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ABSTRACT

This paper considers the problem of predicting the num-
ber, length and distribution of traffic flows some time into
the future, based upon packets collected in the present. Three
methods– the standard Expectation-Maximization algorithm,
a distributed version of the Expectation-Maximization algo-
rithm, and a Particle Filter– are used to predict the mean
flow length and complete flow distributions for subsequent
timesteps. We propose a model to represent the histogram
of flows corresponding to any given time interval, and use
the aforementioned methods to estimate the parameters of
the model. The proposed algorithms are tested on a large
number of commonly-available data traces. The results in-
dicate that the three methods perform comparably well in
terms of the distance between the predicted flow distribu-
tions and actual flow histograms. An important application
of our work is in resource reservation for protocols that re-
quire guaranteed qualities of service.

1. INTRODUCTION

Traffic passing through a node corresponds to many differ-
ent types of applications and protocols. It is important for
routers to be able to predict certain characteristics about the
nature of network traffic, ahead of time. Quantities of in-
terest include the number of distinct flows within a time
period, the lengths of these flows, and the distribution of
flow lengths. Flow scheduling is an important factor to con-
sider in efficiently utilizing available bandwidth. Delays
from two edge nodes are typically up to 100ms in wide-area
networks such as the Agile All-Photonic Network (AAPN).
Assuming a frame length of 10ms, this often means that
reservation of bandwidth needs to be made at least 10 frames
in advance.

We begin by suggesting a suitable model for the flow
distribution, and then present three methods for estimating
the parameters of the model. The estimated parameters can
then be used to predict the number and distribution of flow
lengths in future time intervals. We test our methods by
comparing the predictions based on our estimates, with the
actual flow histograms.

This project was funded by AAPN.

Examples of use of information on flow distribution at
core routers include the following:
Resource Reservation: Certain classes and types of traffic
require guaranteed qualities of service. Knowledge of the
amount of such traffic to expect with a time frame is re-
quired to reserve resources in intermediate routers, accord-
ingly.
Sampling Rates: Keeping a record for every packet is in-
feasible in high-speed routers. Such routers randomly sam-
ple packets, and estimate statistics about the original packet
stream from the sampled data. The efficiency of the sam-
pling scheme depends on the flow distribution of the origi-
nal stream [1].
Resource Utilization: Knowledge of the distribution of traf-
fic flows is needed to evaluate gains in the deployment of
web proxies [2] and to study efficiency of cache utilization.
Characterizing Source Traffic: Information about the distri-
bution of flows can provide insight into the higher level pro-
tocols that the traffic corresponds to (e.g. real-time, per-to-
peer, etc.), and help determine thresholds for creating new
connections in flow-switched networks [3].
Traffic Engineering: One could use information on flow dis-
tribution to balance the total volume of traffic at a core node,
based on a small number of identified flows [4]. Moreover,
the complexity of optimizing algorithms for multipath rout-
ing is reduced if the number of flows is limited [5–7].

1.1. Definitions

An IP flow is usually defined to be a set of packets that share
a common key, and occur within some period. We define the
key to be the following 4-tuple:
key = (source IP address, source port number, destination
IP address, destination port number)
Thus a flow refers to a connection between specific applica-
tions in specific end systems. The flow length is defined to
be the number of packets that belong to a particular flow (as
identified by its key).

In order to compile flow statistics, routers maintain records
indexed by flow keys. A flow is said to be active if a record
exists for its key. Once a new packet arrives at a router, the
router first determines if a record is active for the flow, based
on the new packet’s key. If not, a new record is created with
the packet’s key. For a record to be active for the arriving



packet’s key, the following additional conditions must also
hold [1, 8]:
Inter-Packet Timeout: The interval between the arrival of
the current packet and the arrival of the last packet having
the same flow key, must be below some threshold. If this
interval exceeds the threshold, it is assumed that the packet
belongs to a new connection between the given (same) (src
IP, src port, dst IP, dst port) 4-tuple. A flow is said to be
sparse, if typical times between packets belonging to it ex-
ceed the threshold. Sparseness occurs in flows that are long
(i.e. many packets), and where the packets are greatly inter-
spersed in (spread over) time. Examples are streaming and
multimedia applications [1].
Aging: A flow is also terminated after a given elapsed time
between the arrival of the first packet belonging to it, and
the current time. This is done in order to prevent data stale-
ness.
Protocol information: A flow is terminated if specific pro-
tocol information dictate it, for example a TCP FIN packet
is observed corresponding to an active TCP flow.
Equipment limitations: If the measuring equipment require
memory to be released and current statistics to be exported.

Our objective for this project is to predict the mean flow
length, and the number and distribution of lengths of all ac-
tive flows, for a future time interval.

1.2. Experimental Data

We obtained packet traces from the Passive Measurement
and Analysis (PMA) Project repository at the National Lab-
oratory for Applied Network Research (NLANR) [9]. The
traces we used correspond to data collected from the follow-
ing sources:
trace COS: an OC3c link at Colorado State University;
trace ODU: an OC3c link at Old Dominion University;
trace BWY: an OC3c link at Columbia University.

