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Abstract

Recently, gossip algorithms have received much attention from the wireless sensor network commu-

nity due to their simplicity, scalability and robustness. Motivated by applications such as compression

and distributed transform coding, we propose a new gossip algorithm called Selective Gossip. Unlike the

traditional randomized gossip which computes the average of scalar values, we run gossip algorithms in

parallel on the elements of a vector. The goal is to compute only the entries which are above a defined

threshold in magnitude, i.e., significant entries. Nodes adaptively approximate the significant entries

while abstaining from calculating the insignificant ones. Consequently, network lifetime and bandwidth

are preserved. We show that with the proposed algorithm nodes reach consensus on the values of the

significant entries and the indices of insignificant ones. We illustrate the performance of our algorithm

with a field estimation application. For regular topologies, selective gossip computes an approximation

of the field using the wavelet transform. For irregular network topologies, we construct an orthonormal

transform basis using eigenvectors of the graph Laplacian. Using two real sensor network datasets

we show substantial communication savings over randomized gossip. We also propose a decentralized

adaptive threshold mechanism such that nodes estimate the threshold while approximating the entries of

the vector for computing the best m-term approximation of the data.

I. INTRODUCTION

With the recent advancements in wireless sensor networks and cyber-physical systems applications, the

need for distributed signal processing algorithms increases. The sizes of such networks continue to grow
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and the network lifetime stays an important constraint. For large networks, collecting and processing

data at a fusion center is not ideal since it creates a single point of failure as well as bottlenecks in the

network. In many situations the overall communication cost of centralized algorithms, which includes

the cost of establishing routing protocols, can be comparable or significantly higher than that of in-

network signal processing algorithms, the latter providing robust and scalable solutions. Among such

algorithms, randomized gossip is an iterative decentralized computation scheme which is performed

via asynchronous information exchanges. In the basic scalar setting, each node in the network has an

approximation of the quantity that is computed. Nodes update their approximations based on information

exchanged with one-hop neighbors. The updates asymptotically result in consensus, i.e., all nodes converge

to the same approximation. As the algorithm is asynchronous and local, there is no requirement of routing

or coordination and there is no risk of creating a bottleneck or single point of failure. Furthermore, gossip

is scalable and robust to changes in network topology and unreliable communication environments.

This paper describes selective gossip which is specifically designed to approximate large vectors of

network data. Regular randomized gossip is performed on scalar values whereas in selective gossip

nodes gossip on the elements of a vector. Motivated by applications in compression and distributed

transform coding, we are interested in gossiping only on the elements which contain significant energy

(i.e., elements with absolute values higher than a threshold) in order to conserve energy and bandwidth.

However, with the regular gossip algorithm, we cannot determine which elements are significant before

actually computing them as gossip is an iterative computation scheme.

Selective gossip solves this problem by adaptively determining which elements are significant and

which are insignificant while gossiping. When nodes gossip on vectors of data, they abstain from gossiping

on insignificant components of the vector. In particular, at each round of gossip, two neighboring nodes

exchange information for components of the vector that at least one of the nodes believes to be significant,

i.e., at least one node approximates this coefficient to be higher than the threshold in absolute value. Hence,

the components for which both nodes have approximations lower than a threshold are not exchanged or

updated. In the long run, few transmissions are spent on insignificant components and network resources

are instead used to compute components which contain significant energy. We prove that selective gossip

converges asymptotically. In particular, all the nodes in the network reach consensus on the values of the

significant components. On the other hand, for the insignificant components, all nodes in the network

terminate computation with approximations which are below the threshold in absolute value, and all

nodes obtain approximations which are below the threshold after a finite number of iterations. Therefore,

all nodes reach a consensus on which components to disregard. We show how selective gossip can be
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used for sparse approximation in a field estimation application. It turns out that selective gossip obtains

a network-wide approximation with considerably fewer transmissions compared to naı̈vely gossiping in

parallel on all coefficients.

