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ABSTRACT
Network tomography is a process for inferring “internal”
link-level delay and loss performance information based on
end-to-end (edge) network measurements. These methods
require knowledge of the network topology; therefore a first
crucial step in the tomography process is topology identi-
fication. This paper considers the problem of discovering
network topology solely from host-based, unicast measure-
ments, without internal network cooperation. First, we in-
troduce a novel delay-based measurement scheme that does
not require clock synchronization, making it more practical
than other previous proposals. Due to the nature of the
measurement procedure, our methodology has the potential
to identify layer two switching elements (provided they are
logical topology branching points and induce some measur-
able switching delay). Second, we propose a maximum pe-
nalized likelihood criterion for topology identification. This
is a global optimality criterion, in contrast to other recent
proposals for topology identification that employ subopti-
mal, pair-merging strategies. We develop a novel Markov
Chain Monte Carlo (MCMC) procedure for rapid determi-
nation of the most likely topologies. The performance of our
new probing scheme and identification algorithm is explored
through simulation and Internet experiments.

1. INTRODUCTION
The explosive growth of the Internet, combined with rapid
and unpredictable developments in applications and work-
loads, has rendered network modeling, control, and perfor-
mance prediction increasingly demanding tasks. Optimiz-
ing the performance of high-end applications requires that
end-systems have knowledge of the internal network traf-
fic conditions and services. Spatially localized information
about network performance plays an important role in iso-
lation of network congestion and detection of performance
degradation. One approach to gathering local performance

information is to augment the Internet infrastructure with
special-purpose hardware and software, but this is impracti-
cal for many reasons [3, 21]. The alternative is to indirectly
infer dynamic network characteristics from edge-based net-
work measurements. The edge-based approach is more chal-
lenging from a measurement and inference perspective, but
is much more practical and scalable.

Several groups have begun investigating methods for infer-
ring internal network behavior based on “external” end-to-
end network measurements [3, 21, 5, 6, 7, 11, 14]. This
problem is often referred to as network tomography. All
of these methods require knowledge of the network topol-
ogy. Thus, a first key step in any approach to monitoring
network conditions from the edge is the determination of
network topology. This paper considers the problem of dis-
covering network topology solely from host-based, unicast
measurements, without internal network cooperation.

Most existing tools for network topology mapping, such as
traceroute, rely on the cooperation of routers and thus
can only reveal those portions of the network that are func-
tioning properly and wish to be known. These cooperative
conditions are often not met in practice, and may be in-
creasingly uncommon as the network grows and privacy and
proprietary concerns increase.

In this paper, we concentrate on the case of estimating the
logical topology which arises from consideration of a single
source communicating with multiple receivers. The logical
topology is generated from the physical topology by using a
single logical link to represent the set of physical links that
connects two branching nodes. We assume the routes from
the sender to the receiver are fixed during the measurement
period, implying that the unknown topology connecting the
sender to the receivers is a tree-structured graph.

Contribution: The contribution of this paper is two-fold.
First, we introduce a novel measurement scheme based on
special-purpose unicast probes that we entitle “sandwich”
probes. The sandwich probing scheme is delay-based, but
it measures only delay differences, so that no clock synchro-
nization is required. Each measurement is generated by the
difference in arrival times of two probe packets at a sin-
gle receiver, as measured by that receiver. Each sandwich
probe consists of three packets, two small packets destined



for one receiver separated by a larger packet destined for an-
other receiver. The idea behind the sandwich probe is that
the second small packet queues behind the large, inducing
extra separation between the small packets on the shared
links. The difference between the arrival times of the first
and second small packet at their receiver is related to the
bandwidths on the portion of the path shared with the other
receiver.

The goal of the probing scheme is to generate a metric that
can be used for topology identification. There are two key
advantages of the sandwich probing scheme as opposed to
previously proposed alternatives based on loss and delay
measurements. Firstly, it is our experience that probe loss
on much of the Internet is very rare. Therefore, an extremely
large number of probes must be sent before a loss-based
metric becomes reliable for use within logical topology iden-
tification. Secondly, generating most delay-based metrics
requires accurate clock synchronization between the sender
and receivers. In most cases, GPS access is assumed, which
severely restricts the application of delay-based schemes.
Since the sandwich probing scheme is based on delay dif-
ferences, it avoids the need for clock synchronization.

The second contribution of the paper is a new, penalized
likelihood-based framework for topology identification. The
basic idea is that, in principle, one could evaluate the sta-
tistical likelihood of every possible topology configuration
given the measurements and then select the topology that
maximizes the likelihood (i.e., the Maximum Likelihood Es-
timate (MLE)). However, the number of possible topologies
grows exponentially as the number of receivers increases,
and exhaustively searching over them all is infeasible in
large-scale networks [10]. A crucial issue is therefore how to
efficiently search the space of topologies. We propose a spe-
cial Markov Chain Monte Carlo (MCMC) procedure for this
task. The MCMC procedure quickly searches through the
“topology space,” concentrating on regions with the highest
likelihood. The most advantageous attribute of the MCMC
procedure is that it attempts to identify the topology glob-
ally, rather than incrementally (and suboptimally) a small
piece at a time. The procedure is scalable, as its complexity
grows linearly with the number of receivers in the network
under study. The performances of the sandwich probing
scheme and the MCMC topology identification algorithm
are explored through ns simulations [19] and Internet ex-
periments.