Figure 1 shows the number of times that flows of differ-
ent lengths are observed, during a particular 1-second inter-
val at COS.

Certain observations about the distribution of flow lengths
can be made from Fig. 1. First of all, the majority of flows
are small, with flows of length 1 occurring the most of-
ten. The frequency of occurrence of flows of a particular
length, initially exhibits a rapidly decaying nature (as evi-
denced even on the logarithmic scale) with increasing flow
length. There also some very-large flows, but they form a
very small fraction of the total number of flows observed
in the specified time interval. In the particular example of
Fig. 1, the number of flows with more than 50 packets was
seen to be less than 1%. We observed this general behav-
ior in experimental data obtained from a large number of
traces from the NLANR PMA repository. For our research,

Fig. 1. Sample flow distribution in COS.

we decided to break the histogram of flows into two sep-
arate parts, and use different techniques to study the 1%
of flows longer than a cutoff, from the 99% flows having
lengths shorter than this cutoff. This paper deals primarily
with our study of the shorter flows.

It was observed that individual large flows (as indexed
by their keys) vary widely in length. Thus, it is extremely
difficult to predict them. As large flows contribute a very
small fraction of the total number of flows, using averages
is sufficient to predict the number of packets contained in
these flows.

The traces from COS, ODU and BWY was also used
to simulate AAPN-like topologies, and make predictions by
specific (src node, dst node) pairs. We divided the source
IP space into 16 bins by looking at the number of packets
with each source IP, and splitting the source IP space se-
quentially, so that the number of packets assigned to each
source node is evenly spread. Dividing the source IPs ran-
domly did not lead to an even distribution of the packets.
Each of these (16) bins was then assigned to a core router,
as the IP addresses that it exclusively services.

1.3. Methodology and Outline of Paper

We present the mathematical model (a weighted sum of ge-
ometric distributions) used to represent the distribution of
the shorter flows, in Section 2. We use the Expectation-
Maximization (EM) algorithm to obtain the Maximum Like-
lihood estimates for the parameters of the model in Section
3. We then modify the centralized EM algorithm from Sec-
tion 3 into a distributed version, and present the results ob-
tained using the distributed EM algorithm in Section 4. In
Section 5, we first motivate the applicability of the Particle
Filter, as another method that may be used to estimate the
parameters of the model over timesteps. We then develop



and apply the Particle Filter to this problem. We conclude
in Section 6 with some suggestions for further research.

1.4. Related Work and Our Contribution

Flow classification by histograms was recently suggested in
[10], which argues that simple features such as the mean
and variance of flows, provide very little information. Flows
need to be aggregated by class, a task which is made diffi-
cult by the dynamic and diverse range of behavior exhib-
ited by network traffic. The authors postulate that each flow
yields a histogram, which is a realization coming from a
stochastic source generating random histograms. Then they
propose a mixture of Dirichlet distributions, as the model
to represent this stochastic source. They use a stochastic
approximation to the Expectation-Maximization (EM) al-
gorithm to estimate the parameters of the model, and finally
use the Maximum A Posteriori (MAP) principle to desig-
nate which class a particular flow belongs to. We use a
mixture of geometric distributions as our model to represent
a flow histogram. Further, we provide different methods–
the standard EM algorithm, a distributed version of the EM
algorithm and a Particle Filter– to estimate the parameters
of the model, which are subsequently used to predict mean
flow lengths and flow histograms in future time intervals.

Flow histograms in wide-area networks are typically such
that a small subset of all flows contribute towards a large
volume of total network traffic [11]. Such flows are some-
times referred to as “heavy hitters” or “elephants”, while the
rarely occurring flows are analogously termed “mice” [10].
Our observations agree with these results. Large flows may
be identified by two algorithms known as “sample and hold”
and “multistage filters” [12]. A classification scheme based
on the separation criteria that the elephants must exceed by
definition, is given in [13]. Flows are characterized as ele-
phants based on their volume as well as their persistence
in time. Thus flows to be termed elephants must contribute
significantly to the overall load, and also exhibit sufficient
perseverance over time. Our primary objective in this paper
is to predict the distribution of the 99% of flows, that are of
length less than a cutoff flow length. For the remaining 1%
large flows of length greater than the cutoff, we use averages
to predict the mean flow length only.

Scaling-based estimators are used to estimate the origi-
nal flow distribution from characteristics observed in sam-
pled streams, in [1, 14]. They also present a method based
on the EM algorithm to infer the flows that missed sam-
pling altogether. Various sampling strategies are described
in [15]. We use complete data for the current time interval
to predict the flow distribution in subsequent timesteps.

A time-series analysis of network traffic based on Origin-
Destination pairs, along with it’s use in traffic engineer-
ing, is provided in [16]. A comprehensive description of
a distributed Expectation-Maximization (EM) algorithm for

Gaussian mixtures, and its application to a sensor network,
is provided in [17]. We have modified the algorithm to
a mixture of geometric distributions, and demonstrated it’s
application to predicting mean flow lengths and flow distri-
butions in a wide-area network such as the AAPN.