The rest of the paper is organized as follows. We first continue with background and related work

on gossip algorithms and distributed compression schemes. In Section II, we formally describe selective

gossip in detail and in Section III we prove that selective gossip converges. In Section IV we describe

how selective gossip can be used for distributed transform coding, and in Section V we illustrate the

performance of selective gossip for a field estimation application. Section VI proposes a variant of selective

gossip which eliminates the requirement of a fixed threshold. Finally in Section VII we conclude with

remarks and future work.

A. Background and Related Work

Distributed consensus, which was first discussed in the seminal work of Tsitsiklis [2], has been identified

as a canonical problem in distributed signal processing and control (see, e.g., [3], [4] for surveys). A

subproblem in the distributed consensus framework is called average consensus. For a network of n

nodes and each node having a scalar value yi, the goal of average consensus is to compute the average

ȳ = 1
n

∑n
i=1 yi at all nodes. The problem formulation is simple yet the solution of this problem is

powerful as it can be easily modified to compute any linear function of the network data. Consequently,

consensus algorithms have been used in many applications ranging from decentralized compression [5]

to localization in sensor networks [6].

Gossip algorithms solve the average consensus problem asymptotically through local information

exchanges between neighboring nodes. Randomized gossip is described and analyzed in [7]. At every

iteration of randomized gossip, one of the nodes in the network wakes up uniformly at random. This

node randomly chooses one of its neighbors, they exchange values, and both nodes take as their new

approximation the average of the values they exchanged. Note that the global average is preserved

through iterations. Under very mild conditions on how the neighbor is selected, it can be shown that

the values of each node converges to the global average. Recently, several variants of randomized gossip

which accelerate the speed of convergence, i.e., reduce the number of required transmissions to reach

consensus, have been proposed [8]–[12].

We illustrate the utility of selective gossip in a distributed field estimation application. A compressive

sensing-based method of field estimation is presented in [5] where random projections of network data

are computed and disseminated across the network using randomized gossip. Wang et al. [13] propose
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a distributed algorithm for computing sparse random projections of data. These two approaches are

useful for exploratory data analysis but are inefficient when one has available a linear transformation

that sparsifies the data. There are also methods using lifted wavelets such as [14] and [15]. Both of

these methods require forming specialized routes and work well in static topologies and under reliable

wireless networking conditions. However, in the case of time-varying topologies or unreliable wireless

links, establishing and maintaining routes will require many transmissions and may cause long delays.

Wuhib et al. [16] present a gossip based protocol for detecting global threshold crossings in decentral-

ized real-time monitoring of IP networks. Similar to selective gossip, this algorithm employs a threshold

but it is synchronous, their goal is to raise alerts when a global average of network variable is above the

threshold (not to accurately compute significant components of a vector), and they assume that all initial

values are positive. The study of gossip-like mechanisms is also of interest to sociophysicists who, e.g.,

develop and study models of opinion dynamics over networks of individuals; see [17] for a recent survey

and [18] for related analytical results. Deffuant et al. [19] propose an asynchronous model where each

individual has a continuous opinion and meets other individuals randomly. When two individuals meet

and their opinions are close enough, they both perform a gossip-like update; otherwise their opinions

remain unchanged. This system models social influence as individuals with similar opinions tend to agree.

Although this model seems similar to selective gossip, there are a number of important differences. For

example, the objective of selective gossip is to reach a form of consensus across the network, whereas

opinion dynamics models often exhibit clustering behavior where different subpopulations converge to

different opinions.

This paper builds on preliminary work presented in our conference paper [1]. In particular, the novel

contributions of this manuscript include a refined and more detailed proof of convergence, a comparison

with the decentralized compression scheme of [5], an evaluation on real sensor data from two deployments,

and a decentralized mechanism for adaptive estimation of the selective gossip threshold.

II. PROBLEM FORMULATION AND ALGORITHM

We consider a network of n nodes and represent the network connectivity with a graph G = (V, E).

