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Abstract

In this paper, we develop algorithms for distributed computation of averages of the node data over networks with

bandwidth/power constraints or large volumes of data. Distributed averaging algorithms fail to achieve consensus

when deterministic uniform quantization is adopted. We propose a distributed algorithm in which the nodes utilize

probabilistically quantized information,i.e., dithered quantization, to communicate with each other. The algorithm

we develop is a dynamical system that generates sequences achieving a consensus at one of the quantization values

almost surely. In addition, we show that the expected value of the consensus is equal to the average of the original

sensor data. We derive an upper bound on the mean square errorperformance of the probabilistically quantized

distributed averaging (PQDA). Moreover, we show that the convergence of the PQDA is monotonic by studying the

evolution of the minimum-length interval containing the node values. We reveal that the length of this interval is a

monotonically non–increasing function with limit zero. Wealso demonstrate that all the node values, in the worst

case, converge to the final two quantization bins at the same rate as standard unquantized consensus. Finally, we

report the results of simulations conducted to evaluate thebehavior and the effectiveness of the proposed algorithm

in various scenarios.
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I. INTRODUCTION

Ad hoc networks of autonomous sensors and actuators are attractive solutions for a broad range of applications.

Such networks find use in civilian and military applications, including target tracking and surveillance for robot

navigation, source localization, weather forecasting, medical monitoring and imaging. In general, the networks

envisioned for many of these applications involve large numbers of possibly randomly distributed inexpensive

sensors, with limited sensing, processing and communication power on board. In many of the applications, limitations

in bandwidth, sensor battery power and computing resourcesplace tight constraints in the rate and form of

information that can be exchanged [3]–[5]. Other applications such as camera networks and distributed tracking

demand communication of large volumes of data. When the power and bandwidth constraints, or large volume data

sets are considered, communication with unquantized values is impractical.

Distributed average consensus – the task of ensuring that all nodes in a network are aware of the average of a set

of network-wide measurements – is a fundamental problem in ad hoc network applications, including distributed

agreement and synchronization problems [6], distributed coordination of mobile autonomous agents [7], [8], and

distributed data fusion in sensor networks [3], [9], [10]. It is also a central topic for load balancing (with divisible

tasks) in parallel computers [11], [12]. Our previous work has illustrated how distributed average consensus can be

used for two distributed signal processing tasks: source localization [13], and data compression [14]. Decentralized

data compression, in particular, requires the computationof many consensus values in parallel (one for each

compression coefficient). By appropriately quantizing each coefficient, multiple coefficients can be transmitted in

a single packet, leading to a significantly more efficient implementation.

Distributed averaging algorithms are extremely attractive for applications in wirelessly networked systems because

nodes only exchange information and maintain state for their immediate neighbors. Consequently, there is no need

to establish or maintain complicated routing structures. Also, there is no single bottleneck link (as in a tree) where

the result of in-network computation can be compromised or lost or jammed by an adversary. Finally, consensus

algorithms have the attractive property that, at termination, the computed value is available throughout the network,

so a network user can query any node and immediately receive aresponse, rather than waiting for the query and

response to propagate to and from a fusion center.

In both wireless sensor and peer–to–peer networks, there isinterest in simple protocols for computing aggregate

statistics [15]–[18]. In this paper we focus on a particularclass of iterative algorithms for average consensus. Each

node updates its state with a weighted sum of values from neighboring nodes,i.e.,

xi(t + 1) = Wiixi(t) +
∑

j∈Ni

Wijxj(t) (1)

for i = 1, 2, . . . , N andt = 0, 1, . . .. HereWij is a weight associated with the edge{i, j} andN is the total number
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of nodes. These weights are algorithm parameters [3], [9]. Furthermore,Ni denotes the set of nodes that have a

direct (bidirectional) communication link with nodei. The state at each node in the iteration consists of a single

real number, which overwrites the previous value. The algorithm parametersW are time–independent,i.e., do not

depend ont. Under easily-verified conditions onW it is easy to show that the valuexi(t) at each node converges

to 1/N
∑N

i=1 xi(0) asymptotically ast → ∞.

Xiao, Boyd and Kim extended the distributed consensus algorithm to admit noisy communication links where

each node updates its local variable with a weighted averageof its neighbors values, and each new value is corrupted

by an additive noise with zero mean [19]:

xi(t + 1) = Wiixi(t) +
∑

j∈Ni

Wijxj(t) + wi(t) (2)

wherewi(t) is the additive zero–mean noise with fixed variance. They pose and solve the problem of designing

weightsWi,j that lead to optimal steady-state behavior, based on the assumption that the noise termswi(t) are

independent.

A. Related Work

While there exists a substantial body of work on average consensus protocols with infinite precision and noise–

free peer–to–peer communications, little research has been done introducing distortions in the message exchange.

Recently, Yildiz and Scaglione, in [20], explored the impact of quantization noise through modification of the

consensus algorithm proposed by Xiao, Boyd and Kim [19]. They note that the noise component in (2) can be

considered as the quantization noise and they develop an algorithm for predicting neighbors’ unquantized values in

order to correct errors introduced by quantization [20]. Simulation studies for smallN indicate that if the increasing

correlation among the node states is taken into account, thevariance of the quantization noise diminishes and nodes

converge to a consensus.

Kashyapet al. examine the effects of quantization in consensus algorithms from a different point of view [21].

They require that the network average,x̄ = 1/N
∑N

i=1 xi(t), be preserved at every iteration. To do this using

quantized transmissions, nodes must carefully account forround-off errors. Suppose we have a network ofN

nodes and let∆ denote the “quantization resolution” or distance between two quantization lattice points. If̄x is not

a multiple ofN∆, then it is not possible for the network to reach a strict consensus (i.e., limt→∞ maxi,j |xi(t) −

xj(t)| = 0) while also preserving the network average,x̄, since nodes only ever exchange units of∆. Instead,

Kashyapet. al define the notion of a “quantized consensus” to be such that all xi(t) take on one of two neighboring

quantization values while preserving the network average;i.e., xi(t) ∈ {k∆, (k + 1)∆} for all i and somek,

and
∑

i xi(T ) = Nx̄. They show that, under reasonable conditions, their algorithm will converge to a quantized
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consensus. However, the quantized consensus is clearly nota strict consensus,i.e., all nodes do not have the same

value. Even when the algorithm has converged, as many as halfthe nodes in the network may have different values.

If nodes are strategizing and/or performing actions based on these values (e.g., flight formation), then differing values

may lead to inconsistent behavior.

Of note is that both related works discussed above utilize standard deterministic uniform quantization schemes to

quantize the data. In contrast to [20], where quantization noise terms are modeled as independent zero-mean random

variables, we explicitly introduce randomization in our quantization procedure,i.e., “dithering”. Careful analysis of

this randomization allows us to provide concrete theoretical rates of convergence in addition to empirical results.

Moreover, the algorithm proposed in this paper converges toa strict consensus, as opposed to the approximate

“quantized consensus” achieved in [21]. In addition to proving that our algorithm converges, we show that the

network average is preserved in expectation, and we characterize the limiting mean squared error between the

consensus value and the network average.

B. Summary of Contributions

Constraints on sensor cost, bandwidth, and energy budget dictate that information transmitted between nodes has

to be quantized in practice [3], [4]. In this paper, we propose a simple distributed and iterative scheme to compute the

average at each sensor node utilizing only quantized information communication. Standard, deterministic uniform

quantization does not lead to the desired result. Although the standard distributed averaging algorithm converges to

a fixed point when deterministic uniform quantization is used, it fails to converge to a consensus as illustrated in

Fig. 1(a). Instead, we adopt the probabilistic quantization (PQ) scheme described in [4]. PQ has been shown to be

very effective for estimation with quantized data since thenoise introduced by PQ is zero-mean [4]. This makes

PQ suitable for average–based algorithms. As shown in Section II, the PQ algorithm is a form dithered quantization

method. Dithering has been widely recognized as a method to render the quantization noise independent of the

quantized data, reducing some artifacts created by deterministic quantization and there is a vast literature on the

topic, see [22] and reference therein.