2. THE MODEL

Our initial objective is to propose a model to represent the
histogram of all flows below length 50, observed during any
specified time interval. Recall from Section 1.2 that 99% of
all flows were seen to be of below length 50, for the sam-
ple 1-second interval in COS. This behavior was typical in
traces obtained from a large number of sources from the
NLANR PMA repository. Figure 2 shows the distribution
of all flows below length 50 for the same sample 1-second
interval in COS. Figure 3 shows the same distribution in lin-
ear scale, with flow lengths shown from 1 to 10 only, for the
sake of clarity of presentation.

Fig. 2. Flow Distribution in logarithmic scale.

The rapidly decreasing nature of the flow distribution (as
evidenced even on the logarithmic representation), suggests
that the Number of Flows may be represented by a function
that decays with increasing Flow Length. Given the dis-
crete nature of this problem, a geometric probability mass
function (pmf) is a possibility. However, it is obvious from
Fig. 3 that no particular single geometric parameter (prob-
ability) can well explain the occurrence of the entire flow
distribution: there is a very large number of flows that con-
tain only 1 packet, the frequency rapidly decreases to about
Flow Length = 5, and the rate of decrease is more gradual
from then onwards. It thus appears that parts of the distri-
bution require different geometric parameters to describe it
well.



Fig. 3. Flow Distribution in linear scale.

We suggest using a model of the following form:

y =
M−1∑
m=0

αm(1− pm)px
m (1)

such that
M−1∑
m=0

αm = 1

where y represents the Number of Flows and x represents
the Flow Length. Our proposed model is thus a mixture
of geometric distributions, with the number of components
given by M . To the best of our knowledge, such a formu-
lation has not been adopted elsewhere to predict flow distri-
butions.

It is clear from Figures 2 and 3 that the first spike (corre-
sponding to Flow Length = 1) will need a component in the
geometric mixture with a very heavy tail to describe it, com-
pared to the components describing all other flow lengths.
It is therefore best to modify the model to include a Dirac
delta function centered at x = 1 to explain the frequent oc-
currence of flows of length 1 (i.e. flows with unique keys,
containing a solitary packet):

y = α0 · δ(x− 1) +
M−1∑
m=1

αm(1− pm)px
m (2)

such that
M−1∑
m=0

αm = 1

The fundamental underlying assumption behind the model
is as follows: a particular new flow of length x will be a re-
alization of a geometric probability mass function with pa-
rameter (probability) pm, or a Dirac delta function centered

at x = 1. The probability that the said flow is a realiza-
tion of a particular probability mass function (the delta or
any component exponential), is given by the mixing coeffi-
cients. Thus which component of the mixture a new flow is
governed by (according to (2)), is first subject to the mixing
probabilities αm. The probability of the new flow being of
length x, is then provided by the already-determined pmf
with parameter pm (or by δ(x− 1) if the observation corre-
sponds to the m = 0 case).

3. THE CENTRALIZED EM METHOD

Our objective is to find the Maximum Likelihood (ML) esti-
mates for the parameters of the model proposed in (2), from
the histogram of Number of Flows versus Flow Length in
the present time interval. ML estimators have the property
of being the unbiased estimators with the lowest variance
[18, 19]. Once the parameters are obtained, the model may
be used to predict flow histograms and mean flow lengths
for future time intervals.

The probabilistic model given the set of parameters is as
follows:

Pr(x|α0, ..., αM−1, p1, ..., pM−1)

= Pr(x|Θ)

= α0 · δ(x− 1) +
M−1∑
m=1

αm(1− pm)px
m (3)

where

Θ = {α0, ..., αM−1, p1, ..., pM−1}

represents the set of parameters.
With a sample of X = {xi · · ·xN} of N independent,

identically distributed (i.i.d.) observations of Flow Lengths,
and each observation assumed to have been generated by a
component density, the Log-Likelihood function [19] is:

log(L(Θ|X))

= log |ΠN
i=1Pr(xi|Θ)|

= log |ΠN
i=1[α0 · δ(xi − 1) +

M−1∑
m=1

αm(1− pm)px
m]|

=
N∑

i=1

log |α0 · δ(xi − 1) +
M−1∑
m=1

αm(1− pm)px
m| (4)

As the log-likelihood function above is not analytically
tractable, the Expectation Maximization (EM) method is
used to iteratively estimate the parameters. Using standard



procedures for analyzing a mixture model using the EM al-
gorithm [20–23], the Q-function can be derived to be:

Q(Θt+1,Θt)

=
M∑

m=1

N∑
i=1

log |αm| · Pr(c = m|xi,Θt) +

M∑
m=1

N∑
i=1

log |Pr(xi|Θt
m)| · Pr(c = m|xi,Θt) (5)

where Θt+1 refers to the updated values for set of param-
eters to be evaluated from the current values Θt, while the
additional indicator variable c ∈ {0 . . .M − 1} is thought
to designate which particular component density, the ith ob-
servation of x (out of the i ∈ {1 . . . N} observations) came
from [20–22].