The vertices, V = {1, . . . , n} are the nodes, and the edges E ⊂ V × V represent direct communication

links between two nodes. We assume that the network is connected and the links are symmetric. Each

node i ∈ {1, . . . , n} in the network has an initial vector, yi ∈ Rm. Let ȳ = 1
n

∑n
i=1 yi. Given a threshold
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τ > 0, our goal is to compute an approximation ỹ of ȳ at every node, where

ỹj =

 ȳj if |ȳj | ≥ τ,

0 if |ȳj | < τ,
(1)

and ȳj is the jth component of ȳ. We refer to the components j for which |ȳj | ≥ τ as significant and

all other components as insignificant.

In order to perform this computation, each node maintains a local approximation xi(k) of ỹ, and

the approximations are updated iteratively with iterations indexed by k. For j ∈ {1, . . . ,m}, let yi,j

denote the jth component of yi. Node i initializes the jth component of its local approximation to

xi,j(0) = yi,j . At the kth iteration, a node s is chosen uniformly at random from {1, . . . , n} (this can be

implemented using the asynchronous time model described in [20]), and s randomly selects a neighbor

t ∈ Ns uniformly at random, where Ns = {v : (s, v) ∈ E} is the set of neighbors of s in G. Then s and

t gossip only on the significant entries of their approximations; i.e., they update components j for which

either |xs,j(k − 1)| ≥ τ or |xt,j(k − 1)| ≥ τ by setting

xs,j(k) = xt,j(k) =
1

2

(
xs,j(k − 1) + xt,j(k − 1)

)
. (2)

No change is made to a component j when both |xs,j(k−1)| < τ and |xt,j(k−1)| < τ , and these values

are not transmitted, with the aim of saving energy. In particular, when |xi,j(k−1)| < τ , node i considers

component j to be insignificant and can later force it to zero when forming its final local approximation

to ỹ.

The pseudo-code to simulate selective gossip is given in Algorithm 1. Note that variable Kmax is the

user defined maximum number of iterations. The pseudo-code presented is referred to as a simulation of

selective gossip since the implementation in practice is a bit different, although entirely equivalent. In

particular the gossip update (lines 5-13) can be accomplished with three transmissions. First, node s sends

to node t the values and indices of its significant components. Then, t transmits the indices and values

of its significant components. At this point, s has the values for both nodes’ significant components, but

t does not have the values at s for the components that are significant only at t. To address this, node s

makes another transmission with these values and that completes the gossip update.

III. CONVERGENCE OF SELECTIVE GOSSIP

In this section we study the convergence of selective gossip. First, we prove that selective gossip

asymptotically converges to the correct values for significant components. Since there is no coupling

between the different components of the vector ỹ, we treat each component individually and focus on
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Algorithm 1 : Selective Gossip
1: Initialize {xi(0)}i∈V ← yi, threshold τ

2: for k = 1, . . . ,Kmax do

3: Select s uniformly at random from V

4: Select t uniformly at random from Ns
5: for j = 1, . . . ,m do

6: if (|xs,j(k − 1)| ≥ τ or |xt,j(k − 1)| ≥ τ ) then

7: xs,j(k)← 1
2

(
xs,j(k − 1) + xt,j(k − 1)

)
8: xt,j(k)← 1

2

(
xs,j(k − 1) + xt,j(k − 1)

)
9: else

10: xs,j(k)← xs,j(k − 1)

11: xt,j(k)← xt,j(k − 1)

12: end if

13: end for

14: for all i ∈ V \ {s, t} do

15: xi(k)← xi(k − 1)

16: end for

17: end for

18: return xi(Kmax) for all i ∈ V

analyzing the behavior of the algorithm for a single scalar component. Without loss of generality, let

xi(0) denote the initial value for this component at node i, let x̄ denote the average, and let τ > 0 be the

given threshold. It is well known that, under the assumptions stated above, randomized gossip converges

asymptotically to the average consensus [7]. Selective gossip differs from randomized gossip in that, at

some iterations, two nodes may choose not to gossip about a particular component, so it will not be

updated. Thus, intuitively, to show convergence when x̄ ≥ τ (resp., −x̄ ≤ τ ) we just need to show that

nodes gossip sufficiently often so that eventually they all have xi(k) ≥ τ (resp., −xi(k) ≤ τ ); at that

point selective gossip is identical to randomized gossip.

