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Abstract. Recently Gerald Ash has shown through case studies that
event dependent routing is attractive in large scale multi-service MPLS
networks. In this paper, we consider the application of Load Shared
Sequential Routing (LSSR) in MPLS networks where the load sharing
factors are updated using reinforcement learning techniques. We present
algorithms based on learning automata techniques for optimizing the
load sharing factors both from the user equilibrium and system optimum
perspectives. To overcome the computationally expensive gradient evalu-
ation associated with the Kuhn-Tucker conditions of the system optimum
problem, we derive a computationally efficient method employing shadow
prices. The proposed method for calculating the user equilibrium solu-
tion represents a computationally efficient alternative to discrete event
simulation. Numerical results are presented for the performance com-
parison of the LSSR model with the user equilibrium and the system
optimum load sharing factors in some example network topologies and
traffic demands.

1 Introduction

In the early days of packet switching much attention was given to the routing
problem. See [1] for an early survey of routing algorithms where an application of
learning techniques to packet routing in data networks was considered. The event
dependent routing method described in reference [1] can be applied to either
datagram or virtual circuit data networks, however in the case of datagram
networks the received packets can be miss ordered. With the appearance of
the Internet, destination based IP routing was widely adopted for reasons of
scalability and stability in spite of the fact that destination based routing gives
the user little control over how his/her traffic is routed. This in turn means
that traffic may be routed over congested links (paths) while at the same time
alternative less congested paths are available.

The need for better control of traffic routing, also referred to as “traffic en-
gineering”, gave rise to the MPLS standard. Multi Protocol Label Switching
(MPLS) is a connection oriented framework proposed by the IETF to improve
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traffic engineering, congestion management and QoS provisioning in traditional
IP networks [2]. In this framework, constraint-based routing and label swapping
replaces the hop-by-hop destination-based routing mechanism used in traditional
IP networks. With MPLS, route selection can employ either hop by hop rout-
ing or explicit routing. In the explicit routing method, a single Label Switching
Router (LSR), usually the ingress LSR, specifies all (or some of) the hops in the
Label Switched Path (LSP). Explicit routing gives the designer the ability to
control the traffic load distribution in the network.

The algorithms proposed for LSP routing in MPLS networks are mostly state
dependent ([3]). In state dependent routing, the information about the status of
the network is flooded through the network and routing tables are updated using
this information. Event dependent routing algorithms, on the other hand, use
the observed events to update their knowledge about the status of the network.
Different event dependent routing schemes have been proposed and successfully
used in TDM networks. Reference [4] presents an event dependent routing scheme
for destination-based routing and shows the convergence with probability one of
the proposed algorithm to the set of approximate Cesaro-Wardrop equilibria. An
application of event dependent routing schemes in the MPLS networks has been
presented in [5, 6]. To the best of our knowledge, the performance of the routing
scheme studied in [5, 6] can only be derived from discrete event simulation and
there is no analytical approach for evaluating the performance of the algorithm.
In reference [7], we present an alternative event dependent routing scheme with
the application to explicit source routing in MPLS networks. The proposed al-
gorithm is based on the Load Shared Sequential Routing (LSSR) where load
sharing factors are updated using reinforcement learning techniques.

In this paper, we study the load share optimization problem both from user
and system optimization perspectives in the LSSR model and give a computa-
tionally efficient method for solving these problems. The solution approach uses
a recursion, governing the expected behavior of an ε-optimal learning automata,
to converge to the point where the Kuhn-Tucker conditions of the optimization
problem are satisfied. The application of learning automata techniques in solving
the load share optimization problem for the single class circuit-switched networks
with fully connected topology and 2-hop alternate paths has been studied in [8].
The solution approach proposed in this paper can be used in the multi-rate traffic
case with general network topology where some links may be shared among two or
more alternate paths. Numerical results are presented comparing network block-
ing probabilities obtained from the user equilibrium and the system optimum load
sharing factors in some example network topologies and traffic demands.

2 Methodology

This section briefly reviews the methodology and the algorithms that are used
in this paper to compute the user equilibrium and the system optimum load
sharing factors when LSSR is applied to route Label Switched Paths (LSPs) in
a multi-rate MPLS network.
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Consider a learning automaton with K actions and the following updating
scheme [9]:

pj(t + 1) =
{

pj(t) + G[δji − pj(t)]x(t) j = 1, .., K − 1
1 − ∑K−1

i=1 pi(t + 1) j = K
(1)

where at time t, the ith action is selected; δji, is Kronecher delta function and
x(t) ∈ [0, 1] is the reward associated with the selected action. In the context of
this paper, a reward is associated with a completed call attempt. In addition
to being ε-optimal [10], when the covariance between each pair (pi, pj) (σ2

pipj
=

E[pipj ]−E[pi]E[pj ]) is negligible, this learning scheme has the following expected
behavior:

E[pj(t + 1)] ≈
{

E[pj(t)][1 + G(sj(t) −
∑K

k=1 sk(t)E[pk(t)])] j = 1, ..., K − 1
1 − ∑K−1

j=1 E[pj(t + 1)] j = K
(2)

where,

si(t) = E[x(t)|a(t) = ai].