The M-Step equations for the parameters are subsequently
derived to be:

αt+1
m =

1
N

N∑
i=1

Pr(c = m|xi,Θt) (6)

for m ∈ {0 . . .M − 1}, and

pt+1
m =

∑N
i=1 Pr(c = m|Θt) · xi∑N

i=1[Pr(c = m|xi,Θt) · xi + Pr(c = m|xi,Θt)]
(7)

for m ∈ {1 . . .M − 1}. Here,

Θt = {αt
0, ..., α

t
M−1, p

t
1, ..., p

t
M−1}

represents the value of the parameters after the tth iteration
of the algorithm.

3.1. Results with the Centralized EM Method

Figure 4 overlays the flow distribution predicted for the next
1-second time interval based on the distribution from the
current interval, and the actual distribution for the next in-
terval. Figure 5 presents the predicted and actual flow distri-
butions on a logarithmic scale. Although we used flow his-
tograms with flow lengths of 1 through 50, Fig. 4 presents
only flow lengths 1 to 10 for clarity of presentation. The
packet trace is that of the same 1-second interval in COS
as used for Figures 2 and 3, and we used M = 4. Fig-
ure 6 demonstrates the behavior in the tail-region of the
corresponding cumulative density function (cdf) of the pre-
dicted and actual flow distributions. Figures 4 and 5 show
the closeness of fit between the predicted distributions and
the actual ones, while Fig. 6 shows that a high percentage
of flows are accurately predicted.

Fig. 4. Predicted flow distribution in linear scale.

Fig. 5. Predicted flow distribution in logarithmic scale.

We obtained predictions for next timestep’s flow length
distribution using different values of M , using 90 consecu-
tive 1-second intervals from a large number of packet traces.
Table 1 below summarizes the mean L1 differences (over
the 90 consecutive 1-second intervals) between the predicted
distribution and the empirical one. The packet traces corre-
spond to COS, ODU and BWY.

M 3 4 5 6
COS 0.0685 0.0594 0.0593 0.0591
ODU 0.0900 0.0890 0.0890 0.0889
BWY 0.0823 0.0806 0.0797 0.0795

The mean L1 differences are seen to decrease for each trace
(although only marginally so), as more components (M)
are used. Using M = 4, the mean of the original av-
erage flow lengths for the 90 1-second intervals for COS
is 3.2081, while the mean of the predicted average flow



Fig. 6. Cumulative density function of predicted flow dis-
tribution.

lengths is 3.1178. The average relative error between the
predicted and actual mean flow lengths over the 90 1-second
intervals, is thus only 2.82%. Figure 7 presents the progres-
sion in the predicted mean flow length, and the actual (em-
pirical) one, over 20 such 1-second intervals.

Fig. 7. Progression in the predicted and empirical mean
Flow Lengths, using the EM method.

We used a tolerance of 10−5 as our convergence [24,
25] criteria for the parameters of the model. We observed
that around 3 iterations are required to reach this tolerance
level. However, the results were seen to be dependent on
the initial conditions. We thus decided to run the algorithm
M2 times for each period with random initial conditions,
and choose the final parameter values that gave the lowest
L1 difference.

The numbers in Fig. 1 suggest that 16 bits × 50 =
800 bits can represent the flow distribution, using a cutoff

of FlowLength = 50 and 16 bits to represent each y-
axis value. This means that if a network contains 16 nodes
and runs the EM algorithm at another central node over 1-
second intervals of data, the network must transmit 12.8
kbits of data every second.

4. THE DISTRIBUTED EM METHOD

The EM method presented in Section 3 requires that the
node running it, be in possession of the entire flow distri-
bution information. When applied to a particular wide-area
network, this means that each node must transmit all it’s
data to a designated central node, if predictions are desired
for the overall network. Only when the central node receives
the data from all the nodes in the network, can it run the EM
algorithm to estimate the parameters of the model, and sub-
sequently predict distributions into the future. Transmitting
entire data distributions can be expensive if the network is
large or spread over a wide geographical area.

Another approach would be to run a distributed version
of the standard EM algorithm separately at each node, and
transmit only updates regarding the parameter set, as op-
posed to raw data. The underlying assumption here is that
communication costs exceed computation costs in today’s
networks. Thus it is better to perform most of the computa-
tion locally at each node, and only transmit information on
the parameters of the model, as opposed to raw data.