To make this argument rigorous we define a potential function, S(k) =
∑n

i=1(xi(k) − x̄)2, and

demonstrate that it is strictly decreasing in expectation. First we introduce some notation. Let

B(k) = {v ∈ V : |xv(k)| < τ and |xu(k)| < τ for all u ∈ Nv}
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denote the set of nodes which will not gossip at iteration k, and let Ṽ(k) = V \ B(k) be the set of

nodes which have non-zero probability of gossiping at iteration k. Finally, let G̃(k) =
(
Ṽ(k), Ẽ(k)

)
be

the subgraph of G induced by Ṽ(k). Our convergence proofs will make use of the following lemma.

Lemma 1: Let ∆max = maxi |Ni| be the maximum degree of G. Let (a, b) ∈ Ẽ(k) be a pair of

neighboring nodes which has non-zero probability of gossiping at iteration k. Then,

E[S(k + 1)|S(k)] ≤ S(k)− 1

n∆max

(
xa(k)− xb(k)

)2
. (3)

Proof: From the definition of the potential function, S(k), and of the gossip update (2), it follows

that if nodes s and t decide to gossip at iteration k+ 1, then S(k+ 1) = S(k)− 1
2

(
xs(k)− xt(k)

)2, and

so S(k+ 1) ≤ S(k) with probability 1. Taking the expectation over the random pair of nodes (s, t) ∈ E

drawn at iteration k, we have

E[S(k + 1)|S(k)] =
∑
s∈V

∑
t∈Ns

1

n|Ns|

(
S(k)− 1

2

(
xs(k)− xt(k)

)2
1{(s,t)∈Ẽ(k)}

)
(4)

= S(k)− 1

2

∑
(s,t)∈Ẽ(k)

(
1

n|Ns|
+

1

n|Nt|

)
(xs(k)− xt(k))2 (5)

≤ S(k)− 1

n∆max

(
xa(k)− xb(k)

)2
, (6)

where the indicator in the first line enforces the constraint that nodes s and t only gossip (and thus

decrease the potential function) if neither one is in B(k). Note that, every edge (u, v) ∈ Ẽ(k) contributes

twice to the double sum in the first line, once with s = u and once with s = v. The inequality follows

since |Ni| ≤ ∆max for all nodes i, and we only count the expected decrease in potential due to the

particular pair (a, b) ∈ Ẽ(k) gossiping.

We are now ready to state our result for the convergence of significant components.

Theorem 1: Let S(k) be defined as above and suppose |x̄| ≥ τ . Then

E[S(k)|S(0)] ≤
(

1− 1

n4diam(G)2∆max

)k
S(0), (7)

where diam(G) is the diameter of the graph.

Proof: We assume that S(k) > 0 (otherwise consensus has been attained). We will show that there

exists a pair of neighboring nodes (a, b) ∈ Ẽ(k) for which (xa(k)−xb(k))2 > S(k)/(n3diam(G)2). Then

we will apply Lemma 1 and find that at every iteration we decrease the potential function by at least

S(k)/(n4diam(G)2∆max) in expectation. In the rest of the proof, we consider the case x̄ ≥ τ (the case

x̄ ≤ −τ is analogous).
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To begin, we claim that there exists a node a with xa(k) ≥ x̄+ 1
n

√
S(k)
n . To see this, observe that there

exists a node i for which (xi(k)−x̄)2 ≥ S(k)/n; otherwise, we get the contradiction
∑n

i=1(xi(k)−x̄)2 <

S(k). If xi(k) > x̄ then xi(k) ≥ x̄ +
√
S(k)/n and we take i to be the node a we are looking for. If

xi(k) < x̄, then xi(k) ≤ x̄−
√
S(k)/n. Note that∑

j 6=i
xj(k) = nx̄− xi(k) = (n− 1)x̄+ x̄− xi(k),

and therefore
∑

j 6=i xj(k) ≥ (n− 1)x̄+
√
S(k)/n. This implies that there exists a node a such that

xa(k) ≥ 1

n− 1

(
(n− 1)x̄+

√
S(k)

n

)
≥ x̄+

1

n

√
S(k)

n
.