In the scheme considered here, each node exchanges quantized state information with its neighbors in a simple

and bidirectional manner. This scheme does not involve routing messages in the network; instead, it diffuses

information across network by updating each node’s data with a weighted average of its neighbors’ quantized

ones. We do not burden the nodes with extensive computations, and we provide theoretical results,i.e., we show

here that the distributed average computation utilizing probabilistic consensus indeed achieves a consensus almost

surely (Fig. 1), and the consensus is one of the quantizationlevels. Furthermore, the expected value of the achieved

consensus is equal to the desired value,i.e., the average of the initial analog node measurements. We also give an
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Fig. 1. Individual node trajectories (i.e., xi(t),∀i) taken by the distributed average consensus using (a:) deterministic uniform quantization
and (b:) probabilistic quantization. The number of nodes isN = 50, the nodes’ initial average isx(0) = 0.85, and the quantization resolution
is set to∆ = 0.1. The consensus value, in this case, is 0.8.

upper bound on the mean square error performance of the probabilistically quantized distributed averaging (PQDA)

algorithm.

We also investigate the evolution with time of the interval occupied by the node values. Specifically, we show that

the size of this interval is a monotonically non–increasingfunction, with limit zero. These results indicate that the

convergence of the PQDA algorithm is monotonic in the sense that the global trend of the node values is towards the

consensus. Moreover, we show here that all the node values, in the worst case, arrive in the final two quantization

bins at the same rate as standard unquantized consensus. Of note is that there is always a non–zero probability

of achieving consensus when all the node values are in the final two bins. Finally, we present simulation results

evaluating the proposed algorithm in varying scenarios andshowing the effectiveness of the PQDA algorithm.

C. Paper Organization

The remainder of this paper is organized as follows. SectionII reviews the graph theoretical concepts, intro-

duces the distributed average consensus problem along withthe probabilistic quantization scheme, and, reveals

the connections between probabilistic quantization and dithering theory. The proposed algorithm, along with its

properties, is detailed in Section III. Section IV presentsresults regarding the convergence characteristics of the

proposed PQDA algorithm. Numerical examples evaluating the performance of the proposed algorithm in varying

scenarios are provided in Section V. Some extensions of the proposed algorithm along with additional practical

considerations are detailed in Section VI. Finally, we conclude with Section VII.
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II. PRELIMINARIES

In the following, the distributed average consensus problem is formulated utilizing the probabilistic quantization

concept. We first review some basic concepts from graph theory and then formulate the consensus problem in which

the nodes communicate with quantized data. Finally, we provide a brief review of probabilistic quantization and

reveal the connections between probabilistic quantization and dithering theory.

A. Review of Graph Theoretical Concepts

Let G = (V, E) be a graph consisting of a set of vertices,V, and a set of edges,E . Let N = |V| denote the

number of vertices, where| · | denotes the cardinality. We denote an edge between verticesi andj as an unordered

pair (i, j) ∈ E . The presence of an edge between two vertices indicates thatthey can establish bidirectional noise–

free communication with each other. We assume that transmissions are always successful and that the topology is

fixed. We assume connected network topologies and the connectivity pattern of the graph is given by theN × N

adjacency matrixA = [Aij ], where

Aij =







1 if (i, j) ∈ E

0 otherwise
. (3)

Moreover, we denote the neighborhood of the nodei by Ni , {j ∈ V : i 6= j, (i, j) ∈ E}. Also, the degree of the

nodei is given bydegi = |Ni|.

B. Distributed Average Consensus

We consider a set of nodes of a network (vertices of the graph), each with an initial real valued scalaryi ∈ [−U,U ],

where i = 1, 2, . . . , N . Let 1 denote the vector of ones. Our goal is to develop a distributed iterative algorithm

that computes the valuey , (N)−11Ty at every node in the network, while using quantized communication. We

hence aim to design a system such that the states at all nodes converge to a consensus and the expectation of the

consensus achieved, in the limit, is the average of the initial states.

The average of node measurements is a sufficient statistic for many problems of interest. The following two

remarks briefly discusses two examples.

Remark 1. When the observations followyi = θ + ni wherei = 1, 2, . . . , N and θ is the scalar to be estimated,

and the noises,{ni : i = 1, 2, . . . , N}, are independent and identically distributed (i.i.d.) zero–mean Gaussian with

varianceσ2, the maximum–likelihood estimate is given by the average,θ̂ = (N)−11Ty with the associated mean

square errorσ2/N .

Remark 2. Suppose node measurements{yi : i = 1, 2, . . . , N} are i.i.d. conditioned on some hypothesisHj, with

j ∈ {0, 1}, wherePr{H0} = α. Let, zi , log{Λ(yi)}, whereΛ(yi) , Pr{yi|H1}/Pr{yi|H0}. Then, the optimal
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decision is to perform the following detection rule:z ≷H1

H0

α/(1 − α) wherez , (N)−11Tz.

C. Probabilistic Quantization and Dithering

In the following, we present a brief review of the quantization scheme adopted in this paper. Suppose that

the scalar valuexi ∈ R is bounded to a finite interval[−U,U ]. Furthermore, suppose that we wish to obtain a

quantized messageqi with length l bits, wherel is application dependent. We therefore haveL = 2l quantization

points given by the setτ = {τ1, τ2, . . . , τL} whereτ1 = −U and τL = U . The points are uniformly spaced such

that ∆ = τj+1 − τj for j ∈ {1, 2, . . . , L − 1}. It follows that ∆ = 2U/(2l − 1). Now supposexi ∈ [τj , τj+1) and

let qi , Q(xi) whereQ(·) denotes the PQ operation. Thenxi is quantized in a probabilistic manner:

Pr{qi = τj+1} = r, and, Pr{qi = τj} = 1 − r (4)

wherer = (xi−τj)/∆. Of note is that when the variable to quantize is exactly equal to a quantization centroid, there

is zero probability of choosing another centroid. The following lemma, adopted from [4], discusses two important

properties of PQ.

Lemma 1. [4] Supposexi ∈ [τj, τj+1) and letqi be anl–bit quantization ofxi ∈ [−U,U ]. The messageqi is an

unbiased representation ofxi, i.e.,

E{qi} = xi, and, E{(qi − xi)
2} ≤ U2

(2l − 1)2
≡ ∆2

4
. (5)

As noted in the following lemma, a careful observation showsthat probabilistic quantization is equivalent to a

“dithered quantization” method.

Lemma 2. Supposexi ∈ [τj , τj+1) and let qi , Q(xi). Probabilistic quantization is equivalent to the following

dithered quantization scheme:

qi = min
j

|τj − (xi + u)| (6)

whereu is a uniform random variable with support on[−∆/2,∆/2].

Proof: Without loss of generality, suppose|τj − xi| < |τj+1 − xi|. Moreover, suppose we are utilizing a

deterministic uniform quantizer. Then,

Pr{qi = τj} = Pr

{

τj −
∆

2
≤ xi + u ≤ τj −

∆

2

}

(7)

= Pr

{

u ≤ τj +
∆

2
− xi

}

(8)

=
τj+1 − xi

∆
. (9)
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Note that the last line is equivalent to1 − r, so the proof is complete.

Thus, before we perform any quantization, we add uniform random variableu with support defined on[−∆/2,∆/2]

and we form x′
i = u + xi. Now, performing standard deterministic uniform quantization, i.e., letting qi =

minj |τj−x′
i|, yields quantized values,qi’s that are statistically identical to the ones of the probabilistic quantization.