Related Work: Several methods have been proposed for
identifying multicast topologies. The first of these, [22], was
based on the observation that multicast receivers sharing a
longer portion of the path have higher shared loss rates. By
measuring the shared loss-rates, and recursively grouping
nodes, an estimate of the logical tree can be formed. The
approach was extended in [9, 10]. These papers made the
approach applicable to general topologies and demonstrated
that metrics based on other measurements can be used, pro-
vided the metrics satisfy certain properties as discussed in
Section 2. Specific metrics that have been proposed include
loss rates, mean delay, delay covariance, and link utilization
(frequency of zero delay). Experiments in [9] suggested that
topology identification was most reliable when either the
link utilization metric or the loss metric were used. How-

ever, when network load is low (low link loss and utiliza-
tion), topology identification based on the loss metric per-
forms poorly; when network load is high (high link loss and
utilization), topology identification based on the utilization
metric performs poorly. To address these issues, an adap-
tive scheme was introduced in [8] that incorporated both
utilization and loss information. The loss-based multicast
methodology of [9] was adapted to the case of unicast mea-
surements in [2].

There are two major differences between these methods and
our new approach. Firstly, we use special unicast probe
measurements that are neither based on losses nor require
clock synchronization. Secondly, the method we use for uni-
cast topology identification is based on maximum (penal-
ized) likelihood, in contrast to the receiver-grouping rules
that comprise the algorithms in the aforementioned papers.
Although the multicast loss-based topology identification
problem was posed as a maximum likelihood problem in [10],
the authors proposed only exhaustive search algorithms that
are infeasible for even medium-size networks, and chose to
focus on deterministic grouping algorithms that do not ad-
dress the maximum likelihood problem. It is proven in [2,
10] that the proposed grouping algorithms are guaranteed to
identify the correct tree if the measurements provide perfect
end-to-end metrics (and that the identification algorithms
are consistent). However, when few measurements are avail-
able, the variation of an estimated end-to-end metric around
the true metric (the noise) can be very high. Moreover,
the extents of variation along different paths can differ sub-
stantially. The algorithms of [2, 10] make deterministic,
local decisions based on estimated end-to-end metrics; they
do not take into account the effects of variation or noise.
Our scheme directly models the noise, and avoids making
local decisions. It identifies the best (maximum likelihood)
global topology. This global optimization results in substan-
tial improvement in performance over the algorithm of [2]
when either few probe measurements are made or there is
substantial noise in the measurements. In addition, we in-
corporate complexity penalization in our framework, which
enables identification of non-binary trees without the need
for a supplemental pruning procedure.

The sandwich probing scheme we propose was inspired by
the cartouche probing method of [15]. Cartouche probing
was designed for the purpose of identifying the bottleneck
bandwidth of path segments. Sandwich probing has a very
different aim, so the probe structure is altered in a critical
manner, as outlined in the following section. Both sand-
wich probing and cartouche probing have strong connections
with earlier probing schemes used for bandwidth determina-
tion [17, 20, 22] and shared path detection [26].

2. SANDWICH PROBE MEASUREMENTS
Schemes for topology identification that utilize solely end-
to-end measurement involve three main steps. Firstly, end-
to-end measurements are made (in previous work [2, 8] these
have been end-to-end loss and end-to-end delay). Secondly,
a set of “end-to-end” metrics are estimated based on the
measurements. A metric estimate is generated for each pair
of receivers. This is the estimate of the true metric of the
shared portion of the paths from the source to the two re-
ceivers. For successful topology identification it must be



possible to decompose the end-to-end or path-level metrics
into sets of “link” metrics. Examples of previously used met-
rics include counts of joint zero delay events (the utilization
metric), counts of joint loss events, and delay covariance. In
the third step, an inference algorithm uses these pairwise
metrics to estimate the topology.

Our algorithm and the algorithms in [2, 9] hinge on the
true end-to-end metrics being monotone and separable (us-
ing the terminology of [2]). Monotonicity requires that the
true metric of a shared path must not decrease (increase)
if another link is added to that shared path. Separability
simply means that a path metric can be decomposed into
the metrics associated with the links comprising the path.
For the metric we propose, the path metric is simply the
sum of the metrics of its constituent links. We discuss the
monotonicity of the metric below.

