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Abstract— Probabilistically quantized distributed averaging
(PQDA) is a fully decentralized algorithm for performing aver-
age consensus in a network with finite-rate links. At each itera-
tion, nodes exchange quantized messages with their immediate
neighbors. Then each node locally computes a weighted average
of the messages it received, quantizes this new value using a
randomized quantization scheme, and then the whole process
is repeated in the next iteration. In our previous work we
introduced PQDA and demonstrated that the algorithm almost
surely converges to a consensus (i.e., every node converges to
the same value). The present article builds upon this work
by characterizing the rate of convergence to a consensus.
We illustrate that the rate of PQDA is essentially the same
as unquantized distributed averaging when the discrepancy
among node values is large. When the network has nearly
converged and all nodes’ values are at one of two neighboring
quantization points, then the rate of convergence slows down.
We bound the rate of convergence during this final phase by
applying lumpability to compress the state space, and then using
stochastic comparison methods.

I. I NTRODUCTION

A fundamental problem in decentralized networked sys-
tems is that of having nodes reach a state of agreement.
For example, the nodes in a wireless sensor network must
be synchronized in order to communicate using a TDMA
scheme or to use time-difference-of-arrival measurementsfor
localization and tracking. Similarly, one would like a hostof
unmanned aerial vehicles to make coordinated decisions on
a surveillance strategy. This paper focuses on a prototypical
example of agreement in networked systems, namely, the
average consensusproblem: each node initially has a scalar
value,yi, and the goal is to compute the average,1

N

∑N

i=1 yi

at every node in the network.
Distributed averaging(DA) is a simple iterative distributed

algorithm for solving the average consensus problem with
many attractive properties. The network state is maintained
in a vectorx(t) ∈ RN , wherexi(t) is the value at nodei after
t iterations, and there areN nodes in the network. Network
connectivity is represented by a graphG = (V, E), with
vertex setV = {1, . . . , N} and edge setE ⊆ V 2 such that
(i, j) ∈ E implies that nodesi and j communicate directly
with each other. (We assume communication is symmetric.)
In the t+1st DA iteration, nodei receives valuesxj(t) from
all the nodesj in its neighborhood and updates its value by

the weighted linear combination,

xi(t + 1) = Wi,ixi(t) +
∑

j:(i,j)∈E

Wi,jxj(t).

For a given initial state,x(0), and reasonable choices of
weights Wi,j , it is easy to show thatlimt→∞ xi(t) =
1
N

∑N

i=1 xi(0) , x. The DA algorithm was introduced by
Tsitsiklis in [17], and has since been pursued in various
forms by many other researchers (e.g., [3, 6, 8, 11, 14, 20]).

Of course, in any practical implementation of this algo-
rithm, communication rates between neighboring nodes will
be finite, and thus quantization must be applied toxi(t)
before it can be transmitted. In applications where heavy
quantization must be applied (e.g., when executing multiple
consensus computations in parallel, so that each packet trans-
mission carries many values), quantization can actually affect
convergence properties of the algorithm. Figure 1 shows
the trajectories,xi(t), for all nodes superimposed on one
set of axes. In Fig. 1(a), nodes apply deterministic uniform
quantization with∆ = 0.1 spacing between quantization
points. Although the algorithm converges in this example,
clearly the limit is not a consensus; not all nodes arrive at
the same value.

In [1, 2] we introducedprobabilistically quantized dis-
tributed averaging(PQDA). Rather than applying deter-
ministic uniform quantization, nodes independently applya
simple randomized quantization scheme. In this scheme, the
random quantized value is equal to the original unquantized
value in expectation. Through this use of randomization, we
guarantee that PQDA converges almost surely to a consensus.
However, sincex̄ is not divisible by ∆ in general, the
value we converge to is not precisely the average of the
initial values. We presented characteristics of the limiting
consensus value, in particular, showing that it is equal tox̄
in expectation.

The main contribution of the present paper is to character-
ize the rates of convergence for PQDA. We show that, when
the valuesxi(t) lie in an interval which is large relative to the
quantizer precision∆, then PQDA moves at the same rate
as regular unquantized consensus. On the other hand, the
transition from when node values are all within∆ of each
other (i.e., each node is either atk∆ or (k+1)∆, for somek),
is slower than unquantized consensus. We present a scheme
for characterizing the time from when PQDA iterates enter
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Fig. 1. Individual node trajectories (i.e., xi(t), ∀i) taken by the distributed average consensus using (a:) deterministic uniform quantization and (b:)
probabilistic quantization. The number of nodes isN = 50, the nodes’ initial average isx = 0.85, and the quantization resolution is set to∆ = 0.1. The
consensus value, in this case, is 0.8.

this “final bin” until the algorithm is absorbed at a consensus
state.