Thus, probabilistic quantization is a form of dithering where one, before performing standard deterministic uniform

quantization, adds a uniform random variable with support equal to the quantization bin size. This is a substractively

dithered system [22]. It has been shown by Schuchman that thesubstractive dithering process utilizing uniform

random variable with support on[−∆/2,∆/2] yields error signal values that are statistically independent from each

other and the input [23].

III. D ISTRIBUTED AVERAGE CONSENSUS WITHPROBABILISTICALLY QUANTIZED COMMUNICATION

In the following, we propose a quantized distributed average consensus algorithm and incorporate PQ into

the consensus framework for networks. Furthermore, we analyze the effect of PQ on the consensus algorithm.

Specifically, we present theorems revealing the limiting consensus, expectation and mean square error of the

proposed PQDA algorithm.

At t = 0 (after all sensors have taken the measurement), each node initializes its state asxi(0) = yi, i.e.,

x(0) = y wherex(0) denotes the initial states at the nodes. It then quantizes its state to generateqi(0) = Q(xi(0)).

At each following step, each node updates its state with a linear combination of its own quantized state and the

quantized states at its neighbors

xi(t + 1) = Wiiqi(t) +
∑

j∈Ni

Wijqj(t) (10)

for i = 1, 2, . . . , N , whereqj(t) = Q(xj(t)), andt denotes the time step. Also,Wij is the weight onxj(t) at node

i. Moreover, settingWij = 0 wheneverΦij = 0, the distributed iterative process reduces to the following recursion

x(t + 1) = Wq(t) (11)

whereq(t) denotes the quantized state vector, followed by

q(t + 1) = Q(x(t + 1)). (12)

The PQDA algorithm hence refers to the iterative algorithm defined by (11) and (12). In the sequel, we assume

thatW, the weight matrix, is symmetric, non-negative and satisfies the conditions required for asymptotic average

consensus without quantization [19]:

W1 = 1, 1TW = 1T, and,ρ(W − J) < 1, (13)
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whereρ(U) denotes the spectral radius of a matrixU (i.e., the largest eigenvalue ofU in absolute value), and

J , (N)−111T, whereJx projectsx onto theN–dimensional “diagonal” subspace (i.e., the set of vectors inRN

corresponding to a strict consensus). Weight matrices satisfying the required convergence conditions are easy to

find if the underlying graph is connected and non–bipartite,e.g., Maximum–degree and Metropolis weights [19].

The following theorem considers the convergence of the probabilistically quantized distributed average compu-

tation.

Theorem 1. The probabilistically quantized distributed iterative process achieves a consensus, almost surely,i.e.,

Pr
{

lim
t→∞

x(t) = c1
}

= 1 (14)

wherec ∈ τ .

Proof: Without loss of generality, we focus on integer quantization in the range[1,m]. DefineM as the

discrete Markov chain with initial stateq(0) and transition matrix defined by the combination of the deterministic

transformationx(t + 1) = Wq(t) and the probabilistic quantizerq(t + 1) ∼ Pr{q(t + 1)|x(t + 1)}.

Let S0 be the set of quantization points that can be represented in the formq1 for some integerq and denote by

Sk the set of quantization points with Manhattan distancek from S0. Moreover, letC(q) be the open hypercube

centered atq and defined as(q1 − 1, q1 + 1) × (q2 − 1, q2 + 1) × ...× (qN − 1, qN + 1). Hereqk denotes thek–th

coefficient ofq. Note that any point inC(q) has a non-zero probability of being quantized toq. Let

Ak =
⋃

q∈Sk

C(q). (15)

The consensus operator has the important property that|Wq−µ(Wq)| < |q−µ(q)| for |q−µ(q)| > 0, where

µ(·) denotes the projection of its argument onto the1–vector. Moreover,cW1 = c1. The latter property implies

thatq ∈ S0 is an absorbing state, sinceQ(x(t + 1)) = Q(Wq(t)) = Q(q(t)) = q(t). The former property implies

that there are no other absorbing states, sincex(t + 1) cannot equalq(t) (it must be closer to the1–vector). This

implies, from the properties of the quantizerQ, that there is a non-zero probability thatq(t + 1) 6= q(t).

In order to prove thatM is an absorbing Markov chain, it remains to show that it is possible to reach an

absorbing state from any other state. We prove this by induction, demonstrating first that

Pr{q(t + 1) ∈ S0|q(t) ∈ S1} > 0 (16)

and subsequently that

Pr{q(t + 1) ∈
k−1
⋃

i=0

Si|q(t) ∈ Sk} > 0. (17)
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Define the open setVk as

Vk =
{

x : |x − µ(x)| < k
√

N − 1/
√

N
}

. (18)

To commence, observe thatV1 ⊂ A0. The distance|q−µ(q)| =
√

N − 1/
√

N for q ∈ S1. Hence, ifq(t) ∈ S1,

x(t + 1) = Wq(t) ∈ V1 ∈ A0 andPr{q(t + 1) ∈ S0} > 0. Similarly, the set

Vk ⊂
k−1
⋃

i=0

Ai (19)

is contained in the union of the firstk hypercubes,Ai, i = 0, 1, . . . , k − 1. The maximum distance|q − µ(q)| for

any pointq ∈ Sk is k
√

N − 1/
√

N . This implies that

x(t + 1) = Wq(t) ∈ Vk ∈
k−1
⋃

i=0

Ai. (20)

There is thus somei < k and someq ∈ Si such thatPr{Q(x(t + 1)) = q} > 0. This argument implies that

for any starting stateq(0) such thatq(0) ∈ Sk for somek, there exists a sequence of transitions with non–zero

probability whose application results in absorption.

The theorem reveals that the probabilistically quantized distributed process indeed achieves a strict consensus at

one of the quantization values. It is of interest to note thatthe stationary points of the PQDA algorithm are in the

form of c1 wherec ∈ τ . We, hence, construct an absorbing Markov chain where the absorbing states are given

by the stationarity points and show that for any starting state, there exists a sequence of transitions with non–zero

probability whose application results in absorption. The following theorem discusses the expectation of the limiting

random vector,i.e., the expected value ofx(t) as t tends to infinity.

Theorem 2. The expectation of the limiting random vector is given by

E

{

lim
t→∞

x(t)
}

= (N)−111Tx(0). (21)

Proof: Note that||x(t)|| ≤
√

NU , for t ≥ 0, and,{xi(t) : i = 1, 2, . . . , N} is bounded for allt. Moreover,

from Theorem 1, we know that the random vector sequencex(t) converges in the limit,i.e., limt→∞ x(t) = c1 for

somec ∈ τ . Thus, by the Lebesgue dominated convergence theorem [24],we have

E

{

lim
t→∞

x(t)
}

= lim
t→∞

E{x(t)}. (22)

In the following, we derivelimt→∞ E{x(t)} and utilize the above relationship to arrive at the desired result.

In terms of quantization noisev(t), we can writeq(t) = x(t) + v(t). The distributed iterative process reduces
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to the following recursionx(t + 1) = Wx(t) + Wv(t). Repeatedly utilizing the state recursion gives

x(t) = Wtx(0) +

t−1
∑

j=0

Wt−jv(j). (23)

Taking the statistical expectation ofx(t) as t → ∞ and noting that the only random variables arev(j) for

j = 0, 1, . . . , t − 1, yields

lim
t→∞

E{x(t)} = lim
t→∞

Wtx(0) +

t−1
∑

j=0

Wt−j
E{v(j)} (24)

= lim
t→∞

Wtx(0) (25)

since E{v(j)} = 0 for j = 0, 1, . . . , t − 1; a corollary of Lemma 1. Furthermore, noting thatlimt→∞ Wt =

(N)−111T gives

lim
t→∞

E{x(t)} = (N)−111Tx(0). (26)

Recalling (22) gives the desired result.