Now, define H = {h ∈ V : xh(k) < x̄} and note that H is non-empty since S(k) > 0. Recall that

xa(k) > x̄, and let a = a1, a2, . . . , ar = h be a shortest path in G from a to H such that h ∈ H and

a` /∈ H for all ` < r. Since xa(k) ≥ x̄+ 1
n

√
S(k)
n and xh(k) < x̄ it follows that there is at least one step

(a`, a`+1) along this path for which

|xa`
(k)− xa`+1

(k)| ≥ 1

rn

√
S(k)

n
.

Moreover, observe that each node a` ∈ Ṽ(k) for all ` = 1, . . . , r either considers the coefficient to be

significant (` = 1, . . . , r − 1) or it has a neighbor who considers the coefficient to be significant (r has

neighbor r − 1), and thus (a`, a`+1) ∈ Ẽ(k). Since r ≤ diam(G), it follows from Lemma 1 that

E[S(k + 1)|S(k)] ≤ S(k)− S(k)

n4diam(G)2∆max

=

(
1− 1

n4diam(G)2∆max

)
S(k),

and recursing back to 0 from iteration k leads to the claim.

Theorem 1 shows that when a component is significant, selective gossip will always compute the

correct value in expectation. Standard arguments [7] based on Markov’s inequality can be applied to this

result to show convergence in probability.

Next, we consider insignificant components for the special case of the complete graph1. First, observe

that once all nodes believe a component is insignificant, all gossiping on that component will cease; i.e.,

if Ṽ(k) = ∅, then Ṽ(t) = ∅ for all t ≥ k. Thus, for insignificant components, with |x̄| < τ , we simply aim

to show that the approximations xi(k) at every node eventually fall below the threshold τ in magnitude.

1Recall that the complete graph, denoted Kn, on n nodes is the one where all pairs of nodes are connected with an edge.
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Theorem 2: Let G = Kn be the complete graph. Suppose that |x̄| < τ and τ−|x̄| = c > 0. If S(0) > 0

and |Ṽ(0)| > 0, then

Pr
(
Ṽ(k) 6= ∅

)
≤ n(n− 1)

(k + 1)c2
S(0). (8)

Thus, Pr( ˜V (k) = ∅)→ 1 as k →∞.

Proof: First, for any iteration k with |Ṽ(k)| > 0, there exists a node a ∈ Ṽ(k) such that |xa(k)| ≥ τ ,

and thus
(
xa(k)−x̄

)2 ≥ c2. Also, since gossip iterations preserve the average, we have x̄ = 1
n

∑n
i=1 xi(k),

and so there must be a node b for which |xa(k)− xb(k)| ≥ |xa(k)− x̄| ≥ c. Furthermore, (a, b) ∈ Ẽ(k)

due to our assumption that G = Kn is the complete graph. Let T (k) be the indicator function for this

event, i.e. T (k) = 1{Ṽ(k)6=∅}. Therefore, by Lemma 1, and since ∆max = n− 1 for the complete graph,

E[S(k + 1)|S(k), T (k)] ≤ S(k)− c2

n(n− 1)
T (k). (9)

We take expectation of this equation to get

E
[
E[S(k + 1)|S(k), T (k)]

]
= E[S(k + 1)]

≤ E
[
S(k)− c2

n(n− 1)
T (k)

]
= E[S(k)]− c2

n(n− 1)
E[T (k)].