The remainder of the paper is organized as follows.
Section II describes the probabilistic quantization scheme
employed by PQDA. Section III formally defines the PQDA
algorithm and lists fundamental convergence properties. Sec-
tion IV explores rates of convergence when the node values
are far from a consensus, relative to the quantization preci-
sion ∆. Section V presents our technique for characterizing
convergence rates when all nodes reach the “final bin” and
are within ∆ of each other. We conclude in Section VI.
Before proceeding, we briefly review related work.

A. Related Work

While there exists a substantial body of work on average
consensus protocols with infinite precision and noise–free
peer–to–peer communications, little research has been done
introducing distortions in the message exchange. In [12],
Rabani, Sinclair, and Wanka examine distributed averaging
as a mechanism for load balancing in distributed computing
systems. They provide a bound on the divergence between
quantized consensus trajectories,q(t), and the trajectories
which would be taken by an unquantized averaging algo-
rithms. The bound reduces to looking at properties of the
averaging matrixW.

Recently, Yildiz and Scaglione, in [22], explored the
impact of quantization noise through modification of the
consensus algorithm proposed by Xiao and Boyd [21]. They
note that the noise component in [21] can be considered
as the quantization noise and they develop an algorithm
for predicting neighbors’ unquantized values in order to
correct errors introduced by quantization [22]. Simulation
studies for smallN indicate that if the increasing correlation
among the node states is taken into account, the variance of

the quantization noise diminishes and nodes converge to a
consensus.

Kashyap et al. examine the effects of quantization in
consensus algorithms from a different point of view [7].
They require that the network average,x̄ = 1/N

∑N

i=1 xi(t),
be preserved at every iteration. To do this using quantized
transmissions, nodes must carefully account for round-off
errors. Suppose we have a network ofN nodes and let∆
denote the “quantization resolution” or distance between to
quantization lattice points. If̄x is not a multiple ofN∆,
then it is not possible for the network to reach a strict
consensus (i.e., limt→∞ maxi,j |xi(t) − xj(t)| = 0) while
also preserving the network average,x̄, since nodes only
ever exchange units of∆. Instead, Kashyapet. al define the
notion of a “quantized consensus” to be such that allxi(t)
take on one of two neighboring quantization values while
preserving the network average;i.e., xi(t) ∈ {k∆, (k+1)∆}
for all i and somek, and

∑

i xi(T ) = Nx̄. They show that,
under reasonable conditions, their algorithm will converge
to a quantized consensus. However, the quantized consensus
is clearly not a strict consensus,i.e., all nodes do not have
the same value. Even when the algorithm has converged, as
many as half the nodes in the network may have different
values. If nodes are strategizing and/or performing actions
based on these values (e.g., flight formation), then differing
values may lead to inconsistent behavior.

Of note is that the related works discussed above all
utilize standard deterministic uniform quantization schemes
to quantize the data. In contrast to [22], where quantization
noise terms are modeled as independent zero-mean random
variables, we explicitly introduce randomization in our quan-
tization procedure. Careful analysis of this randomization
allows us to provide concrete theoretical rates of convergence
in addition to empirical results. Moreover, the algorithm



proposed in this paper converges to a strict consensus, as
opposed to the approximate “quantized consensus” achieved
in [7] which is clearly not a strict consensus and does not
preserve the average, however the network average may not
be preserved perfectly by our algorithm. In addition to prov-
ing that our algorithm converges, we show that the network
average is preserved in expectation, and we characterize the
limiting mean squared error between the consensus value and
the network average.

II. PROBABILISTIC QUANTIZATION

Suppose that the scalar valuexi ∈ [−U, U ] ⊂ R lies
in a bounded interval. Furthermore, suppose that we wish
to obtain a quantized messageqi with length l bits, where
l is application dependent. We therefore haveL = 2l

quantization points given by the setτ = {τ1, τ2, . . . , τL}.
The points are uniformly spaced such that∆ = τj+1 − τj

for j ∈ {1, 2, . . . , L − 1}. It follows that∆ = 2U/(2l − 1).
Now supposexi ∈ [τj , τj+1) and let qi , Q(xi) where
Q(·) denotes the PQ operation. Thenxi is quantized in a
probabilistic manner:

Pr{qi = τj+1} = r, and, Pr{qi = τj} = 1 − r (1)

where r = (xi − τj)/∆. The following lemma, adopted
from [19], discusses two important properties of PQ.