To obtain a distributed version of the EM algorithm, let
us assume that the network contains H nodes. Further, as-
sume that the geometric probability parameters of our model
(2) pm for m ∈ {1 . . .M} are universal to the network,
while the mixing probabilities αh,m for m ∈ {0 . . .M} and
h ∈ {1 . . .H} are specific to each node. Assuming that we
have Nh i.i.d. observations Xh = {xh,1 · · ·xh,Nh

} of the
data at node h, we get the following log-likelihood function
for the total data in the network:

log(L(Θ|X)) =
H∑

h=1

Nh∑
i=1

log(
M∑

m=1

αh,mPr(xh,i|Θ)) (8)

where Pr(xh,i|Θ) is as defined in (3).
The resulting Q-function can be re-written in the follow-

ing form [17]:

Q(Θt+1,Θt)

=
H∑

h=1

Nh∑
i=1

M∑
m=1

wt+1
h,i,m{log |αh,m|+

log |Pr(xh,i|Θt
m)|} (9)

where

wt+1
h,i,m =

αt
h,mPr(xh,i|Θt

m)∑M
m=1 αt

h,mPr(xh,i|Θt
m)

(10)



Further, define the following “summary” quantities

wt
m =

H∑
h=1

Nh∑
i=1

wt
h,i,m (11)

and

at
m =

H∑
h=1

Nh∑
i=1

wt
h,i,mxh,i,m. (12)

With the summary quantities, the M-Step equations for
the parameters become:

αt+1
h,m =

1
Nh

Nh∑
i=1

wt+1
h,m,i (13)

and

pt+1
m =

at
m

at
m + wt

m

(14)

where the value of wt+1
h,i,m required in (13) is defined in

terms of the current values of the parameters (Θt) by (10).
In addition, we have

wt+1
h,m =

Nh∑
i

wt+1
h,i,m. (15)

A distributed implementation of the algorithm may then
be obtained as follows. Assume that all nodes have the cur-
rent parameter estimates Θt. The updated estimates after
the next iteration of the EM algorithm, Θt+1, can be com-
puted by performing two message passing cycles through
the nodes. Each message passing operation involves send-
ing the sufficient statistic

st = {wt
m, at

m} (16)

for m ∈ {0 · · ·M − 1} to the next node. Note that the suffi-
cient statistic does not include the probability parameter pm

that is universal to all the nodes in the network, or the mix-
ing probabilities αh,m which are unique to each node. Once
a particular node (let us say node h) receives st from the pre-
vious node (node h− 1), it will locally run the standard EM
algorithm using the modified equations for the M-Step pre-
sented in (13) and (14), and the equation for wh,i,m given in
(10). In addition, it will calculate the updated value of wt+1

h,m

using (15). Note that node h uses it’s locally available data
{xh,1 . . . xh,Nh

}, and the present values of it’s own mixing
probabilities {α1 . . . αh,m}.

Finally, node h will update [17] the summary quantities
according to:

wt+1
m = wt

m + wt+1
h,m − wt

h,m (17)

and

at+1
m = at

m + at+1
h,m − at

h,m. (18)

It will then form the updates sufficient statistic st+1 = {wt+1
m , at+1

m },
and transmit st+1 to the next node (node h + 1) where the
process is repeated.

4.1. Results with the Distributed EM (DEM) Method

We simulated with the traces from COS, ODU and BWY,
with 16 nodes. Recalling that our flow key = (src IP, src port,
dst IP, dst port), we split the total data into 16 bins by source
address. We could then assume that the 16 bins correspond
to locally available data in a distributed network with 16
nodes. The total data is then what would be present at the
central node, after each node sends it’s individual readings.

The simulation proceeds as follows. Each node receives
the sufficient statistic st = {wt

m, at
m} from the previous

node, then locally maximizes the M-Step equations until a
tolerance of 10−5 is reached for it’s estimates of the param-
eters pm,m ∈ {1 . . .M−1} and αh,m, h ∈ {1 . . .H},m ∈
{0 . . .M−1}. It then forwards the updated sufficient statis-
tic to the next node. In this way, updated statistics are passed
from node 1 through node H (where H = 16 here), then
again to node 1 for the next cycle. The cycles continue until
the updates in the sufficient statistic itself converge to within
a tolerance of 10−5. We observed that about 3 local EM it-
erations were needed at each node for the parameter values
to converge, before the sufficient statistic is forwarded to the
next node. However, as many as 20 cycles through the 16
nodes were needed for the wt

m and at
m in st to converge to

the same 10−5 tolerance level. Another possible approach
to the distributed EM algorithm is to perform a single iter-
ation (instead of maximizing) locally at each node, before
forwarding the updates. Both approaches were observed to
require comparable number of cycles to converge, in this
application. Recall that 3 iterations were also required for
convergence of the centralized EM algorithm for each 1-
second interval. A major difference between the centralized
EM case in Section 3 and the distributed version here, is the
following. Here we assume that while the total flow dis-
tribution at any time interval is explained by the same set
of geometric probability parameters pm, the set of mixing
probabilities αh,m is unique to each node. We again as-
sumed random initial conditions.

Figure 8 overlays the flow distribution predicted for the
next 1-second time interval based on the distribution from
the current interval, and the actual distribution for the next
interval. Figure 9 presents the predicted and actual flow dis-
tributions on a logarithmic scale. Although we used flow
histograms with flow lengths of 1 through 50, Fig. 8 presents
only flow lengths 1 to 10 for clarity of presentation. The
packet trace is that of the same 1-second interval in COS



as used for Figures 2 and 3, and we used M = 4. Figure
10 demonstrates the behavior in the tail-region of the corre-
sponding cumulative density function (cdf) of the predicted
and actual flow distributions.

Fig. 8. Predicted flow distribution at a node using DEM, in
linear scale.