The reliability of logical topology identification grows as the
number of measurements increases. If an infinite number
of measurements could be made, the path metrics would be
known exactly, and the correct tree would always be iden-
tified [2, 10]. When a finite amount of data is available,
mistakes are made. The choice of metric has a major ef-
fect on how fast the percentage of successful identification
improves as the number of measurements increases. The
improvement is slow if it takes many measurements to pro-
vide a sufficiently accurate indication of the true end-to-end
metrics to enable successful differentiation of receiver pairs.
This is the reason why loss-metrics perform poorly in lightly-
loaded networks. Thousands of measurements have to be
made before the one-percent loss rate of a link substantially
affects the estimated end-to-end metrics. A link with a ten-
percent loss rate makes its presence felt much sooner. In
effect, the measurements in which a loss occurs are highly
informative, whereas those where no loss occurs are rela-
tively uninformative. Delay-based measurements tend to be
more informative, but there one encounters clock synchro-
nization issues that are difficult to overcome.

In developing a metric and associated probing scheme, we
strive to make every measurement informative regardless of
network conditions. This has the effect of increasing the rate
at which the estimated end-to-end metrics converge to the
true end-to-end metrics. A metric will result in more suc-
cessful identification if the distance between path metrics is
large (relative to measurement error), because it makes it
easier to differentiate between them. For monotonically in-
creasing metrics, it is therefore desirable that all link metrics
be non-zero and large (in a relative sense). In the case of
the utilization and loss metrics, each link metric is only non-
zero because competing traffic causes delay or loss on that
link. We aim to develop a metric whose constituent link
metrics are intrinsically non-zero because of the measure-
ment technique; cross-traffic effects can then be treated as
noise. We perform measurement using “sandwich” probes,
as described below. Almost every probe provides an infor-
mative measurement of delay difference (the metric); the
only exceptions are when one or more of the probe packets
are dropped.

The metrics we use are mean delay differences. Because
we only ever need to measure delay differences locally (at a

single receiver), there is no need for clock synchronization
between the sender and receivers. The delay differentials
are generated in the following manner. We perform mea-
surement using a “sandwich” probe, which is comprised of
two small packets separated by a larger packet.1 See Figure
1 for a depiction of the probe.

Let us first consider the situation where there is no cross-
traffic. In this case, the first small packet p1 in a probe
experiences no queueing delay. Suppose the shared path
consists of n physical links, labelled L1, . . . , Lm with band-
widths b1, . . . , bm. As shown in [2], the second small packet
queues behind the large packet preceding it at every queue
on the shared path, provided:

s(q)

s(p)
≥

bi+1

bi

i = 1, . . . , m (1)

where s(q) is the size of the large packet and s(p) is the size of
the small packet. In practice, we set s(q) to be the maximum
IP packet size not subject to IP fragmentation. For example,
in our Internet experiments we use s(q) = 1500 bytes and
set s(p) = 56 bytes. With these settings, physical links will
impart extra spacing between the two small packets until a
link is encountered whose bandwidth is more than 25 times
that of the link preceding it. If cross-traffic is present, then
the condition (1) is sufficient but not always necessary, since
the large packet may be held up by the additional queuing
delay.

When the large packets and small packets diverge, the spac-
ing between the small packets is d + ∆d (see Figure 1).
Suppose the path from the branching node to the destina-
tion of the small packets consists of a set of physical links
Lm+1, . . . , Ln with bandwidths bm+1, . . . , bn. As shown in [15],
in the absence of cross-traffic the spacing between the small
packets is preserved provided that

s(p)

d + ∆d
≤ min

m+1≤i≤n
bi. (2)

In practice, this relationship is not really the governing fac-
tor in making a decision about the initial spacing d; it is
determined more by the anticipated effects of cross-traffic,
as discussed below.

The cross-traffic induces substantial variation in the mea-
surements, with queuing effects before and after the branch-
ing node disrupting the measured spacing from its theoret-
ical value. Our basic assumption is that cross-traffic has
a zero-mean effect on the measurements. Our experiments
suggest that this assumption is reasonable provided d is suf-
ficiently large to eliminate (or greatly reduce) the number
of occurrences of the more systematic measurement errors
that occur when p2 reaches a queue on the unshared path
before p1 has exited the queue. In these cases, the eventual
spacing is directly related to the bandwidth of the (last)
shared queue and the number of intervening packets. If d

1This probe is similar to the cartouche probe of [2]. The
most important difference is that in a cartouche probe there
is another large packet in front of the first small packet.
When the constraints in (1) are met, the extra spacing in-
duced in a cartouche probe is due solely to back-to-back
queueing in the bottleneck queue; for the sandwich probe,
extra spacing is added at every queue in the shared path.
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Figure 1: An example of sandwich probe measurement. The large packet is destined for node 2, the small packets

for node 3. The black circles on the links represent physical queues where no branching occurs. In the absence of

cross-traffic, the initial spacing between the small probes d is increased along the shared path from nodes 0 to 1 because

the second small probe p2 queues behind the large packet. The measurement x2,3 for this receiver pair is equal to

d + ∆d. A larger initial spacing d reduces the chance of p2 catching p1 because of a bottleneck or cross-traffic on the

path from node 1 to 3.

is too small, and there is relatively heavy cross-traffic on a
bottleneck link, then these errors can occur relatively fre-
quently and induce a substantial negative bias in the esti-
mated mean. If d is set reasonably large (there is a trade-off
between d and the number of probe measurements that can
be made), then the number of such erroneous measurements
is greatly reduced. Moreover, it is easy to differentiate be-
tween the measurements that have been affected in this way
and the other measurements because the spacing between
the affected measurements is much less than that of the oth-
ers. These affected measurements are “outliers” that can be
discarded.