Lemma 1 ([19]): Supposexi ∈ [τj , τj+1) and let qi be
an l–bit quantization ofxi ∈ [−U, U ]. The messageqi is an
unbiased representation ofxi, i.e.,

E{qi} = xi, and, E{(qi − xi)
2} ≤ U2

(2l − 1)2
≡ ∆2

4
. (2)

III. PROBABILISTICALLY QUANTIZED DISTRIBUTED

AVERAGING

This section describes the PQDA algorithm introduced in
[1, 2]. We assume each node begins with initial condition
xi(0) = yi, as before. At iterationt, nodes independently
quantize their values via

qi(t) = Q(xi(t)). (3)

These quantized values are exchanged among neighbors, and
the usual consensus linear update is performed via

x(t + 1) = Wq(t). (4)

Let J = N−111T . Following Xiao and Boyd [20], we
assume thatW is a symmetric stochastic matrix which
satisfiesW1 = 1, 1TW = 1T , andρ(W − J) < 1, where
ρ(·) denotes the spectral radius. These properties suffice to
guarantee thatx(t) converges to the average consensus when
perfect, unquantized transmissions are used [20].

Due to our use of probabilistic quantization,x(t) is a
random process, and it is natural to ask:Doesx(t) converge,
and if so, does it converge to a consensus?In [1, 2], we show
that x(t) indeed converges almost surely to a consensus.

Theorem 1 ([1, 2]):Let x(t) be the sequence of iterates
generated by the PQDA algorithm defied in (3) and (4). Then

Pr
(

lim
t→∞

x(t) = τ∗1
)

= 1,

for some quantization pointτ∗ ∈ τ .
Proofs of all the theorems stated in this section can be found
in [2].

The limiting quantization point,τ∗, is not equal tox̄
in general, sincex is not necessarily divisible by∆. This
compromise is required if we want to guarantee convergence
to a consensus in the quantized setting. The theorem above
only guarantees to a convergence and does not say anything
about how closeτ∗ will be to x. The following results
quantify the accuracy of PQDA.

Theorem 2 ([1, 2]):For the sequencex(t) of iterates gen-
erated by PQDA steps (3) and (4),

E

{

lim
t→∞

x(t)
}

= x̄1.

Theorem 3 ([2]): For the sequencex(t) of iterates gener-
ated by PQDA steps (3) and (4),

lim
t→∞

lim
N→∞

E

{

1

N
‖q(t) − x̄‖

}

≤ ∆

2

1

1 − ρ(W − J)
.

Thus, PQDA converges tox in expectation. The upper
bound on the standard deviation given in Theorem 3 contains
two terms. First, the∆/2 worst-case error is due to our use
of quantization. The second term,(1−ρ(W−J))−1, relates
to how fast information can diffuse over the network, which
is directly a function of the network topology. The more
iterations that are required to reach consensus, the more time
probabilistic quantization must be applied, and each time we
quantize we potentially introduce additional errors.

IV. CONVERGENCEANALYSIS: FAR FROM CONSENSUS

To get a handle on the rate of convergence of PQDA,
we begin by studying how spread out the individual
node values are over the interval[−U, U ]. Let I(t) =
[mini qi(t), maxi qi(t)]. It is easy to show (see [2]) that
I(t + 1) ⊆ I(t). This follows since, by our constraints on
W, eachxi(t+1) is a convex combination of components of
q(t). Therefore, after iterating and quantizing, the minimum
value can never decrease and the maximum cannot increase.
The analogous result also holds if one definesI(t) in terms
of the components of minimum length quantization range of
x(t).

Next, let rq(t) = maxi,j qi − qj denote the range of
quantized network values at timet. Clearly, sincex(t)
converges to a consensus, eventuallyrq(t). Our first results
dealing with rates of convergence for PQDA examine the
rate at whichrq(t) tends to zero.

Theorem 4 ([2]): Let rq(t) be as above, and letrx(0) =
maxi,j xi(0) − xj(0). Then

E {rq(t)} ≤
√

N − 1

N
ρt(W − J) rx(0) + 2∆.