Fig. 9. Predicted flow distribution at a node using DEM, in
logarithmic scale.

Figures 8 and 9 show the closeness of fit between the
predicted distributions and the actual ones, while Fig. 6
shows that a high percentage of flows are accurately pre-
dicted. The prediction in the tail is observed to be worse
than in the centralized EM case. This is because the total
data, specially the large flows in the tail region, is not uni-
formly distributed across the 16 nodes.

We obtained estimates for the flow length distribution
using different values of M . Table 2 below summarizes the
mean L1 differences between the empirical distribution and
the predicted one for the 16 nodes, for a particular 1-second

Fig. 10. Cumulative density function of predicted flow dis-
tribution.

interval. The packet traces correspond to COS, ODU and
BWY.

M 3 4 5 6
COS 0.06 0.06 0.06 0.06
ODU 0.25 0.25 0.25 0.25
BWY 0.18 0.18 0.18 0.18

The most striking feature in the results is that the mean L1
differences here do not vary much with M . Also, the val-
ues of L1 differences are higher than in the centralized case.
Once again, this may be attributed to the fact that the total
data is not uniformly distributed across the 16 nodes.

In the distributed implementation each node runs the
EM algorithm on locally available data, and only transmits
the wm and am components. Our results suggest that 32
bits are sufficient to represent each wm or am component
of s, thereby requiring a total of 64M bits. For our sug-
gested value of M = 4, this evaluates to 256 bits. With
a ring topology having H nodes and once again assuming
1-second intervals of data, this means that only 256 bits of
data are flowing in the network every H-second period. It
was mentioned earlier that 20 cycles are required for con-
vergence with 16 nodes. With H = 16 nodes, this indicates
an average throughput required of 20 × 256 ÷ 16 = 320
bits/s. Compared to 12,800 bits/s estimated for the central-
ized version, the distributed approach indicates a lower cost
in terms of the throughput needed. We have implicitly as-
sumed that the computation time at each node is insignifi-
cant, compared to the 1-second data collection period.



5. THE PARTICLE FILTER METHOD

5.1. Overview of the Particle Filter

Bayesian methods provide a framework for taking real-world
noisy data and estimating some phenomenon based on ob-
servations. The objective is to create a model which de-
picts the typical behavior of the quantities being investi-
gated. Bayesian methods enable us to relate prior distri-
butions of the unknown data - that is previous knowledge of
the phenomenon - with the likelihood function associated
with the observations. Some prior knowledge regarding the
phenomenon being modelled is available in many applica-
tions, thereby allowing the formulation of Bayesian models.

A method of analytically estimating the unknown is by
using the popular Kalman Filter [26]. The Kalman filter
allows for an exact expression of the sequence of poste-
rior distribution to be computed. However, a serious draw-
back of the Kalman Filter method is that the data has to be
modelled as a linear Gaussian state-space. Unfortunately,
most phenomena in the real world are non-linear and non-
Gaussian. The Extended Kalman Filter (EKF) [27] approx-
imates by linearizing the predicted states.

Sequential Monte Carlo (SMC) methods, such as the
Particle Filter, were devised to counter the aforementioned
problem. This is a numerical method based on simulation,
and is convenient to use in the modern day as computation
power is easily available. Algorithms related to SMC meth-
ods come under many names. We apply one of the SMC
methods, the Particle Filter, to this problem.

In the ideal situation, one is able to represent the pos-
terior distribution using a set of samples or particles. This
is achieved by taking N independent and identically dis-
tributed (i.i.d.) random samples x(i)

0:t. These samples (or
particles) are drawn from the probability density function
p(x0:t|y0:t). As a result, we can obtain an empirical esti-
mate of this distribution by

p(x0:t|y0:t) =
1
N

N∑
i=1

δ(x0:t − x(i)
0:t). (19)

Drawing samples directly from the posterior distribu-
tion is, however, often difficult to do. In such a situation,
a technique called Importance Sampling is used, whereby
samples can be drawn from a known proposal distribution:
π(x0:t|y1:t).

We then can define the normalized importance weight as

w(x0:t) ∝
p(x0:t|y1:t)
π(x0:t|y1:t)

(20)

If we then sample x(i) from π(x0:t|y1:t) and use the ap-
propriate weights, the density can be rewritten as

p̂(x0:t|y0:t) =
N∑

i=1

w(x(i)
0:t)δ(x0:t − x(i)

0:t). (21)

The technique above works very well, except for one
issue: the degeneracy problem. The variance of impor-
tance weights increase stochastically over time. To regulate
this problem, samples with very low importance weights are
eliminated and replaced with ones of higher ratio. This step
is known as resampling and essentially means that particles
with low weights are virtually eliminated and replaced with
particles of higher weights, which best represent the poste-
rior distribution.

A complete description of the particle filter is provided
in [28].