We now formalize our end-to-end metric construction. Let
us consider a single sender transmitting sandwich probes to
a set R of N receivers. For every pair of receivers i, j ∈ R
there are two types of measurement: one in which the two
small packets in the sandwich probe are sent to receiver i
and the large packet is sent to j and one in which the des-
tinations are reversed. In total there are N(N − 1) different
types of measurements (since we do not consider sending
all packets to a single receiver). Suppose that K mea-
surements are collected in total. For each measurement
k = 1, . . . , K let (r1(k), r2(k)) denote the pair of receivers
in the k-th measurement, with r1(k) referring to the re-
ceiver of the two small packets and r2(k) referring to the
receiver of the larger packet(s), and let δ(k) denote the dif-
ference between the arrival times of the two small pack-
ets at receiver r1(k). Consider the subset of measurements
{δ(k) : r1(k) = i, r2(k) = j}. We assume that these mea-
surements are independent and identically distributed; this
assumption is reasonable if the probes are sufficiently sepa-
rated in time. Let xi,j denote the sample mean of these mea-
surements and σ2

i,j denote the sample variance. The sam-
ple variance provides a measure of confidence in the sample
mean xi,j , which will be used in the definition of our topol-
ogy identification criterion in the next section. Computing
these quantities for all pairs of measurements produces the
set of metrics x = {xi,j}i,j∈R and a corresponding set of
variances {σ2

i,j}i,j∈R.

3. MAXIMUM LIKELIHOOD TOPOLOGY
IDENTIFICATION

In this section we describe and motivate the criterion on
which we base our topology identification procedure. The
fundamental reason for adopting a maximum (penalized)
likelihood criterion is that it accounts for variation in the
measurements, and results in an efficient estimator that per-
forms well even when a small number of measurements are
available. Efficiency is critical in unicast topology identifi-
cation, because each probe measurement is much less infor-
mative than an equivalent multicast measurement.

We assume that the routes from the sender to the receiver
are fixed during the measurement period. This implies that
the (unknown) topology connecting the sender to the re-
ceivers is a tree-structured graph. The vertices of the graph
represent the sender, receivers, and internal routers. Not all
routers are apparent in the graph; only those routers asso-
ciated with points where two or more paths to the receivers
diverge are explicit. Thus, the edges (connections between
vertices) in the graph correspond to sequences of one or more
physical links in the network. Throughout the paper we will
refer to the edges of the graph as links, with the understand-
ing that each of these “logical links” corresponds to one or
more physical links, and vertices will be called nodes. The
true tree associated with the network under consideration is
denoted by T ∗. The set of all possible trees connecting the
sender to the receivers is denoted by F . The set F is called
a forest. The goal of topology identification is to find the
tree T ∗ in the forest F based on the data x and no other
information2. Of course, the data are imperfect and finding
T ∗ cannot be guaranteed by any method. Thus, we need to
define a criterion for assessing the fitness of trees.

The basis for our approach is a maximum likelihood crite-
rion. To derive the criterion, we must first adopt a probabil-
ity model for the mean delay differential metrics. Suppose
that data arise from a tree T . Associated with each link
e` in the tree is a theoretical delay difference value µ`. Let
Si,j denote the set of shared links in the paths to receivers

2It is also possible to include side information in the prob-
lem, such as partial knowledge of the topology, but this is
not considered here.



i and j. The theoretical (expected) value of xi,j is given
by γ` ≡

∑
`∈Si,j

µ`. The more shared links, the greater

the total distance. We probabilistically model the measured
difference as

xi,j ∼ N (γi,j , σ
2
i,j), (3)

where σ2
i,j is measured variability of the xi,j and N (γ, σ2)

denotes the Gaussian density with mean γ and variance σ2.
This model reflects the fact that the theoretical value for
xi,j is γi,j , but there is some randomness in our measure-
ment. We point out that we are not assuming that the delays
themselves are Gaussian distributed. The motivation for the
model above is that the average of several independent mea-
surements of delay differences (recall xi,j is a sample mean)
tends to a Gaussian distribution according to the Central
Limit Theorem. Let µ(T ) = {µ`}, where ` runs over all
internal links (not including final links to receivers). We
can write the probability density for the measured data x

as p(x|T , µ(T )).