Ignoring the2∆ term for a moment, we see that the range
of values decays geometrically at a rate proportional to the
spectral gap ofW, ρ(W − J). In fact, this is the same
rate at which standard, unquantized consensus converges, so
we see that whenrq(t) is large, errors due to quantization
do not significantly hamper the rate of convergence. On
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Fig. 2. This figure plots the range,rq(t), as a function of iteration number.
The solid curve shows our theoretical upper bound, the dashed curve is
generated empirically by averaging over 5000 Monte carlo simulations. Also
plotted for reference is the curve of standard unquantized DA (SDA) that
is generated empirically by averaging over 5000 Monte carlosimulations.
For the first 20 iterations, PQDA converges at essentially the same rate
as unquantized distributed averaging. However, around 20 iterations, all of
the valuesqi(t) are within one or two∆, and convergence slows down
considerably.

the other hand, this result is loose in the sense that it
only implies rq(t) ≤ 2∆, at best. However, we know that
PQDA converges almost surely, so eventuallyrq(t) = 0.
The gap is due to worst-case analysis employed to obtain the
result. Empirically, we observe thatrq(t) does indeed tend
to zero, but when convergence is nearly obtained (i.e., when
rq(t) = ∆ or 2∆, the rate of decay is significantly slower
than that of unquantized consensus. Figure 2 depictsrq(t)
as a function of iteration. The plot shows our bound, and
a simulated curve obtained by averaging over 5000 Monte
Carlo trials. In this simulation we use a network ofN = 50
nodes, with quantizer precision∆ = 0.2. In the figure we
see that around the time whenrq(t) = 2∆ (roughly the
first 20 iterations, also plotted the simulated range of the
unquantized standard DA (SDA)), the rate of convergence
undergoes a smooth transition and slows down significantly.
Next, we look at characterizing the rate of convergence
during this final phase, focusing on the final step, without
loss of generality, fromrq(t) = 1 to rq(t) = 0.

V. CONVERGENCEANALYSIS: FINAL BIN

Next, we consider the convergence of the probabilistically
quantized consensus algorithm after the time step that all
the node state values are in the∆ length quantization bin,
i.e., rq(t) = ∆. Without loss of generality, we assume that
x(t′ + t) ∈ [0, 1]N indicating thatq(t) ∈ {0, 1}N , and that
t′ = 0.

Let us construct a Markov chainQ with 2N states, where
the chain states are given byQ = {q0,q1, . . . ,q2N }, where
qi ∈ {0, 1}N for i = 1, 2, . . . , N . Henceq(t) ∈ Q for t ≥ 1.
The entriesPij of the transition probability matrixP is given
by

Pij = Pr{q(t + 1) = qj |q(t) = qi}. (5)

Using the state recursion and utilizing the conditional inde-
pendence ofvi(t) samples [19], we arrive at

Pij =

N
∏

k=1

1 − (qj
k − wkqi) (6)

where qj
k and wk denote thek–th element of the statej

and thek–th row of the weight matrix, respectively. Recall
that the constructed Markov chain is an absorbing one.
Renumbering the states inP so that the transient states
comes first yields the canonical form:

C =

[

Q R

0 I

]

. (7)

HereI and0 are identity and zero matrices with appropriate
sizes, respectively. The fundamental matrix of a Markov
chain is given by,F = (I − Q)−1. The entryFij of F

gives the expected number of times that the process is in
the transient statej if it is started in the transient statei.
Let ηi be the expected number of steps before the chain is
absorbed, given that the chain starts in statei, and let η
be the column vector whosei–th entry isνi. Thenν = F1.
Moreover, LetBij be the probability that an absorbing chain
will be absorbed in the absorbing statej if it starts in the
transient statei. Let B be the matrix with entriesBij . Then,
B = FR, whereR is as in the canonical form.

Unfortunately, the exact computation of the expected
number of steps to absorption requires inversion of matrix
with size2N − 1 × 2N − 1, which is a challenging task. To
overcome this drawback, in the following, we investigate a
Markov chain withN/2 + 1 states, requiring the inversion
of a matrix of manageable sizeN/2 × N/2 with trade–off
of yielding only bounds on the expected number of steps to
absorption.