5.2. Motivation behind Using the Particle Filter

We applied the EM method with M = 4, to 90 consecutive
1-second intervals in COS, ODU and BWY to estimate the
parameters for each 1-second interval, and study the varia-
tion of the parameters over timesteps. Figure 11 shows how
the relative differences in α0 changes over time for COS.
The behaviors of α1, α2 and α3 are similar. Relative differ-
ence for αm is defined as:

RD(αm) = [αm(t)− αm(t− 1)]/αm(t− 1) (22)

The relative difference for pm is defined analogously.

Fig. 11. Relative difference in α0.

Figure 12 shows how the relative difference in p1 changes
over time. The behaviors of p2 and p3 are again similar.

Figure 13 shows how the relative difference in n, the
total number of flows, changes over time.

Figures 11-13 show that the means of the relative dif-
ferences are very small. Table 3 shows the mean relative



Fig. 12. Relative difference in p1.

Fig. 13. Relative difference in n.

difference (relative difference, RD, was defined in (22)) and
the mean relative difference as a fraction of the mean value
of the parameter, for all the parameters with M = 4. The
source is the same set of 90 consecutive 1-second intervals
in COS as before.

mean[RD(αm)] mean[RD(αm)]/mean[αm]
m = 0 0.0246 0.0811
m = 1 0.0436 0.1531
m = 2 0.1844 0.8056
m = 3 0.2828 1.5470

mean[RD(pm)] mean[RD(pm)]/mean[pm]
m = 1 0.1651 0.4982
m = 2 0.0492 0.0835
m = 3 0.0001 0.0002

mean[RD(n)] mean[RD(n)]/mean[n]
7.35× 10−4 1.08× 10−8

It is apparent from Table 3 that the relative changes in the
parameters over consecutive 1-second intervals, are small.
This observation suggests the use of a particle filter with
step size corresponding to 1-second, as a method of predict-
ing the parameters for the next interval.

Figures 11-13 also suggest that changes in the relative
differences of the parameters exhibit Gaussian behavior. In
order to test the goodness of fit of a Gaussian, we performed
the Shapiro-Wilk [29,30] Normality Test on the relative dif-
ferences for the parameters. The resulting Shapiro-Wilk W-
statistics and associated significance levels, are given in Ta-
ble 4 below:

parameter W-statitic significance level
RD(α0) 1.05 0.15
RD(α1) 3.08 1.02× 10−3

RD(α2) 6.53 3.27× 10−11

RD(α3) 8.23 1.11× 10−16

RD(p1) -0.65 0.26
RD(p2) 4.70 1.29× 10−6

RD(p3) 5.43 2.79× 10−8

RD(n) -1.5406 0.0617

The results of the Shapiro-Wilk test suggest that, one can
think of the relative differences in the parameters as real-
izations from Normal random vectors at time t, at the 0.16
significance level (with the exception of p1)). In addition,
we know that the αm mixing parameters must sum to 1,
while the pm parameters are independent. This led us to
choose the Dirichlet distribution as the prior distribution for
the αm mixing parameters, and the Normal distribution as
the prior distribution for the probability parameters pm and
the number of flows n.

5.3. Development of the Particle Filter

The state at timestep t for the Particle Filter has been defined
as:

s(t) = [a(t), p(t), n(t)]T (23)

where n(t) = total number of flows at timestep t, while
α(t) = α0(t), ..., αM−1(t) and p(t) = p1(t), ..., pM−1(t)
denote the parameters required to explain the flow distribu-
tion as a mixture of geometric distributions at timestep t, in
accordance with (2)

For the prior distribution, we assume that αm(t) is sub-
ject to a Dirichlet probability density function with param-
eter αm(t − 1) [31, 32], while pm(t) and n(t) are subject
to Normal distributions with means pm(t− 1) and n(t− 1)
(the standard deviations are set from previous data). We
choose the Dirichlet distribution as the prior distribution for
αm(t) as this distribution is very flexible and general, and
capable of representing a wide variety of random processes



[10]. We choose Normal distributions as priors for pm(t)
and n(t) in accordance with the results presented in Table
4, for the goodness of fit of a Gaussian for the relative dif-
ferences of these parameters. Particles are thus formed by
sampling from Dirichlet, Normal and Normal distributions
to obtain the α, p and n values respectively, at each timestep.

The estimated flow distribution is obtained at timestep t
by using the following equation:

z(t) = α0(t)·δ(x−1)+
M−1∑
m=1

αm(t)·(1−pm(t))·pm(t)x

(24)

Given the actual flow distribution y(t), the Likelihood prob-
ability is a Multinomial [33] with the individual component
probabilities given by z(t) and the number of occurrences
of each type given by y(t):

L(t) = Multinomial(y(t)|z(t), n(t))

Each particular Flow Length (value of x) is thought of as a
type or bin.

The multinomial probability of randomly distributing
k1, k2, . . . , km out of a total of K = k1 + k2 + . . . + km

objects into each of m bins respectively, is given by:

M =
K!

k1!k2! . . . km!
· pk1

1 · pk2
2 . . . · pkm

m (25)

The Importance Sampling weights are then given by:

wi(t)

= wi(t− 1)× L(t)

= wi(t− 1)×Multinomial(y(t)|z(t), n(t)) (26)

for each of the i ∈ {1 . . . P} particles.