Recursing back to 0 yields

E[S(k + 1)] ≤ S(0)−
k∑
j=0

c2

n(n− 1)
E[T (j)]

≤ S(0)− (k + 1)c2

n(n− 1)
E[T (k)],

where the second inequality follows since E[T (k)] decays monotonically as k increases. By assumption,

we have S(0) > 0 and |Ṽ(0)| > 0. If, after k iterations, |Ṽ(k)| > 0, then S(0) − (k+1)c2

n(n−1)E[T (k)] ≥ 0.

This implies

E[T (k)] ≤ n(n− 1)

(k + 1)c2
S(0),

which is equivalent to the claim of the theorem.

Theorem 2 addresses the case where |x̄| < τ only for the complete graph. This approach does not

directly extend to general connected topologies. In particular, in the proof of Theorem 2, one cannot

guarantee that the nodes a and b will be neighbors in a general topology. However, we conjecture that

the theorem can be extended to connected topologies by examining a chain of nodes from a to b and

ensuring that S(k) decreases substantially after a sufficient number of iterations.
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It is also worth noting that the bounds given in Lemma 1 and Theorems 1 and 2 are extremely loose

since we only consider the gossiping of one pair of nodes instead of all pairs in Ẽ(k), and hence these

bounds should not be taken as an indicator of the rate of convergence. In fact, it is easy to see that once

all nodes agree the component is significant, selective gossip behaves identically to randomized gossip,

and so asymptotically the rates of convergence are the same as reported in [7] for randomized gossip. As

illustrated in the simulations presented below, when some components are insignificant, the error decay

rate of selective gossip, as a function of the number of scalar values transmitted, is in fact substantially

faster than running randomized gossip in parallel for all components.

IV. DECENTRALIZED COMPRESSION AND FIELD ESTIMATION

This section illustrates the use of selective gossip in a distributed field estimation application. We

assume that node i locally measures a value fi ∈ R, and, stacking the signal components into a vector

f ∈ Rn, our goal is to compute an accurate estimate of f at every node, where the accuracy of an estimate

f̃ is measured via mean squared error ‖f − f̃‖22/n.

Transform coding is based on the idea that many natural signals are sparse or compressible under a

suitable linear transformation (see, e.g., [21]). That is, although all signal components fi may contain

non-negligible energy, under a suitable linear transformation, the energy of the signal concentrates in just

a few transform coefficients. Let the collection of vectors Ψ = {ψj}nj=1 denote an orthonormal basis for

Rn. Then we can expand the signal f in terms of this basis by writing f =
∑n

j=1 βjψj , where

βj = fTψj =

n∑
i=1

fiψj,i, (10)

are transform coefficients. Sorting the coefficients in descending order of magnitude,

|β(1)| ≥ |β(2)| ≥ · · · ≥ |β(n)|, (11)

and arranging the basis vectors in corresponding order (so that β(j) = fTψ(j)), the m-term non-linear

approximation of f in the basis Ψ approximates f using the m transform coefficients with largest

magnitude, and can be written as

f̃ (m) =

m∑
j=1

β(j)ψ(j). (12)

It is common to say that the signal f is sparse under the basis Ψ if f̃ (m) = f for m ≥ k for some constant

0 < k < n (i.e., only k of the transform coefficients are non-zero). Similarly, one typically says that f
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is compressed under Ψ if the mean-squared error decays according to a power-law in the number m of

transform coefficients used in the approximation,

1

n
‖f − f̃ (m)‖22 ≤ Cm−2α, (13)

for constants C > 0 and α ≥ 1. The m-term approximation lies at the heart of the field of nonlinear

approximation [22]. Effective compression via transform coding (i.e., sparse approximation with k � n

or compression with α � 1) depends strongly on the class of signals from which f is drawn, and the

basis Ψ employed. In this work, we assume that a suitable transform has been identified, and we focus

on efficient decentralized computation of the m-term approximation; we believe that studying appropriate

signal classes of signals, and the corresponding transforms, for network data is an important open problem

for future work.