We employ the reduction techniques outlined in [16] to
analyze the convergence of the Markov chain. We need
to introduce a modification, since it is not computationally
feasible to compute or process the2N−1×2N−1 probability
transition matrix, as required in [16].

A. Preliminaries

We first introduce some notation and recall some defini-
tions. The definitions are extracted from [16] and [15].

Definition 1 (Strong order):Let U and V be two Rn-
valued random variables.U is smaller thanV in the sense
of strong order, if and only if for all nondecreasing real
functions f fromRn (in the sense of componentwise ordering
on Rn), we haveEf(U) ≤ Ef(V ), provided that the
expectations exist.
If this conditions holds, then it is denotedU ≤st V . ≤st is
a partial order,i.e., reflexive, antisymmetric and transitive.
In the case whereU and V are {1, . . . , m}-valued random
variables,U ≤st V if and only if ∀i ∈ E,

∑

k≥i u(i) ≤
∑

k≥i v(i), whereu and v are the probability distributions
of U andV . This last relation is also denotedu ≤st v.

Definition 2 (≤st comparison of stochastic matrices):
Let A and B be two η × η stochastic matrices indexed by



elements ofE.

A ≤st B ⇐⇒ ∀i ∈ E, A(i, ·) ≤ B(i, ·). (8)
Definition 3 (≤st-Monotonicity): Let A be an η × η

stochastic matrix. We say thatA is monotone in the sense
of ≤st if and only if

∀i < η, A(i, ·) ≤st A(i + 1, ·). (9)
Definition 4 (≤st-monotone optimal matrix):Let A be a

stochastic matrix.M is the ≤st-monotone optimal matrix
with respect toA if it is the lowest (the greatest) with respect
to the partial order≤(st) such thatA ≤st M (M ≤st A).

B. Truffet’s Reduction techniques

Let χ = (π, P ) be a discrete-time homogeneous Markov
chain with totally ordered state spaceE = {1, . . . , η} (with
respect to a canonical order onN, ≤). Hereπ is the initial
distribution andP is the associated Markov transition matrix.
The random variableχ(t) represents the state of the system
at epocht. This chain is used to represent the progression
through the quantization states, so the states are theq-vectors
andη = 2N − 1. Let k(q) = min(

∑N

i=1 qi, N − ∑N

i=1 qi).
This value captures the minimum Manhattan distance ofq

to an absorbing state. We establish an ordering by requiring
that for any two states labelledi andj, such thati < j, the
associatedq-vectors, denotedq(i) andq(j) satisfyk(q(i)) ≥
k(q(j)). If the equality holds, then states are ordered by
considering theq vectors as binary numbers.

Following [16], consider the surjective mappingǫ : E →
Σ = {1, . . . , L}, 0 < L < η such thatE = (ǫ−1(I))I=1,...,L

are lumped states that form a partition ofE. We assumeǫ is
non-decreasing, and indeed, in our case, we defineǫ(χ(j)) =
N/2 − k(q(j)) + 1, implying L = N/2 + 1. Denoteǫ(χ) ,

(ǫ(χ(t)))t∈N.
The reduction technique presented by Truffet strives to

generate stochastic matrices that bound the transition matrix
of the lumped Markov chain. The goal is to develop these
matrices such that the associated Markov chains, denotedY
andY , satisfy, for allt:

(Y )(0), . . . , Y (t)) ≤st (ǫ(χ(0)), . . . , ǫ(χ(t)))

≤st ((Y )(0), . . . , Y (t)).

Let us denote the cardinality ofǫ−1(I) as ηI , I =
1, . . . , L. We assume that forI = 1, . . . , L, E(I) =
ǫ−1(I) = [aI , bI ], with aI+1 = bI + 1, I = 1, . . . , L − 1
and aI = 1 and bL = η. Denote byA(E) the set of all
probability distributions onE, and equivalently denonote by
A(Σ) the set of all probability distributions onΣ.

We recall the result concerning ordinary lumpability, pre-
sented in [16], as adapted from [4]. Consider anE-valued
Discrete-time Markov ChainΦ = (α, A).

Result 1: If ∀I, J ∈ Σ, ∀i ∈ E(I), o(I, J) = A(i, E(J))
does not depend oni, then matrixA is said to be ordinary
lumpable with respect to partitionE and ∀α ∈ A(E) the
processǫ(Φ) is aΣ-valued discrete-time Markov Chain with
L × L transition probability matrixAǫ

o defined by

∀I, J ∈ Σ, Aǫ
o(I, J) = o(I, J), (10)

and initial conditionαǫ. The Markov chainΦ is said to be
ordinary lumpable with respect toE and matrixAǫ

o is referred
to as anordinary lumpedmatrix.