This result indicates that the expectation of the limiting random vector is indeed equal to the initial analog node

measurements’ average. Furthermore, this theorem, combined with the previous one, indicates that the consensus

value,c, is a discrete random variable with support defined byτ , and whose expectation is equal to the average of

the initial states.

After establishing that the consensus value is a random variable with the desired expectation in the limit, the

next natural quantity of interest is the limiting mean squared error,i.e., the limiting average squared distance of the

consensus random variable from the desired initial states’average value. The following theorem, thus, considers

the expectation of the error norm of probabilistically quantized consensus ast andN tend to infinity.

Theorem 3. Let us definex(0) , Jx(0). The expectation of the error norm of the probabilisticallyquantized

distributed average consensus is asymptotically bounded by

lim
t→∞

lim
N→∞

(
√

N)−1
E{||q(t) − x(0)||} ≤ ∆

2

1

1 − ρ(W − J)
(27)

whereρ(·) denotes the spectral radius of its argument.

Proof: See Appendix A.

The proof exploits averaging characteristics ofW, properties of norm operators, and uses a Law of Large

Numbers argument to bound the error contributed by quantization noise.

Note that the upper bound decreases with decreasing spectral radius of(W−J), where a smaller (larger)ρ(W−J)

can be, in a loose manner, interpreted as better (worse) “averaging ability” of the weight matrix. Furthermore, as
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expected, the upper bound on the error norm increases with decreasing quantization resolution (i.e., increasing∆).

IV. CONVERGENCECHARACTERISTICS OFPROBABILISTICALLY QUANTIZED DISTRIBUTED AVERAGE

CONSENSUS

The convergence characteristics of the PQDA are essential for further understanding of the algorithm. In the

following, we consider the evolution of the intervals occupied by the quantized and unquantized state values.

Interestingly, we reveal that the length of the smallest interval containing all of the quantized state values, (i.e.,

the range of the quantized state values) is non–increasing with a limit of zero as the time step tends to infinity.

Moreover, we show that size of the minimum length interval, with boundaries constrained to the quantization points,

that contains all of the unquantized node state values, is also non–increasing. This also has limit zero as the time

step tends to infinity.

Let us denote the smallest and largest order statistics of any vectoru ∈ R
N as u(1) , mini{ui} and u(N) ,

maxi{ui}, respectively. Furthermore, letI[x(t)] denote the interval of the node state values at timet, i.e., the

interval in which{xi(t) : i = 1, 2, . . . , N} values lie,

I[x(t)] , [x(1)(t), x(N)(t)] (28)

and I[q(t)] denote the domain of the quantized node state values at timet, i.e.,

I[q(t)] , [q(1)(t), q(N)(t)]. (29)

Moreover, let

τL(t) , max
j

{τj : xi(t) ≥ τj,∀i} (30)

and

τU (t) , min
j

{τj : xi(t) ≤ τj,∀i} (31)

along with I[τ(t)] , [τL(t), τU (t)].

The following theorem discusses the evolution of the interval of the quantized node state values, and the minimum

range quantization bin that encloses the node state values.The theorem reveals that both intervals are non–expanding.

Theorem 4. For somet ≥ 0, suppose thatqi(t) ∈ I[q(t)], and,xi(t) ∈ I[x(t)], for i = 1, 2, . . . , N . By construction

I[x(t)] ⊆ I[τ(t)]. (32)

Then, fork ≥ 1, the followings hold:
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(i) The interval of the quantized state vector is non–expanding, i.e.,

I[q(t + k)] ⊆ I[q(t)]. (33)

(ii) The minimum length interval with boundaries defined by quantization points that encloses the state vector

values is non–expanding,i.e.,

I[x(t + k)] ⊆ I[τ(t + k)] ⊆ I[τ(t)]. (34)

Proof: Consider (i) first. Suppose thatqi(t) ∈ I[q(t)], for i = 1, 2, . . . , N , and recall that the state recursion

follows asx(t+1) = Wq(t). Let wi denote the row vector formed as thei–th row of the weight matrixW. Now,

we can write the node specific update equation as

xi(t + 1) = wiq(t). (35)

Note thatxi(t + 1) is a linear combination of quantized local node values andwi
j ≥ 0 for j = 1, 2, . . . , N , where

wi
j denotes thej–th entry ofwi. Moreover,wi1 = 1, sinceW1 = 1. Thus,xi(t + 1) is a convex combination of

the quantized node state values and its own quantized state.The node state valuexi(t + 1) is then in the convex

hull of quantized state values{qi(t) : i = 1, 2, . . . , N}. The convex hull of the quantized state values at timet is

given by I[q(t)], indicating that

xi(t + 1) ∈ I[q(t)] (36)

for i = 1, 2, . . . , N , and subsequently,

I[x(t + 1)] ⊆ I[q(t)]. (37)

Hence, we see that

q(N)(t + 1) = Q(xi(t + 1)) ≤ q(N)(t) (38)

for somei ∈ {1, 2, . . . , N} and

q(1)(t + 1) = Q(xj(t + 1)) ≥ q(1)(t) (39)

for somej ∈ {1, 2, . . . , N} andj 6= i. It follows that

I[q(t + 1)] ⊆ I[q(t)]. (40)

Repeatedly utilizing the above steps completes the proof.

Now consider (ii). Suppose thatxi(t) ∈ I[x(t)] for i = 1, 2, . . . , N . Then, by construction,I[x(t)] ⊆ I[τ(t)].
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Furthermore, since

τL(t) ≤ q(1)(t) (41)

and

τU (t) ≥ q(N)(t) (42)

it follows that

qi(t) = Q(xi(t)) ∈ I[q(t)] ⊆ I[τ(t)] (43)

for i = 1, 2, . . . , N . The convex combination property, similar to the previous case, indicates that,xi(t+1) ∈ I[q(t)]

for i = 1, 2, . . . , N , and subsequently,I[x(t + 1)] ⊆ I[q(t)]. Moreover, since,I[q(t)] ⊆ I[τ(t)], it follows that

I[x(t + 1)] ⊆ I[τ(t)]. (44)

Finally combining all the results indicating that

I[x(t + 1)] ⊆ I[q(t + 1)] ⊆ I[τ(t + 1)] ⊆ I[τ(t)] (45)

and repeatedly utilizing the above steps completes the proof.

The proof of this theorem indicates that each iteration is indeed a convex combination of the previous set of

quantized node state values, and uses of the properties of convex functions to arrive at the stated results.

Let us definerq(t) as the Lebesgue measure of the domain of the quantized state vector at time stept, i.e., the

range ofq(t) ∈ R
N ,

rq(t) , q(N)(t) − q(1)(t) (46)

whererq(t) ∈ {0,∆, . . . , (L − 1)∆}. Similar to the quantized state vector case, we definerτ (t) , τU(t) − τL(t)

as the length of the intervalI[τ(t)].

The following corollary (the proof of which is omitted sinceit follows directly from Theorem 1 and Theorem 4),

compiled from Theorem 1 and Theorem 4, discusses propertiesof interest ofrq(t) andrτ (t).

Corollary 1. The functionsrq(t) and rτ (t), with initial conditionsrq(0) ≥ 0 and rτ (0) ≥ 0, tend to zero ast

tends to infinity,i.e.,

lim
t→∞

rq(t) = 0 (47)

and

lim
t→∞

rτ (t) = 0. (48)
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Moreover,rq(t) and rτ (t) are monotonically non–increasing functions.