This probability model induces a likelihood function on the
forest of trees F as follows. If we consider a particular tree
T , then the means µ(T ) of the probability model p(x|T , µ(T ))
can be estimated from the measurements x. The natural
choice for the estimator is the Maximum Likelihood Estima-
tor (MLE). We compute the values of {µ`} that maximize
p(x|T , µ(T )), subject to the constraint that each mean is
non-negative. That is, the parameter space is restricted to
the set {µ` ≥ 0} to enforce the known positivity conditions.
Let µ̂(T ) ≡ {µ̂`}, denote the maximum likelihood estimate
of µ(T ). We define the log likelihood of T by

L(x|T ) ≡ log p(x|T , µ̂(T )). (4)

In words, we consider the likelihood of the tree T with the
parameters µ(T ) chosen to maximize that value (i.e., we
consider the very best fit T can provide to the data). The
log is taken for mathematical convenience (it is a monotonic
transformation that preserves the ordering of the likelihood
values). The maximum likelihood tree (MLT) is the one in
the forest that has the largest likelihood value.

One drawback to the likelihood criterion is that it places
no penalty on the number of links in the tree. As a con-
sequence, trees with more links can have higher likelihood
values (since the extra degrees of freedom they possess can
allow them to fit the data more closely). In general, the
true tree T ∗ will have a smaller likelihood value than an-
other tree T that is identical to T ∗ except that one or more
of the nodes in T ∗ are replaced with extra branching nodes
that allow T to fit the data more closely. This is an in-
stance of the classic “overfitting” problem associated with
model estimation; the more degrees of freedom in a model,
the more closely the model can fit the data. Of course, we
are not interested in simply fitting the data, but rather in
determining a reasonable estimate of the underlying topol-
ogy.

The overfitting problem can be remedied by replacing the
simple likelihood criterion with a penalized likelihood crite-
rion.

Lλ(x|T ) = log p(x|T , µ̂(T )) − λ n(T ) , (5)

where n(T ) is the number of links in the tree T and λ ≥ 0

is a parameter, chosen by the user, to balance the trade-off
between fitting to the data and controlling the number of
links in the tree. The maximum penalized likelihood tree
(MPLT) is defined by

T̂λ ≡ max
T ∈F

Lλ(x|T ). (6)

This is the approach we will follow for topology identifica-
tion. The MPLT determines a reasonably simple tree that
accurately fits the measured data. We explicitly indicate
the dependence of the MPLT on the penalty parameter λ.
Setting λ = 0 will produce the MLT; it is easy to check that
the MLT will always be a binary tree (with 2N − 1 links),
since binary trees provide the largest number of degrees of
freedom and thus fit the data most closely. The larger the
value of λ the more the penalized likelihood criterion favors
simpler trees with fewer links. A discussion concerning the
choice of λ is deferred to Section 4.5.

With our penalized likelihood criterion in place, the only
issue remaining is the method for computing the required
maximization. If the number of receivers N is small, then
we can exhaustively compute the penalized likelihood value
of each and every tree in F . For large N , we have devised
a more efficient approach to this maximization, which we
outline next.

4. FINDING THE TALLEST TREE IN THE
FOREST

Although the maximum penalized likelihood is a desirable
criterion for selecting a tree, it is extremely difficult to for-
mulate a deterministic optimization strategy that will iden-

tify T̂λ of (6). The space of possible trees (the forest) is vast
even for a relatively small number of receivers, so calculating
likelihoods for all trees is infeasible. However, we contend
that the likelihood surface of the forest is very peaky (only a
relatively small number of trees have significant likelihood).
Our goal is to design a procedure that explores the forest
in an efficient manner, concentrating almost exclusively on
the small set of likely trees; we also want the procedure to
avoid becoming trapped in suboptimal regions of the forest.
We adopt a stochastic search methodology that avoids the
identification of a locally, but not globally, optimal tree.

Preferably, the search should be guided along paths where
trees have a substantial likelihood. Developing such a guide
is achieved by reconsidering the MPL criterion. We see from
(5) that the exponentiated MPL criterion is proportional to
the posterior probability:

exp(Lλ(x|T )) = e−λn(T )p(x | T , µ) ∝ p(T , µ |x) (7)

provided that we adopt the prior p(T ) ∝ exp(−λn(T )),
λ > 0 as defined above; and provided that the prior for
each link p(µ`) is a uniform density (constant) over [0, µmax],
where µmax is the maximum possible µ value. The MLE of
each µ` cannot be larger than the largest of the {xi,j}, and
therefore we set µmax = maxi,j xi,j . The priors p(µ`) are
non-informative; they have no effect other than to enforce
the non-negativity constraint.

With this alternative interpretation of the penalized like-
lihood criterion, it is clear that we can use the posterior
distribution as a guide for searching the forest. The scheme



involves generating and comparing random samples (T , µ)
from the posterior distribution. The random samples will
naturally be concentrated in the regions of high likelihood.
The major task to be addressed is the generation of random
samples from the posterior distribution.

4.1 Search Methodology
The basic idea is that the posterior distribution can guide
a stochastic search of the forest. The stochastic search in-
volves a set of random moves between trees, both within
the parameter space of a given tree and from one tree to
another. These moves are based on random samples from
the posterior distribution. Because the posterior density is
peaked near highly likely trees, the stochastic search focuses
our exploration of the forest. Consequently, we only need
to visit a small subset of the myriad of trees and compare
their penalized likelihood values.