The key result from [16] (Lemma 2.1) relies on identifying
a ≤st-monotone optimal matrixM and a discrete Markov
chain χ = (π, P ), such that (i)P ≤st M ≤st P ; (ii) P
is ordinary lumpable with respect to a partitionE; and (iii)
π ≤st π. Under these conditions, theΣ-valued Markov chain
Y o = (πǫ, P

ǫ

o) with P
ǫ

o defined by (10) (withA = P ) is
such thatǫ(χ) ≤st Y o. Note that the result holds ifM is
merely≤st-monotone (not optimal), but the resultant bounds
on ǫ(χ) are not as tight.

In our case, we can setπ = π to satisfy the third condition.
Lemma 3.1 from [16] provides a recipe for constructing an
optimal ordinary lumped matrixP given the≤st-monotone
matrix M . We first recall the definition of upper optimality
in this setting:

Definition 5: Let M be anη × η monotone matrix.O is
an optimal upperL×L matrix if and only if∀I, K ∈ Σ, the
quantity

∑L

J=K O(I, J) is the smallest quantity such that:

∀k ∈ E(I),

N
∑

J=K

∑

j∈E(J)

M(k, j) ≤
N

∑

J=K

O(I, J)

Lemma 2 ([16], Lemma 3.1):For any arbitrary partition
E, and ≤st-monotone matrixM , there exists an optimal
ordinary lumped matrixP

ǫ

o,opt, which is defined by:

∀I, J ∈ Σ, P
ǫ

o,opt(I, J) =

j=bJ
∑

j=aJ

M(bI , j) (11)

Truffet provides an algorithm for identifyingM , but it
requires calculation and processing of every state in the
originalη×η Markov chain. The construction ofP

ǫ

o,opt(I, J)

(and henceY ) does not require specification of the individual
elements ofM(bI , ·); it suffices to determine the sums over
partitions. However, even this task, withη = 2N − 1, is
not computationally feasible in our case. We note that it is
not essential to identifyP

ǫ

o,opt; if we can specify anL × L

matrix P
ǫ

o(I, J) satisfyingP
ǫ

o,opt ≤ P
ǫ

o, then we achieve a
(potentially looser) bound.

The methodology for constructing a lower bounding
Markov chainY o such thatY o ≤st ǫ(χ) is directly anal-
ogous to the method forY o. We now present a method, for
our specific problem scenario, for constructing aP ǫ

o(I, J)
that does not involve direct specification ofM or access to
all states in the chainχ.

C. Convergence results

We identify a partitionΣ defined by the valuesǫ(χ(j)) =
N/2−k(q(j))+1. Let us denote, forJ ∈ Σ, k(J) , (k(q(j))
for any j ∈ J . The key observation is the following. For
i ∈ I andI ∈ Σ,

P (i, J) ,

j=bJ
∑

j=aJ

P (i, j) (12)

=

{

B(k(J); Wq(i)) + B(N − k(J); Wq(i)) k(J) 6= N/2

B(k(J); Wq(i)) k(J) = N/2



whereB(ℓ;p) denotes the Poisson-Binomial distribution,

B(ℓ; p) =







n
∏

j=1

(1 − pj)







∑

1≤j1<...jℓ≤n

ℓ
∏

z=1

pjz

1 − pjz

(13)

We can construct the matrixP
ǫ

o by ensuring that for all
i ∈ I andI, K ∈ Σ,

L
∑

J=K

P
ǫ

o(I, J) ≤
L

∑

J=K

j=bJ
∑

j=aJ

P (i, j)

We can achieve this by upper-bounding sums of the expres-
sions in (12).