The presented theorem and corollary indicate that the convergence of the PQDA is monotonic in the sense that

the global trend of both the quantized and unquantized node state values is towards the consensus and that the

minimum-length intervals containing all values do not expand, and in fact, converge to zero-length monotonically.

The following theorem investigates the rate of convergenceof the PQDA to a state where there is a first time

non–zero probability of converging to the consensus (all values are contained within two quantization bins).

Theorem 5. Let rq(t) , q(N)(t) − q(1)(t) and rx(t) , x(N)(t) − x(1)(t) denote the range of the quantized and

unquantized node state values at time stept, with the initial valuesrq(0) and rx(0), respectively. Then,

E{rq(t)} ≤
√

N − 1

N
ρt(W − J)rx(0) + 2∆ (49)

whereρ(·) denotes the spectral radius of its argument.

Proof: See Appendix B.

In the appendix, we compile an upper and lower bound on the largest and smallest order statistics of the quantized

node state vector using results from [25]. Then, the task reduces to deriving a bound on the convergence rate of the

normed difference of any rowi andj with time, and combining this bound with the bounds on the order statistics

gives the desired result.

Theorem 5 reveals that the PQDA converges to the final two binswith the same rate as standard consensus.

Theorem 5 also relates the convergence of the quantized nodestate values range to the range of initial node

measurements.

After all the node state values are in the final two bins, thereis always a non–zero probability to immediately

converge to consensus. Note that, in the absence of knowledge of the norm of the initial node states or the initial

state range, the bound given above reduces to

E{rq(t)} ≤ 2

√

N − 1

N
ρt(W − J)U + 2∆ (50)

where we used the facts thatmaxi{xi(0)} ≤ U andmini{xi(0)} ≥ −U .

To understand the convergence of the PQDA algorithm after all the quantized states converged to the final two

bins, first, let us discuss the behavior of the PQDA algorithmin the final bin,i.e., maxi{qi(t)}−mini{qi(t)} = ∆.

Supposexi(t) ∈ [τj, τj+1], for somej. In this case, all the nodes state values need to be quantizedto τj or τj+1

to achieve a consensus at time stept. Hence, the effect of the weight matrix on the convergence rate significantly

decreases and the convergence rate is mainly dominated by the probabilistic quantization. Moreover, we hence

believe that the time interval, where all the node state values are inτj andτj + 2∆, is a transition period between
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the dominating effect of the weight matrix,i.e., the spectral radius ofW − J, and the dominating effect of

probabilistic quantization. Obtaining analytical expressions of convergence rate for these transition and final bin

regions appears to be a challenging task. Although our current research efforts focus on this challenge, we assess

the convergence performance of the PQDA algorithm with extensive simulations in the following section.

V. NUMERICAL EXAMPLES

This section details numerical examples evaluating the performance of the distributed average computation using

probabilistic quantization. Throughout the simulations we utilized the Metropolis weight matrix defined for a graph

G = (V, E) [3]. The Metropolis weights on a graph are defined as follows:

Wij =























(1 + max{degi,degj})−1, i 6= j, and (i, j) ∈ E

1 −∑k∈Ni
Wik, i = j

0, otherwise

. (51)

This method of choosing weights is adapted from the Metropolis algorithm in the literature of Markov chain

Monte Carlo [3], [19]. The Metropolis weights are very simple to compute and are well suited for distributed

implementation. In particular, each node only needs to knowthe degrees of its neighbors to determine the weights

on its adjacent edges. Furthermore, the nodes do not need anyglobal knowledge of the communication graph or

even the total number of nodes.

We simulate a network withN = 50 nodes randomly dispersed on the unit square[0, 1]× [0, 1], connecting two

nodes by an edge if the distance between them is less than the connectivity radius,i.e., d =
√

log(N)/N . Thus, a

link exists between any two nodes that are at a range less thand. Throughout this section, the initial states are drawn

i.i.d. from a uniform distribution as following:y = x(0)+n, wheren is i.i.d. uniformly distributed with support in

the [−1, 1] interval. The initial states are then regularized such thaty = x(0) = 0.85. The quantization resolution is

taken as∆ = 0.1. Plotted in Fig. 2 isq(N) andq(1) at every time stept (corresponding to node trajectories given in

Fig. 1). The figure indicates that the proposed algorithm does indeed achieve consensus as the interval in which the

quantized state vector converges to zero and is monotonically non–expanding, corroborating the theoretical results.

In this case, the consensus islimt→∞ x(t) = (0.8)1, which is in agreement with the theoretical results indicating

that the consensus is at one of the quantization levels.

We next investigate the effect of the quantization resolution and the location of the initial state average on the

consensus standard deviation. Figure 3 plots the error normof the consensus for varying∆ ∈ [0.05, 0.5] when

x(0) = 0.85 and for varyingx(0) ∈ [0.5, 1.5] when ∆ = 0.25. Also plotted is the derived upper-bound on the

PQDA. Note that each data point in the plots is an ensemble average of 1000 trials. The variance, as expected,

tends to increase as∆ increases and exhibits a harmonic behavior as the location of the average changes. This is
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Fig. 2. The plotted are is the interval in which the quantizedstate vector is. The number of nodes isN = 50, the nodes’ initial average is
x(0) = 0.85, and the quantization resolution is set to∆ = 0.1.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10

−2

10
−1

10
0

Quantization Resolution

C
on

se
ns

us
 S

ta
nd

ar
d 

D
ev

ia
tio

n

 

 

Simulated Deviation
Theoretical Bound

(a)

0.5 0.75 1.0 1.25 1.5

0.09

0.1

0.11

0.12

0.13

0.14

Average of Initial States

C
on

se
ns

us
 S

ta
nd

ar
d 

D
ev

ia
tio

n

(b)

Fig. 3. The error norm of the consensus with respect to (a) thequantization resolution,i.e., ∆ ∈ [0.05, 0.5] with x(0) = 0.85 and (b) the
initial state average with∆ = 0.25. The network parameter are:N = 50 andd =

√

log(N)/N .

due to the effect induced by the distance of the average to thequantization levels.

Figure 4 shows the behavior of the average mean square error (MSE) per iteration defined as:

MSE(t) =
1

N

N
∑

i=1

(xi(t) − x(0))2 (52)

for ∆ ∈ {0.05, 0.1, 0.15, 0.2}. In other words,MSE(t) is the average mean squared distance of the states at iteration

t from the initial mean. Each curve is an ensemble average of 1000 experiments and the network parameters are:

N = 50, x(0) = 0.85 and d =
√

log(N)/N . The plots suggest that smaller quantization bins yield a smaller
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Fig. 4. The average MSE of the probabilistically quantized distributed average consensus for varying quantization resolution where
∆ ∈ {0.05, 0.1, 0.15, 0.2}. The remaining network parameters are:N = 50, x(0) = 0.85 andd =

√

log(N)/N .

steady state MSE and that as quantization bin size increases, the number of iterations taken by PQDA to reach the

final quantization bin decreases. The quasi-convex shape ofthe MSE curves are due to the fact that the algorithm,

after all the state values converge into a quantization range [τi, τi+1) for somei ∈ {1, 2, . . . , L − 1}, drifts to a

quantization value.

Considered next is the consensus value of the PQDA algorithm. Figure 5 plots the histograms of the consensus

value for varying initial state average,i.e., x(0) ∈ {0.80, 0.825, . . . , 1.00} for ∆ = 0.2. The number of nodes in the

network isN = 50. Note that the consensus values shift as the initial averagevalue shifts from 0.80 to 1.00. This

is directly related to the fact that the consensus, in expectation, is equal to the average of initial states as provided

by the theoretical results.