This recursion governing the expected behavior will be used in solving opti-
mization problems described in the next sections. This methodology has been
previously employed to compute the user equilibrium and the system optimum
routing solutions in datagram networks [1]. It was shown that the recursion given
in Equation (2), has fixed points which are in one-to-one correspondence with
stable user equilibrium solutions, when the datagram network is modeled as in
Gallager’s classic paper [11]. In references [9] and [10] the same recursion was
derived to approximate the expected behavior of the action probabilities of the
cross-correlation algorithm of Equation (1) in a stationary environment under
slow learning conditions. The same cross-correlation learning algorithm and the
recursion governing its expected behavior under slow learning conditions were
applied to a variety of routing and flow control problems in data and ATM net-
works in a series of papers [12], [13] and [14]. Recently Alanyali has provided an
analysis of the behavior of distributed learning algorithms controlling a Markov
process in [15].

The present paper differs from the results previously reported in that the
network model used here is different, namely a general mesh topology supporting
multi-rate LSPs. The multi-rate performance model of Greenberg and Srikant
[16] is used where the LSPs are characterized by their Effective Bandwidth [17].

3 RL-Based Load Shared Sequential Routing

Load Shared Sequential Routing (LSSR) randomly partitions the class s traffic
load associated with origin ’o’ and destination ’d’ (λo,d,s) into n sub-streams us-
ing the set of load sharing factors (sub-stream selection probabilities),
{αo,d,s

1 , ..., αo,d,s
k }. Each sub-stream is then offered to a route tree which con-

sists of one or more alternate paths. The alternate paths of each route tree are
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Fig. 1. LSSR Model

tried sequentially. If there is not enough bandwidth available on at least one link
of one path, the request is forwarded to the next alternate path. This process is
repeated until all alternate paths in the route tree have been tried sequentially. If
all paths have been tried unsuccessfully, the request is lost and rejected from the
network. A pictorial representation of the LSSR model is provided in Figure 1.

The LSSR model imposes no restriction on the load sharing factors other than
non-negativity and

∑
k

αo,d,s
k = 1. (3)

3.1 Load Shared Sequential Routing, User Equilibrium Solution

User equilibrium can be explained in terms of Wardrop equilibrium [18]. In the
LSSR context, let λo,d,s represent the total class s traffic load between origin ’o’
and destination ’d’ and let L(αo,d,s) be the cost of allocating the traffic λo,d,s

according to the load sharing factors αo,d,s. The set of load sharing factors α is
at the Wardrop equilibrium if for each αo,d,s

i , αo,d,s
j > 0, we have Lo,d,s

i = Lo,d,s
j

and that if there exits a route tree with αo,d,s
� = 0, then Lo,d,s

i ≤ Lo,d,s
� . The load

sharing factors (α) at the Wardrop Equilibrium are the solution to the following
minimization problem:

min Z(α) =
∑

o,d,s,k

Lo,d,s
k (4)

subject to
Ko,d,s∑
k=1

αo,d,s
k = 1 (vo,d,s) (5)

αo,d,s
k ≥ 0 (uo,d,s

k ), (6)

where uo,d,s
k and vo,d,s are Lagrangian multipliers and Lo,d,s

k is defined as:

Lo,d,s
k =

∫ α
o,d,s
k

λo,d,s

0

Lo,d,s
k dα. (7)
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From the Kuhn-Tucker conditions we have

Lo,d,s
k = − vo,d,s

λo,d,s
∀ αo,d,s

k > 0. (8)

From this last condition, the user equilibrium solution is one that equalizes the
cost on all the route trees on which traffic is offered (αo,d,s

k > 0).

3.2 Load Shared Sequential Routing, System Optimization Problem
Formulation

In this case, the optimization problem has the following form:

min Z(α) =
∑

o,d,s,k

λo,d,sαo,d,s
k Lo,d,s

k (9)

subject to

Ko,d,s∑
k=1

αo,d,s
k = 1 (vo,d,s) (10)

αo,d,s
k ≥ 0 (uo,d,s

k ). (11)

From the Kuhn-Tucker (KKT ) conditions we have

∂Z

∂αo,d,s
k

= −vo,d,s ∀ αo,d,s
k > 0, (12)

which means that at the system optimum solution, for each (o, d, s), the partial
derivatives of network cost with respect to load sharing factors on all the route
trees with αo,d,s

k > 0 are equal.