Let #neigh(i) denote the cardinality of the set of neigh-
bours of the nodes with value1 in stateq(i). Suppose that
the matrixW satisfies the condition that for alli, i′ ∈ I and
I, K ∈ Σ,

L
∑

J=K

j=bJ
∑

j=aJ

P (i, j) ≤
L

∑

J=K

j=bJ
∑

j=aJ

P (i′, j)

if #neigh(i) ≤ #neigh(i′).
If we can find the set of statesI∗ such that#neigh(i∗) ≤

#neigh(i′) for all i∗ ∈ I∗, i′ ∈ I, and this set of states is
small for eachI, then we can perform a two-step reduction
procedure. We first eliminate all rows except those belonging
to the setsI∗, I ∈ Σ. Then we can apply the procedure
outlined in [16] to identify a suitableP

ǫ

o. The reason for
pursuing this approach is that very effective heuristics can
be developed for searching for the setI∗, whereas direct
identification ofP

ǫ

o is intractable for largeN .
If it is impossible to identify the states belonging toI∗,

then it may be possible to upper bound#neigh(i∗) and lower
bound the variance and third-moment of the non-zero com-
ponent ofP (i∗, ·). Then we can develop bounds forP (i∗, ·)
itself, which is a Poisson-Binomial, using an approximation
scheme based the Krawtchouk expansion outlined in Section
V-D. The upper bound forms a suitableP

ǫ

o.

D. The Krawtchouk Expansion

Let SN = X1 + X2 + · · · + XN denote the sum ofN
independent Bernoulli random variables,Xi, each having
success probabilities

Pr{Xj = 1} = 1 − Pr{Xj = 0} = pj ∈ [0, 1] (14)

for j = 1, 2, . . . , N . The distributionPr{SN = n} is com-
monly referred to as the Poisson–Binomial distribution and
is denotedB(N,p), wherep denotes the vector of success
probabilities; the exact expression forB(N,p) is given by
(13). SinceB(N,p) has a complicated structure, it is often
approximated by other distributions. The most notables are
normal approximations and the Edgeworth expansion [10,
18], and Poisson approximations and expansion related to
Charlier polynomials [5, 9]. In the following, we consider
the approximation of the distribution ofSN by the Binomial
distributionB(N, p) with parameterN and arbitrary success
probability p proposed by Roos [13] due to its ability to
provide point metric bounds requires to bound the considered

convergence time. In the following, we define the point
metric bound [13].

Definition 6: Let Q1 and Q2 denote finite signed mea-
sures which are concentrated onZ+ = {0, 1, . . .} and satisfy
that Q1(Z+) = Q2(Z+), then, the point metric measure
betweenQ1 andQ2 is given by

d(Q1, Q2) = sup
m∈Z+

|Q1({m}) − Q2({m})|. (15)

Before, we present the main result of Roos, let us intro-
duce the following notations to simplify the presentation:

p =
1

N

N
∑

j=1

pj , η(p) = 2γ2(p)+γ2
1(p), θ(p) =

η(p)

2Npq
(16)

with γk(p) =
∑N

j=1(p − pj)
k. The following theorem,

adopted from [13], gives a bound on the point metric measure
for approximating the Poisson–Binomial distribution witha
Binomial one.

Theorem 5:Let n ∈ {2, 3, . . .} and 0 < x1 < x2 <
x3 < n + 1 be the zeros ofK3(x, n + 1, p), where Kj

denotes the Krawtchouk polynomial of degreej. Then,
d(B(N,p),B(N, p)) = H + R , where

H =
γ2

N(N − 1)[pq]2

× max{|K2(⌊xi⌋, N, p)|b(⌊xi⌋, N, p)|i ∈ {1, 2, 3}}
(17)

and

|R| ≤ |γ3|min

{

2.398

[Npq]2
, 1

}

+

min

{

1.627θ2(1 − 0.75
√

θ)
√

Npq(1 −
√

θ)2
, 3.695γ2

2(1 + 2
√

γ2 exp(4γ2))

}

(18)

with γk = γk(p), θ = θ(p) andq = 1 − p.
Note that the point metric bound includes the Krawtchouk

polynomials given by

Kj(x, N, p) =

j
∑

k=0

(

N − x
j − k

) (

x
k

)

(−p)j−kqk. (19)

Note that we are specifically interested Krawtchouk polyno-
mials of degree two and three; finding the roots ofK3 and
evaluating those roots inK2. From the theory of orthogonal
polynomials, it follows that zeros of the Krawtchouk poly-
nomials are real, simple and lie in the interval(0, N) [13].
Hence, one can determine the roots ofK3 using numerical
techniques. Moreover, closed–form expressions exist forK2

rendering the evaluation of obtained roots trivial.