Our search methodology involves the specification of the al-
lowed moves. The nature of the moves places restrictions on
the structure of the search and the path through the forest.
When defining moves, we strive to make it possible to pass
between any pair of ‘likely’ trees in very few moves. If this
is the case, then the search can begin at an arbitrary point,
discover a likely tree, and then search the subset of likely
trees very rapidly (because only a few moves are required to
traverse the subset). Thankfully, the structure of the prob-
lem means that very natural moves impart this property.
We only need three moves: a birth step, a death step, and
a µ-step. The nature and effect of these moves is clarified
below.

The moves perform the important function of increasing or
reducing the joint measures (γ values) of groups of receivers
in a structured, local fashion. There are no radical shifts in
topology or parameter structure.

4.2 Reversible Jump Markov Chain Monte Carlo
Our stochastic search technique is founded on the reversible
jump Markov Chain Monte Carlo methodology that was pi-
oneered by Green in [13] and has subsequently been utilized
in many model selection problems [23, 1, 25]. The first step
when adopting this approach is to define a target distribu-
tion of interest. In our case, this is the posterior p(T , µ|x).
The basic idea of MCMC methods is to simulate an ergodic
Markov chain whose samples are asymptotically distributed
according to the target distribution.

The important step is to construct the Markov chain with
the desired asymptotic distribution. This involves the defini-
tion of a Markov transition kernel which specifies the prob-
ability of moving from one state s1 = (T1, µ1) to another
s2 = (T2, µ2). When the dimension of the parameter space
is fixed, the Gibbs sampler [12] or the Metropolis-Hastings
method [18, 16] can be used to construct suitable transition
kernels. The introduction of varying dimension complicates
matters and more care must be taken. The reversible jump
MCMC methodology provides a mechanism for developing
transition kernels that generate the desired asymptotic dis-
tributions and navigate the perils of models of varying di-
mension.

4.3 The Moves

We begin our description of the algorithm by defining the
moves between states. We denote the state at step k in the
trajectory of the Markov chain by sk. The birth-step and
death-step moves are depicted in Figure 2.

In a birth step, a node ` that has more than two children
is selected at random. Two of these children (nodes c(`, 1)
and c(`, 2)) are chosen, and an extra node `∗ is inserted in
the topology. This node becomes the new parent of c(`, 1)
and c(`, 2) and a child of node `. The birth step increases
the dimension of the model by adding the extra parameter
µ`∗ . Denote the µ values in the new tree µ′

c(`,1), µ′
c(`,2) and

µ`∗ .

We want to define the birth step so that we do not dis-
card information we had about the µ values in the previous
state. Moreover, it is desirable to localize the changes we
make to the likelihood structure. The goal of a birth step
is to move to a new tree which, compared to the current
tree, has higher γi,j and γj,i values when i is a descendant
receiver of c(`, 1) and j is a descendant receiver of c(`, 2).
These are the only γ values that we wish to affect; the like-
lihood can be factorized, and we only want to alter a small
set of factors targeted by the birth move. We achieve these
aims by specifying the following transformation that maps
the µ parameters of state s1 to those of state s2. Only the
parameters of affected nodes are altered. The transforma-
tion hinges on the drawing of a random variable r from the
uniform distribution U [0, 1].

µ`∗ = r × min(µc(`,1), µc(`,2)),

µ′
c(`,1) = µc(`,1) − µ`∗ ,

µ′
c(`,2) = µc(`,2) − µ`∗ . (8)

The reversible jump MCMC algorithm demands that tran-
sitions be reversible so that there is no chance of becoming
stuck at a particular state. For this reason, the death-step
is the exact opposite of the birth-step. A node `∗ with ex-
actly two children is selected and deleted; the new parent of
the two children becomes the parent of `∗. A quick study
of Figure 2 shows how a death-step (removing `∗) can re-
verse the effect of the birth-step that introduced `∗. The
transformation for the death-step is completely determinis-
tic (because it involves a dimension reduction). Using the
same node labelling as before:

µc(`,1) = µ′
c(`,1) + µ`∗ ,

µc(`,2) = µ′
c(`,2) + µ`∗ . (9)

Finally, the µ-step simply chooses a link ` at random and
changes the value of µ`. This move is performed as a Gibbs
sampling step, which means that the new value of µ` is
drawn from the conditional posterior distribution. Drawing
from this distribution rather than a distribution unrelated
to the observations is very important because it has a major
effect on the speed of convergence of the algorithm.