5.4. Results with the Particle Filter

We used the Particle Filter with P = 600 particles to predict
the flow length distributions from a large number of packet
traces.

Figures 14 and 15 overlay the flow distribution predicted
for the next 1-second time interval based on the distribution
from the current interval, and the actual distribution for the
next interval. Figure 14 is on a linear scale while Fig. 15 is
on a logarithmic scale. Although we used flow histograms
with Flow Lengths of 1 through 50, Fig. 14 presents only
Flow Lengths 1 to 10 for clarity of presentation. We used
M = 4, and the packet trace is that of the same 1-second in-
terval in COS as used for Figures 2 and 3. Figure 16 demon-
strates the behavior in the tail-region of the corresponding
cumulative density function (cdf) of the predicted and actual
flow distributions. Figures 14 and 15 show the closeness of

Fig. 14. Predicted flow distribution using the particle filter,
in linear scale.

Fig. 15. Predicted flow distribution using the particle filter,
in logarithmic scale.

fit between the predicted distributions and the actual ones,
while Fig. 16 shows that a high percentage of flows are ac-
curately predicted.

Table 5 below summarizes the mean L1 differences (over
the 90 consecutive 1-second intervals) between the predicted
distribution and the empirical one, using different values of
M . The packet traces correspond to COS, ODU and BWY,
and we used P = 600 particles.

M 3 4 5 6
COS 0.14 0.13 0.13 0.13
ODU 0.14 0.13 0.13 0.13
BWY 0.10 0.10 0.10 0.10

The particle filter is a stochastic method, and different runs
produce different results. One must therefore decide on how
many particles to use in a particular application. To study



Fig. 16. Cumulative density function of predicted flow dis-
tribution using the particle filter, in logarithmic scale.

the accuracy and precision (stability) of results using differ-
ent number of particles, we ran the particle filter 25 times on
the COS trace (with M = 4) for various values of P . Fig-
ure 17 shows how the average over 25 runs of the mean L1
difference (over the 90 intervals), varies with P . Figure 18
shows how the standard deviation over 25 runs, of the mean
L1 difference varies with P . Recall that Table 5 presented
the mean L1 difference over the 90 intervals, obtained over
1 run with P = 600.

Fig. 17. Accuracy of results with different number of parti-
cles.

It is observed from Figures 17 and 18 that using a value
of P greater than 600 does not significantly improve the
prediction (i.e. decrease the average L1 difference) or re-
duce the variation in the results (i.e. decrease the standard
in the L1 differences). As increasing the number of particles
increases the runtime, we decided to use P = 600 particles.

Fig. 18. Precision of results with different number of parti-
cles.

The mean of the original average flow lengths for the 90-
second duration for COS is 3.2081, as previously stated in
Section 3. The mean of the predicted average flow lengths
with the particle filter is 3.2172. The histogram in Figure 19
shows the corresponding difference between the predicted
and original average flow lengths, for each 1-second interval
in COS.

Fig. 19. Error in prediction of average flow length by the
Particle Filter.

In this case, we see an average overestimate of 0.0091,
with a standard deviation of 0.3071. This overestimate is
only 0.28% of the original mean flow length.

Figure 20 presents the progression in the predicted mean
flow length, and the actual (empirical) one, over 20 inter-
vals.



Fig. 20. Progression in the predicted and empirical mean
Flow Lengths, using the particle filter.

6. CONCLUSIONS AND FURTHER WORK

Nodes such as core routers in wide-area networks need to
predict flow lengths and flow distributions ahead of time for
resource reservation, as well as for a number of other pur-
poses. We have postulated that the flow histogram observed
at a node is a realization of a random vector. We have pro-
posed a mixture of geometric probability mass functions as
a model to describe the flow distribution. We have then
presented three methods (a centralized EM, a distributed
EM and a Particle Filter) to estimate the parameters of the
model, and thereby predict the entire flow distribution at a
node. We have tested our methods on a large number of
packet traces from the NLANR PMA repository. The re-
sults indicate that all three methods perform equally well,
as demonstrated by similar L1 differences between the em-
pirical flow distribution and the predicted one.

We observed that the standard centralized version of the
EM algorithm required about 3 iterations to converge, while
the distributed version required about 3 iterations at each
node and 20 cycles with 16 nodes. In terms of runtime, these
two algorithms are significantly faster than the Particle Fil-
ter. The reason is that about 600 particles are required with
the Particle Filter. The number of particles is thus much
greater than the number of iterations involved with the two
EM methods. Moreover, the different stages of the Particle
Filter method (sampling from initial distributions, propaga-
tion, resampling) make this method relatively slower.

The distributed version forwards only the parameter up-
dates and requires far less transmission capacity, compared
to the centralized version that sends raw data, when over-
all statistics for a wide-area network such as the AAPN are
desired.

Further research possibilities regarding this topic include

designing a distributed version of the Particle Filter, exper-
imentally testing the performance of the distributed EM al-
gorithm on a real wide-area network, and relaxing the re-
striction in the distributed model that the geometric (proba-
bility) parameter set is universal to the network.
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