E. Example

In this section, we include the results of a convergence
analysis of theW matrix used in simulations described in
Section IV. For this matrix, we perform a branch-and-bound
search procedure to identify the setsI∗. This procedure is
a greedy search that initially selectsK of the sets with
k(q(j)) = 1, choosing those with the smallest neighbour
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Fig. 3. Bounds on the expected number of iterations to convergence after
entry into the final bin. The lines with circle and diamond markers show
the lower and upper bounds, as derived from the branch-and-bound search,
combined with the lumped-state Markov chain analysis. The empirical mean,
derived from 5000 trials for each initial k-value, is depicted by the line with
square markers. Error bars depict 5 and 95 percentiles; outliers are shown
with the “+” marker.

cardinalities (K is an algorithm constant defining the degree
of branching in the search). Subsequently it attempts to grow
each of these sets by adding one neighbour. Through this
process it createsK ′ sets, but at each step it retains only the
K with smallest neighbour cardinalities. The process ends
when the examined sets satisfyk(q(j)) = N/2.

We now apply the procedure of [16] to develop stochastic
matrices that provide upper- and lower- bounds on the
expected time to absorption for the original Markov chain.
Figure 3 depicts the results, showing the upper and lower
bounds (dashed) and the expected time to convergence,
estimated empirically, by running 5000 simulations for each
value of k(q(i)) from random initial states. The significant
number of outliers and the substantial variance indicate the
value of analytical bounds. The state-space is very large even
with only 50 nodes and it is very difficult to reliably evaluate
convergence times through empirical studies.

F. An Empirical Observation

We investigate the average convergence time of the dis-
tributed average consensus using probabilistic quantization
for varying∆ ∈ {0.05, 0.1, 0.2} against the number of nodes
in the network, Fig. 4(a) and (b). We also show the average
number of iterations taken to achieve the final quantization
bin. Moreover, Fig. 4(c) and (d) plots the average normalized
distance to the closest absorbing state at the first time step
when all the quantized node state values are in the final
quantization bin. The initial state averages arex(0) = 0.85
and x(0) = 0.90, and the connectivity radius isd =
√

4 log(N)/N . Each data point is an ensemble average of
10000 trials. Note that the convergence time increases with
the number of nodes in the network. The plots suggest that
the number of iterations taken by the PQDA algorithm to
converge to final quantization bin decreases as∆ increases.
This can be seen by noting that the algorithm has to go

through less “averaging” (multiplication with the weight
matrix) before arriving at the final bin. It is hence clear that
the algorithm needs to run for a smaller number of iterations
to arrive at a larger final bin size.

On the other hand, the expected number of iterations
taken to achieve consensus is dominated by the number of
iterations taken to converge to an absorbing state after allthe
node values are in the final bin. Probabilistic quantizationis
the dominant effect in the final bin. In fact, the time taken to
converge to an absorbing state is heavily dependent on the
distance to that absorbing state at the first time step when
all values enter the final bin. This distance is affected by
two factors. First, if more averaging operations occur prior
to the instantt∆ = min{t : rx(t) ≤ ∆}, then there is more
uniformity in the values, decreasing the distance from each
xi to x̄. Second, if the initial data averagēx is close to a
quantization point, then, on average,x(t∆) will be closer
to an absorbing state (note thatE{1Tq(t)} = 1Tx(0)).
These observations explain the results of Fig. 4. Note that
the convergence time order forx(0) = 0.85 andx(0) = 0.90
cases flip for∆ = 0.2 and∆ = 0.1. That is due to the fact
that the average distance to an absorbing when, at the first
time step, all the node values enter the final bin is smaller
for x(0) = 0.85 when ∆ = 0.2 compared to∆ = 0.1,
and is smaller forx(0) = 0.90 when∆ = 0.1 compared to
∆ = 0.2. Moreover, note that∆ = 0.05 yields the smallest
distance to an absorbing state for both initial conditions.
Although, it takes more iterations to converge to final bin,
in both cases, PQDA algorithm with∆ = 0.05 yields the
smallest average distance to an absorbing state when all the
node values enter to the final bin for the first time step,
hence, the smallest average number of iterations to achieve
the consensus.

VI. CONCLUSION

This paper presented convergence results for PQDA. We
show that when the range of node values is large, PQDA be-
haves essentially like standard distributed averaging, without
quantization. When all nodes have values on two neighbor-
ing quantization points, convergence is slowed. We provide
reduction techniques and approximations to bound the rate
of convergence rate in this final stage of the algorithm.
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