We investigate the average convergence time of the distributed average consensus using probabilistic quantization

for varying ∆ ∈ {0.05, 0.1, 0.2} against the number of nodes in the network, Fig. 6(a) and (b).We also show the

average number of iterations taken to achieve the final quantization bin. Moreover, Fig. 6(c) and (d) plot the average

normalized distance to the closest absorbing state at the first time step when all the quantized node state values

are in the final quantization bin. The initial state averagesarex(0) = 0.85 andx(0) = 0.90, and the connectivity

radius isd =
√

4 log(N)/N . Each data point is an ensemble average of 10000 trials. Notethat the convergence

time increases with the number of nodes in the network. The plots suggest that the number of iterations taken by

the PQDA algorithm to converge to final quantization bin decreases as∆ increases. This can be seen by noting

that the algorithm has to go through less “averaging” (multiplication with the weight matrix) before arriving at the

final bin. It is hence clear that the algorithm needs to run fora smaller number of iterations to arrive at a larger

final bin size.
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Fig. 5. Histograms of the consensus value achieved by the probabilistically quantized consensus for varying initial state average where
x(0) ∈ {0.80, 0.825, . . . , 1.00} and∆ = 0.2. The number of nodes in the network isN = 50.

On the other hand, as discussed in more detail below, the expected number of iterations taken to achieve consensus

is dominated by the number of iterations taken to converge toan absorbing state after all the node values are in

the final bin. The probabilistic quantization is the dominant effect in the final bin. The time taken to converge to

an absorbing state is heavily dependent on the distance to that absorbing state at the first time step when all values

enter the final bin. This distance is affected by two factors.First, if more averaging operations occur prior to the

entry step, then there is more uniformity in the values, decreasing the distance. Second, if the initial data average

is close to a quantization value, then, on average, the entrypoint will be closer to an absorbing state (note that

E{1Tq(t)} = 1Tx(0)). These observations explain the results of Fig. 6. Note that the convergence time order for

x(0) = 0.85 andx(0) = 0.90 cases flip for∆ = 0.2 and∆ = 0.1. That is due to the fact that the average distance

to an absorbing when, at the first time step, all the node values enter the final bin is smaller forx(0) = 0.85 when

∆ = 0.2 compared to∆ = 0.1, and is smaller forx(0) = 0.90 when∆ = 0.1 compared to∆ = 0.2. Moreover,

note that∆ = 0.05 yields the smallest distance to an absorbing state for both initial conditions. Although, it takes

more iterations to converge to final bin, in both cases, PQDA algorithm with ∆ = 0.05 yields the smallest average

distance to an absorbing state when all the node values enterto the final bin for the first time step, hence, the

smallest average number of iterations to achieve the consensus.

We consider next the effect of the connectivity radius on theaverage number of iterations taken to achieve

the consensus. Figure 7 depicts the average number of iterations to achieve the consensus for the cases where the

initial state average isx(0) = 0.85 andx(0) = 0.90. As expected, the average number of iterations taken to achieve

consensus decreases with increasing connectivity radius.This is related to the fact that higher connectivity radius,

implies a lower second largest eigenvalue for the weight matrix. Moreover, as in the previous case, the convergence
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Fig. 6. Average number of iterations taken by the probabilistically quantized distribute average computation to achieve final quantization
bin (dashed) and consensus (solid) for∆ ∈ {0.05, 0.1, 0.2} and for varyingN with (a:) x(0) = 0.85 and (b:)x(0) = 0.90, along with the
corresponding average distance to the closest absorbing state at the first time step when all the quantized node state value are in the final
quantization bin for (c:)x(0) = 0.85 and (d:)x(0) = 0.90.

time is related to the distance of the initial state average to a quantization value for a given quantization resolution.

Of note is that0.85 is a quantization point for∆ = 0.05, and 0.90 is a quantization point for both∆ = 0.1

and∆ = 0.05. The combined results of the presented experiments indicate that the expected number of iterations

required to reach a consensus depends on the following factors:

(1) Quantization resolution;

(2) Initial node measurements;

(3) Number of nodes in the network; and
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Fig. 7. Average number of iterations taken by the probabilistically quantized distribute average computation for∆ ∈ {0.05, 0.1, 0.2} with
(a:) x(0) = 0.85 and (b:)x(0) = 0.90. The number of nodes in the network isN = 50. Connectivity radius factor is defined as the
modulating constantk, in the expression for the connectivity radiusd = k

√

log(N)/N .

(4) Connectivity radius.

Note that (1), (3) and (4) are system design choices, affected by energy budgets and bandwidth constraints, but (2)

is data-dependent. This implies that the quantization resolution, given the bandwidth and power constraints of the

application, should be chosen to minimize the expected (or worst-case) convergence time over the range of possible

initial averages.

VI. FURTHER CONSIDERATIONS

The analysis presented in this paper makes two main simplifying assumptions: 1) the network topology does

not change over time, and 2) communication between neighboring nodes is always successful. The simplifying

assumptions essentially allow us to focus on the case where the weight matrix,W, does not change with time.

However, time-varying topologies and unreliable communications are important practical issues which have been

addressed for un-quantized consensus algorithms (see,e.g., [3], [26], [27]). SinceW has the same support as

the adjacency matrix of the underlying communication graph, when the topology changes with time, the averaging

weights must also vary. Likewise, an unsuccessful transmission between two nodes is equivalent to the link between

those nodes vanishing for one iteration. In either case, we can now think ofW(t) as random process. Typical results

for this scenario roughly state that average consensus is still accomplished when the weight matrix varies with time,

so long as the expected weight matrix,E[W(t)], is connected. This condition ensures that there is always non-zero

probability that information will diffuse throughout the network. We expect that the same techniques employed

in [3], [26], [27] can be used to show convergence of our average consensus with probabilistic quantization with
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time-varyingW.

In this paper we also restricted ourselves to the scenario where the quantization step size∆ remains fixed over all

time. Recall that when the algorithm has converged to a consensus, allqi(t) are at the same quantization point, so

‖q(t)−Jq(t)‖ = 0. Letting D(t) , ‖q(t)−Jq(t)‖ denote Euclidean distance to convergence, we know that when

the algorithm is far from converging (i.e., D(t) large), quantization errors have less of an effect on convergence of

the algorithm. This is because the averaging effects ofW are multiplicative and thus have a stronger influence when

D(t) is large, whereas the quantization error is bounded by a constant which only depends on∆ and not onD(t).

WhenD(t) is of the same order as the quantization noise variance, quantization essentially wipes away the effects

of averaging and hampers the time to convergence. A natural extension of the algorithm proposed in this paper

involves shrinking the quantization step size,∆, over time,e.g., setting∆new = ∆old/2 onceD(t) is established

to be below the threshold where quantization effects outweigh averaging. We expect that this modification should

improve the rate at whichD(t) tends to zero without affecting statistical properties of the limiting consensus values

(i.e., unbiased w.r.t. tox(0), and no increase in the limiting variance). Solidifying this procedure is a topic of

current investigation.

VII. C ONCLUDING REMARKS

We have described probabilistically quantized distributed averaging (PQDA), a framework for distributed com-

putation of averages of the node data over networks with bandwidth/power constraints or large volumes of data.

The proposed method unites the distributed average consensus algorithm and probabilistic quantization, which is

a form of “dithered quantization”. The proposed PQDA algorithm achieves a consensus, and the consensus is a

discrete random variable whose support is the quantizationvalues and expectation is equal to the average of the

initial states. We have derived an upper bound on the mean square error performance of the PQDA algorithm.