3.3 The Application of Learning Automata in Solving User and
System Optimization Problems

Assume there is a cross-correlation learning automata engine, Ao,d,s, associated
with each (o, d, s) with the set of actions of Ao,d,s being the set of route trees
available for routing bandwidth requests of class s between pair (o, d). Let αo,d,s

k

be the load sharing factor associated with kth route tree of (o, d, s).
As discussed in the previous section, from KKT conditions of the user and

system optimization problems, in the optimum solution, the partial derivatives
of the cost function with respect to load sharing factors of those route trees with
load sharing factor greater than zero are equal and less than or equal the partial
derivative of the cost function with respect to load sharing factor of other route
trees.

The recursion governing the expected behavior of cross-correlation learning
automata is used for solving the optimization problems. First, the load sharing
factors are arbitrarily initialized and traffic is distributed according to these load
sharing factors over the set of route trees. The resulting blocking probabilities are
calculated using the method of [16]. The load sharing factors are then updated
using the recursion formula of Equation (2) with the following possible choices
for s parameters:
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For user optimization problem : so,d,s
k (t) = 1 − Lo,d,s

k∑Ko,d,s

r=1 Lo,d,s
r

, (13)

For system optimization problem : so,d,s
k (t) = 1 −

∂Z

∂αo,d,s
k∑Ko,d,s

r=1
∂Z

∂αo,d,s
r

. (14)

The traffic distribution and resulting blocking probabilities are then updated
and the process is repeated until |αo,d,s(t + 1) − αo,d,s(t)| is sufficiently small.

As seen from Equation (14), for the case of the system optimization problem,
the calculation of s parameters implies the calculation of the partial derivatives
of total blocking probability of the network with respect to each load sharing
factor. The analytical formulation for these partial derivatives is complex and
the numerical methods are subject to approximation errors which will affect the
accuracy of the final results. To overcome this drawback, we consider a reformu-
lation of the problem that leads to a more efficient approach for calculating s
parameters.

3.4 System Optimization Problem, Alternative Formulation

In this formulation, we consider two sets of auxiliary variables: the average arrival
rate for class s on link (i, j) (m = [mi,j,s]) and the class s blocking probability
of link (i, j) (B = [Bi,j,s]). The reformulated system optimization problem then
becomes:

min
α,m,B

Z(α,m,B) =
∑

o,d,s,k

λo,d,sαo,d,s
k Lo,d,s

k (15)

subject to

mi,j,s = β(α,B) (ηi,j,s) (16)
Bi,j,s = Pb(mi,j,s) (ωi,j,s) (17)∑

k

αo,d,s
k = 1 (vo,d,s) (18)

αo,d,s
k ≥ 0 (uo,d,s

k ), (19)

where β(α,B) can be derived using the method presented in [16] and Pb(m) can
be calculated using the Kaufman-Roberts recursion method.

The Kuhn-Tucker conditions are obtained by setting the derivative of La-
grangian of the problem (H) with respect to α, m and B equal to zero. This
yields the following equations:

∂H

∂mi,j,s
= 0 ⇒ ηi,j,s =

S∑
r=1

ωi,j,r
∂Pb(mi,j,r)

∂mi,j,s
(20)

∂H

∂Bi,j,s
= 0 ⇒ ωi,j,s =

∑
p,q,s

ηp,q,s
∂βp,q,s

∂Bi,j,s
−

∑
o,d,k

λo,d,sαo,d,s
k

∂Lo,d,s
k

∂Bi,j,s
(21)



232 G. Brunet, F. Heidari, and L.G. Mason

∂H

∂αo,d,s
k

= 0 ⇒ vo,d,s =
∑

(i,j)∈(o,d,s,k)

ηi,j,s
∂βi,j,s

∂αo,d,s
k

− λo,d,sLo,d,s
k − uo,d,s

k (22)

αo,d,s
k uo,d,s

k = 0 αo,d,s
k ≥ 0 (23)

(i, j), (o, d) ∈ {1, ..., N}2, s = 1, ..., S, k = 1, ..., Ko,d,s

(24)

From these equations, for all route trees with αo,d,s
k > 0, the terms

go,d,s
k = Lo,d,s

k − ∑
(i,j)∈(o,d,s,k) ηi,j,s

1
λo,d,s

∂βi,j,s

∂αo,d,s
k

are equal.