When a signal is sparse or compressible under a linear transform, it is possible to obtain a high-fidelity

approximation of f by recording the locations and magnitudes of the significant or large-magnitude

coefficients. Since each transform coefficient is a linear function of the network signal, f , the transform

coefficients could be computed directly by executing n gossip algorithms in parallel (one for each

coefficient); then the sorting operation (11) could be carried out locally to obtain the m coefficients

with largest-magnitude. Of course, this is highly inefficient if m� n, since gossip transmissions would

be used to compute values which are later discarded, and it is desirable to directly compute the m

largest coefficients. The challenge here is that the locations (i.e., indices) of the m largest coefficients

are signal-dependent and are generally not know a priori.

Instead, selective gossip can be used as a decentralized algorithm to adaptively and efficiently compute

the m coefficients with largest magnitude. We assume that node i has access to its local measurement,

fi, as well as the ith coordinate of each basis vector, {ψj,i}nj=1. To initialize selective gossip, node i

sets its jth initial component to xi,j(0) = nfiψj,i. Then, for fixed τ > 0, those coefficients for which

|βj | ≥ τ will be computed asymptotically at every node; also, all nodes will agree on which coefficients

have magnitude |βj | < τ below the threshold, and should thus be omitted from the approximation. Note

that setting the selective gossip threshold τ between the magnitudes of the mth and (m + 1)st largest

transform coefficients (i.e., |β(m)| > τ ≥ |β(m+1)|) will lead to computation of the m-term approximation.

In the description of selective gossip above, we assumed that a threshold τ > 0 was specified in advance.

Setting the threshold correctly to obtain an m-term approximation for desired m without knowing the

distribution coefficient magnitudes is impractical. We will return to this issue in Section VI, where we

describe a scheme for adapting the threshold τ online in order to compute a m-term approximation.
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Fig. 1. Original, sensed and approximated field values as color image. For the approximations, threshold value is τ = 0.25.

V. SIMULATION RESULTS

In this section we illustrate the performance of the selective gossip algorithm via simulations. We first

consider a grid topology, and using the analogy to images, perform a wavelet transform to estimate a

field. Second, we compare the performance of selective gossip to the compressive sensing-based algorithm

described in [5]. Third, we use two datasets to show the performance of selective gossip on real data. The

topologies are not regular for these datasets hence we use a different transform basis for compression of

data. Throughout this section, we count the number of scalar values transmitted as our performance metric

instead of the number of gossip iterations. The reason is that the amount of energy expended at each

iteration is directly proportional to the number of scalar values transmitted. In a practical implementation,

each packet will only be able to carry a small number of coefficients (e.g., the recommended payload for

802.15.4 packets is only 28 bytes), and so large vectors will need to be transmitted as multiple packets.

Reducing the number of values transmitted will reduce the total number of packets, and may also shorten

the length of the final packet transmitted.

A. Synthetic data

The field to be estimated is a 128× 128 discrete sampling of a piecewise smooth field with additive

Gaussian noise, N (0, σ2). Figure 1(a) shows this field as a color image. 256 sensor nodes are arranged
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with network connectivity forming a 16 × 16 grid. Figure 1(b) is an image generated from the noisy

sensor measurements. We use a three-level Haar wavelet basis as the linear transform. Selective gossip

is repeated 25 times with different random seeds and the results presented here illustrate the average

performance.

Figures 1(c-d) illustrate the results of approximation. For Figure 1(c) the approximations are obtained

using the centralized wavelet transform (assuming all the data was gathered at a single location) to

compute coefficients and then insignificant coefficients are discarded. Figure 1(d) shows the results of

using selective gossip to approximate significant wavelet coefficients. The approximation error is the mean

squared error, 1
n

∑n
i=1 ‖f̃ i − f‖2, where f is the vector of sensor measurements and f̃ i is the reconstructed

field using only significant coefficients pproximated by node i. Centralized approximation uses 16.4%

of the coefficients to reach the MSE value of 1.002. Selective gossip provides the same MSE value

with transmitting 18.3% of scalar values on average where 100% corresponds to transmission of every

coefficient approximation, i.e., τ = 0.