4.4 The Algorithm
The reversible jump MCMC algorithm proceeds as follows.
Choose a starting state s0 = (T0, µ0). This can be a ran-
dom state, a default state such as the minimum link tree
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Figure 2: The birth-step and death-step moves. The birth-step selects a node with more than two children, chooses

two of these children, and inserts an extra node as the new parent of these children. The death step chooses a node

with two children, and deletes that node.

with random µ parameters, or a state determined by a de-
terministic algorithm such as that proposed in [2, 10] prior
to pruning (this generally produces a fairly likely binary tree
and thus initiates our exploration in a likely region of the
forest)). Propose a move (birth-step, death-step or µ-step)
to another state s1 = (T1, µ1). Accept the proposed move
with probability:

min

{
1,

p(T1, µ1 |x)q(s0 | s1)

p(T0, µ0 |x)q(s1 | s0)
× Jf(s1,s0)

}
(10)

Here q(sj |si) denotes the probability of proposing the move
from state si to state sj . Jf(sj ,si) is the Jacobian of the
transformation f which maps the (possibly augmented) pa-
rameters of state si to those of sj . The Jacobian is the key
to addressing varying dimensionality. The transformations
for the birth- and death-steps are specified by (8) and (9).
In the case of the µ-step, there is no change in dimension
and the Jacobian equals one.

This simple procedure is repeated many times, generating
thousands of states. Whenever the Markov chain visits a
tree for the first time, its log-likelihood is evaluated (by max-
imizing over the µ parameter space) and stored. The goal of
the algorithm is to search the forest in an efficient manner,
not to generate an estimate of the posterior distribution.
For this reason, we follow the procedure outlined in [4] and
restart the chain whenever no new trees have been visited
for a substantial period of time (a few thousand states).
The chain can be restarted from the same initial state or a
different state.

4.5 Setting the Penalty Parameter
The choice of λ, the penalty, determines the final topol-
ogy estimate. It effectively plays the role of a threshold
level; links whose likelihoods are less than a certain value
will be “collapsed” by the force of the penalty term on the
log-likelihood. In this paper, we follow the classical Min-
imum Description Length Criterion of Rissanen [24]. In
rough terms, he argues that a suitable penalty can be chosen
based on the “informativeness” of the data relative to the
dimensionality of the parameter space. The penalty we use
is λ = 1/2 log2 N , where N is the number of receivers.

4.6 Computational Complexity
Although the MCMC algorithm sounds computationally de-
manding, particularly as many thousands of states must be

generated, the calculations involved in each state transition
are remarkably simple. Topology estimation of relatively
large trees (20-60 links) can be performed on a 600 MHz
Pentium in 30-120 seconds. Considering that the probe mea-
surements generally take on the order of minutes, there is
no real penalty for the substantial performance improvement
over a deterministic algorithm.

5. SIMULATION EXPERIMENTS
We conducted some simple model simulations in order to
compare the performance of the maximum likelihood ap-
proach and with the Deterministic Binary Tree (DBT) clas-
sification [9]. The DBT was designed for multicast topology
identification, but could be applied as a less computation-
ally intensive alternative to our approach. In this simula-
tion we set λ = 0, so that there is no penalty. In this case,
both DBT and MPLT approaches will produce binary trees.
Therefore, we considered the six receiver binary topology
used in the ns-simulations in [9]. The measurements were
generated according to our model and the standard devia-
tion of the delay differences on each link was proportional
to the respective mean value. We do not report all the de-
tails of the experimental setup here due to space limitations.
In each experiment we sent 50 probes to each receiver pair,
and computed the DBT and MPLT trees for 1000 indepen-
dent simulations. The DBT algorithm correctly identified
935 trees, and the MPLT procedure identified 951 trees. Al-
though the MPLT performed slightly better, the percentage
of correctly identified trees is almost the same for both pro-
cedures. Performance differences are much greater when
the variabilities of the delay difference measurements differ
on different links. We performed the same experiment as
before, but setting the standard deviation of one of the re-
ceiver links three times greater than before. In this scenario
the DBT method correctly identified 734 tree; the MPLT
method identified 912 trees correctly. This demonstrates
that the maximum likelihood criterion can provide signifi-
cantly better identification results than the DBT approach.

We also conducted a series of ns simulations [19] using the
topology depicted in Figure 3. The topology has nine re-
ceivers and link bandwidths ranging from 0.5 to 10 Mb/s.
The maximum depth of the physical topology is 8, and the
maximum depth of the logical topology is 6.

Simulations were conducted in both a low utilization sce-



nario and a higher utilization scenario (by varying back-
ground traffic). In the former scenario, the average utiliza-
tion over all links and runs was 30 %, with a range of 5-50
%; in the latter, the average was 45 %, with a range of 10-90
%. We performed 25 runs of each scenario, with each run
lasting for 8 minutes. Sandwich probes were sent into the
network with a mean probe separation of 50 ms, and the re-
ceiver pairs chosen at random. On average, the full duration
results in 9600 probe measurements. The spacing between
the first packet and the second packet was set to 20 ms.

Figure 4(a) examines the performance of the proposed algo-
rithm and measurement scheme as the number of probes
is varied. In the algorithm, we have set the complexity
penalty to λ = 0.5 log2 N , as discussed in Section 4.5. As
expected, we observe a steady improvement in performance
as the number of probes increases. The performance of the
algorithm in a lightly loaded network is better than in a
network experiencing higher load, because the cross-traffic
induced variation in the measurements is less of a factor.
Figure 4(b) examines the sensitivity of the algorithm to the
choice of the penalty λ. In this instance, the performance is
similar over a range of λ from approximately 1 to 3.