So if the values of go,d,s
k can be calculated at each iteration of the recursion

method discussed in the previous section, the load sharing factors can be updated
using:

so,d,s
k (t) = 1 − go,d,s

k∑Ko,d,s

r=1 go,d,s
r

. (25)

To do so, the value of η(i, j, s) need to be calculated. These values can be derived
from the following compact set of equations:

{
η = Ṗbω

ω = β̇η − L̇λk

⇒ η = (β̇
−1 − Ṗb)L̇λk (26)

This set of equations models a hierarchical routing architecture where one
centralized processor would be interconnected to the learning automata associ-
ated with every (o, d, s). On a regular basis, the centralized processor collects
the network information, updates the η parameters and distributes the updated
parameters to the learning automata engines. Such a mechanism is capable of
generating and maintaining a performance level equivalent to the one expected
by the system solution. A pictorial representation of this architecture is given in
Figure 2.

Fig. 2. Hierarchical Control Architecture
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4 Numerical Results

In this section, the performance of LSSR algorithm with user and system opti-
mized load sharing factors are compared in an example 4-node network 2 different
classes of service under full sharing assumption. Here, the capacity of each link
is 150 trunks. The effective bandwidth for class 1 is equal to 1 trunk and for
class 2 is equal to 2 trunks. For each (o, d) pair, there are 5 sets of route-trees;
one with only the direct path; two with the direct path and one of the alternate
paths and two with the direct path and two other alternate paths. The order
of the alternate paths is different in the last two route-trees. The stopping con-
dition is when L1 norm of successive iterations differs by less than 10−5. The
performance comparison of user and system optimized load sharing factors with
normal traffic load (for each (o, d, s), λo,d,s = 41) and heavy traffic load (for each
(o, d, s), λo,d,s = 50) with different η updating intervals are presented in Table (1)
and Table (2) repectively.

Table 1. 4-node 2-traffic class network
under normal traffic

System/ T Update Blk. No. of
User Interval Prob. Iteration

Sys T = 1 .00152 12547
Sys T = 20 .00155 14764
Sys T = 200 .00154 14921
Sys T = 1000000 .00161 16356
User .00161 446

Table 2. 4-node 2-traffic class network
under heavy traffic

System/ T Update Blk. No. of
User Interval Prob. Iteration

Sys T = 1 .0727 2582
Sys T = 20 .0741 2150
Sys T = 200 .0784 3563
Sys T = 1000000 .0912 5327
User .1232 737

In the next set of experiments, a 9-node network topology is considered with
fully isolated maximum allocation bandwidth constraint model. As different
classes are fully isolated, we consider only one of the classes of service. For
each (o, d) pair, sets of route-trees compose of the direct path and one or two
alternate paths. The stopping condition is when the L1 norm of the load sharing
factors in successive iterations differs by less than 10−5. Here again, for the sys-
tem optimization problem, the parameter η is updated once every T iterations.
The blocking probability results for 3 different updating intervals with normal
and heavy traffic loads are summarized in Table 3 and Table 4.

As seen from the presented results, for the case of normal traffic load, the user
equilibrium and the system optimum solutions give similar network performance
while in the case of heavy traffic load, the system optimum solution gives better
performance in terms of blocking probability. Moreover, the interval between
updating η parameters has a negligible impact on the final blocking probability
of the network. This in turn means that the system optimal solution can be
obtained using a few number of updating η parameters. One should note that
for the system optimum solution, the computational cost depends on the number
of iterations and the computation cost of deriving the η parameters.
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Table 3. 9-Node Network Nominal Rate

System/ T Update Blk. No. of
User Interval Prob. Iteration

Sys T = 10 .00448 17363
Sys T = 100 .00448 19483
Sys T = 1000000 .00451 21436
User .00452 1849

Table 4. 9-Node Network Heavy Traffic

System/ T Update Blk. No. of
User Interval Prob. Iteration

Sys T = 10 .01868 8679
Sys T = 100 .01868 10376
Sys T = 1000000 .01875 12543
User .01879 2385

5 Summary and Conclusion

In this paper, an event dependent routing method based on load shared sequen-
tial routing for MPLS networks was presented and the problem of optimizing the
load sharing factors with the objective of minimizing the blocking probability
either in full sharing case or the case where MAM is used as the bandwidth con-
straint model was discussed. A new method for solving the optimization problem
both from the user and the system optimization perspectives was given.

In general, the user equilibrium and the system optimum solutions yield dif-
ferent routing solutions. Since the user solution is derived solely from local in-
formation, the resulting network blocking probability will generally be higher
than that of the system optimum solution. However, in some cases, such as the
cases studied in this report for the networks operating in nominal traffic loads,
the difference can be relatively small.

While the system solution can only be derived with the global information,
this paper has shown that it is possible to decompose the centralized optimiza-
tion process into relatively smaller sub-processes. The centralized operations are
restricted to the evaluation of the shadow prices. All other operations can be
performed through decentralized sub-processes.
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