Our analysis demonstrates that the minimum-length intervals (with boundaries constrained to quantization points)

containing the quantized and unquantized state values are non-expanding. Moreover, the lengths of these intervals

are non-increasing functions with limit zero, indicating that convergence is monotonic. In addition, we have shown

that, all the node state values, in the worst case, arrive in the final two quantization bins at the same rate as standard,

unquantized consensus algorithms. Finally, we have provided numerical examples illustrating the effectiveness of

the proposed algorithm and highlighting the factors that impact the convergence rate.
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APPENDIX A

PROOF OFTHEOREM 3–ERROR NORM OF PROBABILISTICALLY QUANTIZED DISTRIBUTED AVERAGE

CONSENSUS

Consider the following set of equalities

||q(t) − Jx(0)|| = ||x(t) + v(t) − Jx(0)|| (53)

= ||Wtx(0) +

t−1
∑

j=0

Wt−jv(j) − Jx(0) + v(t)|| (54)

= ||(W − J)tx(0) +
t−1
∑

j=0

Wt−jv(j) + v(t)|| (55)

where we use the facts that(Wt −J) = (W− J)t, for t ≥ 1, andJt = J, for t ≥ 1. Now the eigendecomposition

of W yields

W =

N
∑

k=1

λkuku
T
k (56)

whereuk denotes the eigenvector associated with the eigenvaluesλk. Eigendecomposition further indicates that

Wt−j =
N
∑

k=1

λt−j
k

uku
T
k . (57)

SinceW1 = 1 and1TW = 1T, the eigenvector associated with the eigenvalueλ1 = 1 is given byu1 = (
√

N)−11.

Substituting this information into the error norm equationgives

||q(t) − Jx(0)|| = ||(W − J)tx(0) +
t−1
∑

j=0

N
∑

k=1

λt−j
k

uku
T
k v(j) + v(t)|| (58)

= ||(W − J)tx(0) +
t−1
∑

j=0

(

1

N
11T +

N
∑

k=2

λt−j
k

uku
T
k

)

v(j) + v(t)|| (59)

= ||(W − J)tx(0) +

t−1
∑

j=0

v(j)1 +

t−1
∑

j=0

N
∑

k=2

λt−j
k uku

T
k v(j) + v(t)||. (60)

Moreover, applying the Triangle inequality and using the facts that||v(j)1|| = |v(j)|||1|| = |v(j)|
√

N and that

N
∑

k=2

λt−j
k uku

T
k = (W − J)t−j (61)

after multiplying both sides with(
√

N)−1 gives

(
√

N)−1||q(t) − Jx(0)||

≤ (
√

N)−1||(W − J)tx(0)|| +
t−1
∑

j=0

|v(j)| +
t−1
∑

j=0

(
√

N)−1||(W − J)t−jv(j)|| + (
√

N)−1||v(t)||. (62)
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We need to following lemma to continue with the proof.

Lemma 3. The sum of quantization noise terms, at all time steps, converges in probability,i.e.,

lim
N→∞

Pr{|v(j)| ≥ ǫ} = 0 (63)

for ǫ > 0 and all j. Thus,limN→∞ E{|v(j)|} = 0.

Proof: Recall thatE{v(j)} = 0 and

Var{v(j)} = Var

{

1

N

N
∑

i=1

vi(j)

}

(64)

=
1

N2

N
∑

i=1

Var{vi(j)} (65)

≤ 1

N2

N
∑

i=1

∆2

4
(66)

=
1

N

∆2

4
. (67)

Now using Chebyshev’s Inequality, we obtain

Pr{|v(j)| ≥ ǫ} ≤ Var{|v(j)|}
ǫ2

(68)

≤ 1

Nǫ2

∆2

4
. (69)

Now, take the limit ofN → ∞, we see that the RHS of the above goes to zero for allǫ > 0. Thus, the probability

|v(j)| being greater than zero is equal to zero forN → ∞ and the implication oflimN→∞ E{|v(j)|} = 0.

The error norm equation, after taking the expectation and limit as N → ∞, since the limit of eachE{|v(j)|}

exists and equals zero (from Lemma 3), reduces to

lim
N→∞

(
√

N)−1
E{||q(t) − Jx(0)||}

≤ lim
N→∞

(
√

N)−1
E{||(W − J)tx(0)||} +

t−1
∑

j=0

(
√

N)−1
E{||(W − J)t−jv(j)||} + (

√
N)−1

E{||v(t)||}.

(70)

Furthermore, utilizing the Norm inequality gives

lim
N→∞

(
√

N)−1
E{||q(t) − Jx(0)||} ≤ lim

N→∞
ρt(W − J)(

√
N)−1||x(0)|| +

t
∑

j=0

ρt−j(W − J)(
√

N)−1
E{||v(j)||}.

(71)

In the following, we derive an upper-bound ofE{||v(j)||} for j = 0, 1, . . . , t to boundE{||q(t) − Jx(0)||}.
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Consider the expectation of the quantization noise,

E{||v(j)||} = E







√

√

√

√

N
∑

i=1

v2
i (j)







. (72)

Note thatf(u) =
√

u is a concave function. The concavity indicates that utilizing Jensen’s inequality gives

E







√

√

√

√

N
∑

i=1

v2
i (j)







≤

√

√

√

√

N
∑

i=1

E{v2
i (j)}. (73)

Now using the upper-bound for the expectation of the quantization noise variance term,i.e., Lemma 1, indicates

that the expectation of the quantization noise norm is bounded by

E{||v(j)||} ≤

√

√

√

√

N
∑

i=1

∆2

4
=

√
N

∆

2
. (74)

Now, substituting this result into the error norm equation,after some manipulations, gives

lim
N→∞

(
√

N)−1
E{||q(t) − Jx(0)||} ≤ lim

N→∞
ρt(W − J)(

√
N)−1||x(0))|| + ∆

2

t
∑

j=0

ρt−j(W − J). (75)

Recall thatρ(W − J) < 1, hence, applying the Geometric Series equality,i.e.,

t
∑

j=0

ρj(W − J) =
1 − ρt+1(W − J)

1 − ρ(W − J)
(76)

further yields

lim
N→∞

(
√

N)−1
E{||q(t) − Jx(0)||} ≤ lim

N→∞
ρt(W − J)(

√
N)−1||x(0))|| + ∆

2

1 − ρt+1(W − J)

1 − ρ(W − J)
. (77)

Now, taking the limit ast tends to infinity yields

lim
t→∞

lim
N→∞

(
√

N)−1
E{||q(t) − Jx(0)||} ≤ lim

t→∞
lim

N→∞
ρt(W − J)(

√
N)−1||x(0)|| + ∆

2

1 − ρt+1(W − J)

1 − ρ(W − J)
. (78)

Note that the limit of each term exists. Also consider the following:

lim
t→∞

ρt(W − J) = 0 (79)

sinceρ(W − J) < 1, and, subsequently,

lim
t→∞

1 − ρt+1(W − J)

1 − ρ(W − J)
=

1

1 − ρ(W − J)
. (80)

Combining these findings and substituting them into (78) yields the desired result.
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APPENDIX B

PROOF OFTHEOREM 5–CONVERGENCERATE TO THE FINAL TWO BINS

Note thatrq(t) = maxi{qi(t)} − mini{qi(t)}. In order to bound the expected range, we will upper and lower

bound the largest and smallest order statistics of the quantized node state values at time stept. To prove the

proposed theorem, we make use of the following bounds for themaximum and minimum order statistics of (possibly

dependent){qi}N
i=1 samples [25]:

E{max
i

{qi}} ≤ max
i

{E{qi}} + E{max
i

{qi − E{qi}}} (81)

and

E{min
i
{qi}} ≥ min

i
{E{qi}} + E{min

i
{qi − E{qi}}} (82)

respectively. Using these bounds, in our setup, for the largest order statistics gives:

E{max
i

{qi(t)}} ≤ max
i

wt
ix(0) + E{max

i
{vi(t)}} (83)

≤ wt
i∗x(0) + ∆ (84)

where we definewt
i to be i–th row of the weight matrix taken to the powert and i∗ = i : wt

i∗x(0) ≥ wt
ix(0) for

i = 1, 2, . . . , N and used the properties of probabilistic quantization and the fact that|vi(t)| ≤ ∆ almost surely.