6. INTERNET EXPERIMENT
We have implemented a software tool called nettomo that
performs sandwich probing measurements and estimates the
topology of a tree-structured network. The software has
been implemented as a set of C programs using the Unix
socket library and the programs have been ported to So-
laris, FreeBSD, and (some) Linux platforms. The topology
estimation (data collection and inference) is performed at a
source host. The program at the source sends UDP sand-
wich probes to a set of remote clients, which are required
to run a low overhead receiver task during the measurement
period. The receiver task primarily time-stamps a received
UDP small packet (with the local time) and returns the
time-stamped packet to the sender via a dedicated TCP con-
nection. The sender software maintains a log of the returned
packets, and at the completion of the measurement period,
calculates the delay differences, the associated metrics and
their variability.

We conducted Internet experiments using the topology de-
picted in Figure 5(a). The source for the experiments was
located at Rice University. There were ten receiver clients,
two located on different networks at Rice, two at separate
universities in Portugal, and six located at four other US
universities.

We performed the same experiments six times, on different
days and at different times so that traffic conditions var-
ied. Each experiment was conducted for a period of eight
minutes, during which a sandwich probe was sent to a ran-
domly chosen receiver-pair once every 50 ms. Without any
loss, the maximum number of probes available is 8600; we
experienced no probe loss in five of the six experiments, and
less than 0.1 percent probe loss in the sixth.

We applied the topology identification procedure outlined
in the paper, choosing a complexity penalty of 1.7, which is
derived from the formula 0.5 log2 N suggested in Section 4.5
(N = 10, the number of receivers). When this penalty was

applied, the algorithm generated the topology in Figure 5(b)
in four out of the six experiments. The estimated topology
places an extra shared link between the Rice computers.
Upon further investigation, we discovered that there is a
layer-2 switching element within the Rice network; in con-
trast to traceroute, the measurement procedure can detect
layer-2 branching points. The proposed methodology fails
to detect the backbone connection between Texas and Indi-
anapolis. We expect that the connection is very high speed
so that the queuing effects on the constituent routers are too
minor to influence measurements. An alternative explana-
tion is that the link performs systematic prefix-based load
balancing, which can disrupt sandwich probe measurement
(the assumption of a tree topology is no longer valid). In
the other two experiments, the complexity penalty was suf-
ficiently large to collapse the link shared only by the two
Univ. Wisconsin computers.

7. CONCLUSIONS
This paper considered the problem of discovering network
topology solely from host-based, unicast measurements, with-
out internal network cooperation. We introduced a novel
measurement scheme based on special-purpose unicast probes
that we call “sandwich” probes. The sandwich probing
scheme is delay-based, but only requires local delay differ-
ence measurements at each receiver host, so that no clock
synchronization is required. The sandwich probing scheme
may provide a more reliable metric than other proposed met-
rics (loss, delay correlations, utilization) used for topology
identification. We also developed a new, penalized likelihood-
based framework for topology identification. A major ad-
vantage of the framework is that it is based on a global op-
timality criterion, in contrast to other recent proposals for
topology identification that employ suboptimal, local group-
ing and pruning strategies. We propose a novel Markov
Chain Monte Carlo (MCMC) procedure for rapid determi-
nation of the most likely topologies.

One area for future work is to devise adaptive methods for
selecting the penalty parameter λ. In the experiments re-
ported in this paper, we set λ according to the Minimum
Description Length principle. However, one may be able to
better choose the penalty after computing the likelihoods
of a set of highly likely trees. This suggests an alterna-
tive approach, closer to the pruning methodology adopted
in [2, 9]: run a threshold test on the estimated µ param-
eters associated with the set of most likely trees, reject all
trees where one or more links fails the test, and choose the
most likely remaining tree. There is an important advan-
tage of the methodology over pruning techniques, however.
If a topology is not a binary tree, there is a danger asso-
ciated with forcing a binary tree model upon it, as is done
by the algorithms in [9, 2]; incorrect end-to-end metric esti-
mates can result in selection of a binary tree from which the
correct topology cannot be obtained through pruning. The
effects of measurement noise on the identification capabili-
ties of these algorithms are far more noticeable when there
is a model mismatch.

Another direction for future improvement is to incorporate
a degree of adaptivity into the probing scheme. The sample
variances {σ2

i,j} provide confidence measures for the metrics
{xi,j}. One could begin the probing process with a small
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Figure 4: (a) The performance of the identification algorithm as a function of the number of probe measurements

(dashed line - light utilization, solid line - heavier utilization). (b) The sensitivity of the algorithm to the choice of

penalty. The plot shows the percentage of correctly identified trees as a function of the penalty λ in the case of the

heavier utilization scenario and 9600 probe measurements.

number of probes (10-100) sent to each receiver pair. Then,
based on the sample variances of those measurements, ad-
ditional probing could be directed at those pairs with larger
variances. This focused probing step would improve the
stability of the topology identification process in an effi-
cient manner, and it could drastically reduce probing re-
quirements.
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