and in linear number
of messages. Another idea is to combine the multi-scale approach with the use
of more memory at each node to get faster mixing rates. Notice however that
how to use memory to provably accelerate asynchronous gossip is still an open
question. Current results only look at synchronous algorithms [10]. Finally, an
important advantage of gossip algorithms in general is their robustness. Intu-
itively this is expected. However the question of modelling and reacting to node
failures has not been formally investigated in the literature. It would be very
interesting to introduce failures and see the effect on performance for different
gossip algorithms.
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