Similarly, we have shown that

E{min
i
{qi(t)}} ≥ wt

i∗
x(0) − ∆ (85)

wherei∗ = i : wt
i∗
x(0) ≤ wt

ix(0) for i = 1, 2, . . . , N , yielding

E{rq(t)} ≤ (wt
i∗ − wt

i∗
)x(0) + 2∆. (86)

Utilizing the Cauchy–Schwartz inequality reduces the above expression to:

E{rq(t)} ≤ ||wt
i∗ −wt

i∗
||||x(0) − Jx(0)|| + 2∆. (87)
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Clearly, to upper boundE{rq(t)}, we need to upper bound||wt
i∗ − wt

i∗
||. Hence, we derive an upper bound for

||wt
i1
− wt

i2
|| for any (i1, i2) pair such thati1 6= i2, in the following:

||wt
i1
− wt

i2
|| = ||wt

i1
− 1

N
1T − (wt

i2
− 1

N
1T)|| (88)

≤(a) ||wt
i1
− 1

N
1T|| + ||wt

i2
− 1

N
1T|| (89)

≤(b) ||Wt − J|| + ||Wt − J|| (90)

=(c) ||(W − J)t|| + ||(W − J)t|| (91)

≤(d) ||(W − J)||t + ||(W − J)||t (92)

=(e) 2ρt(W − J) (93)

where (a) follows from the Triangle inequality, (b) from thefact that the norm of any row of a matrix is smaller

that the norm of the matrix, (c) using the properties of the weight matrix, (d) by the Norm inequality, and (e) due

to the symmetric assumption on the weight matrix. Finally, substituting (93) into (87) yields:

E{rq(t)} ≤ 2ρt(W − J)||x(0) − Jx(0)|| + 2∆. (94)

Moreover, using Thomson’s sharp bound relating order statistics and sample standard deviation (forN even, but a

very similar result exists for oddN ) [28]:

2||x(0) − Jx(0)|| ≤
√

N − 1

N

(

max
i

{xi(0)} − min
i
{xi(0)}

)

,

√

N − 1

N
rx(0) (95)

one can relate the bound given on the quantized node state values range to the initial states’ range,i.e., the result

stated in the theorem.

REFERENCES

[1] T. C. Aysal, M. J. Coates, and M. G. Rabbat, “Distributed average consensus using probabilistic qantization,” inProceedings of the

IEEE Statistical Signal Processing Workshop, Madison, WI, Aug. 2007.

[2] ——, “Rates of convergence of distributed average consensus with probabilistic qantization,” inProceedings of the Allerton Conference

on Communication, Control, and Computing, Monticello, IL, Sep. 2007.

[3] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion based on average consensus,” inProceedings of the

IEEE/ACM International Symposium on Information Processing in Sensor Networks, Los Angeles, CA, Apr. 2005.

[4] J.-J. Xiao and Z.-Q. Luo, “Decentralized estimation in an inhomogeneous sensing environment,”IEEE Transactions on Information

Theory, vol. 51, no. 10, pp. 3564–3575, Oct. 2005.

[5] H. Papadopoulos, G. Wornell, and A. Oppenheim, “Sequential signal encoding from noisy measurements using quantizers with dynamic

bias control,”IEEE Transactions on Information Theory, vol. 47, no. 3, pp. 978–1002, Mar. 2001.

[6] N. Lynch, Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1996.



28

[7] W. Ren and R. Beard, “Consensus seeking in multiagent systems under dynamically changing interaction topologies,”IEEE Transactions

on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005.

[8] D. S. Scherber and H. C. Papadopoulos, “Locally constructed algorithms for distributed computations in ad-hoc networks,” in

Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks, Berkeley, CA, Apr. 2004.

[9] C. C. Moallemi and B. V. Roy, “Consensus propagation,”IEEE Transactions on Information Theory, vol. 52, no. 11, pp. 4753–4766,

Nov. 2006.

[10] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Distributed sensor fusion using dynamic consensus,” inProceedings of the 16th

IFAC World Congress, Prague, Czech Republic, Jul. 2005.

[11] C.-Z. Xu and F. Lau,Load balancing in parallel computers: theory and practice. Kluwer, Dordrecht, 1997.

[12] Y. Rabani, A. Sinclair, and R. Wanka, “Local divergenceof markov chains and the analysis of iterative load-balancing schemes,” in

Proceedings of the IEEE Symposium on Foundations of Computer Science, Palo Alto, CA, Nov. 1998.

[13] M. Rabbat, R. Nowak, and J. Bucklew, “Robust decentralized source localization via averaging,” inProceedings of the IEEE ICASSP,

Philadelphia, PA, Mar. 2005.

[14] M. Rabbat, J. Haupt, A. Singh, and R. Nowak, “Decentralized compression and predistribution via randomized gossiping,” in Proceedings

of the Information Processing in Sensor Networks, Nashville, TN, Apr. 2006.

[15] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A scalable and robust communication paradigmfor sensor

networks,” inProceedings of the ACM/IEEE Internation Conference on Mobile Computing and Networking, Boston, MA, Aug. 2000.

[16] J. Zhao, R. Govindan, and D. Estrin, “Computing aggregates for monitoring wireless sensor networks,” inProceedings of the

International Workshop on Sensor Network Protocols and Applications, Anchorage, AL, May 2003.

[17] S. R. Madden, R. Szewczyk, M. J. Franklin, and D. Culler,“Supporting aggregate queries over ad-hoc wireless sensornetworks,” in

Proceedings of the Workshop on Mobile Computing Systems andApplications, Callicoon, NY, Jun. 2002.

[18] A. Montresor, M. Jelasity, and O. Babaoglu, “Robust aggregation protocols for large-scale overlay networks,” inProceedings of the

International Conference on Dependable Systems and Networks, Florence, Italy, Jun. 2004.

[19] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with least–mean–square deviation,”Journal of Parallel and Distributed

Computing, vol. 67, no. 1, pp. 33–46, Jan. 2007.

[20] M. E. Yildiz and A. Scaglione, “Differential nested lattice encoding for consensus problems,” inProceedings of the Information

Processing in Sensor Networks, Cambridge, MA, Apr. 2007.

[21] A. Kashyap, T. Basar, and R.Srikant, “Quantized consensus,” Automatica, vol. 43, pp. 1192–1203, Jul. 2007.

[22] R. A. Wannamaker, S. P. Lipshitz, J. Vanderkooy, and J. N. Wright, “A theory of nonsubtractive dither,”IEEE Transactions on Signal

Processing, vol. 8, no. 2, pp. 499–516, Feb. 2000.

[23] L. Schuchman, “A theory of nonsubtractive dither,”IEEE Transactions on Communication Technology, vol. COMM–12, pp. 162–165,

Dec. 1964.

[24] O. Kallenberg,Foundations of Modern Probability. Springer–Verlag, Second Ed., 2002.

[25] L. P. Devroye, “Inequalities for the completion times of PERT networks,”Mathematics of Operations Research, vol. 4, no. 4, pp.

441–447, Nov. 1979.

[26] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE

Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, Sept. 2004.

[27] M. G. Rabbat, R. D. Nowak, and J. A. Bucklew, “Generalized consensus algorithms in networked systems with erasure links,” in

Proceedings IEEE Workshop on Signal Processing Advances inWireless Communications, New York, NY, June 2005.

[28] G. W. Thomson, “Bounds for the ratio of range to standarddeviation,” Biometrika, vol. 42, no. 1/2, pp. 268–269, Jun. 1955.