Varying τ changes the approximation quality. Figure 2 plots mean squared error versus number of

gossiped coefficients for different values of the threshold, τ . First, Figure 2(a) accounts errors due to

both approximation (thresholding coefficients) and gossip, 1
n

∑n
i=1 ‖β̃i − β‖2, where β = ΦT f is the

vector of true wavelet coefficients and β̃i is the vector of approximated coefficients at node i. The

selective gossip curves level off when gossip has effectively converged, and all remaining error is only

due to approximation. Figure 2(b) shows the error due to gossip only, 1
n

∑n
i=1 ‖β̃i− β̃‖2 where β̃ is the

thresholded version of β, as if computed in a centralized fashion, and β̃i is the gossip approximation of

β̃ at node i. The error is calculated using thresholded coefficients instead of true coefficients hence error

due to approximation is ignored. As expected, higher values of τ result in higher approximation error,

but with fewer transmitted values.

In Figure 3, we plot the mean squared error due to approximation and gossip versus number of

gossip iterations instead of number of scalar values transmitted. We observe that selective gossip requires

more iterations to get to a particular MSE value compared to running randomized gossip sessions in

parallel, since nodes running selective gossip sometimes do not update significant coefficients. This

figure illustrates the trade off between energy-savings and latency which selective gossip provides; that is,

selective gossip saves energy by not transmitting insignificant coefficients, but this results in an increased

delay in computation since it takes some iterations to determine which coefficients are significant and

insignificant.

Figure 4 illustrates how the threshold τ influences the number of transmissions invested per coefficient,
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(a) Mean squared error due to approximation and gossip
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(b) Mean squared error due to gossip

Fig. 2. A comparison of different values of threshold, τ . Results are averaged over 25 runs of the algorithm.

0 2 4 6 8 10 12 14 16 18

x 10
4

10
0

10
1

10
2

10
3

10
4

iterations

M
S

E

 

 

τ=0
τ=0.25
τ=0.6

Fig. 3. Mean squared error due to approximation and gossip vs number of gossip iterations, for different values of threshold,

τ . Results are averaged over 25 runs of the algorithm.

for significant and insignificant coefficients. The top panel shows the original wavelet coefficients in

absolute value, sorted in descending order. The panel below shows the number of scalar values transmitted

for each coefficient, where the order of indexing is the same as the sorting above. The two curves shown

on the bottom panel correspond to two different thresholds, τ = 0.25 and 0.6. To obtain these curves, we

count the number of scalar values transmitted for each coefficient until all nodes agree on the significance

or insignificance of that coefficient, namely until the time that the network has finished the selection of

this coefficient. If it is an insignificant coefficient, then the selection corresponds to the time when

all nodes stop gossiping on this coefficient. On the other hand, if all nodes agree that a coefficient is
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Fig. 4. Coefficients and corresponding energy requirements. Top: original wavelet coefficients shown with the threshold levels.

Bottom: For two values of threshold, number of scalar values transmitted for selection of each coefficient.
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Fig. 5. A comparison of selective gossip and decentralized compression–predistribution. Left panel: Mean squared error versus

number of scalar values transmitted. Right panel: Original, sensed fields and approximated fields by decentralized compression

and selective gossip.

significant, then they continue gossiping on it until the maximum number of iterations is reached. We

observe that selective gossip automatically determines which coefficients are insignificant, and spends a

minimal number of transmissions on these coefficients.

B. Comparison with decentralized compression and predistribution

We compare the performance of selective gossip to the performance of the decentralized compression

and predistribution via randomized gossiping [5]. Both of these algorithms utilize randomized gossip to

compute sparse approximations of data over a network. The compressed sensing approach of [5] uses
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randomized gossip to compute and distribute random projections of the network data. As projections

are random, it is not required to identify a sparsifying basis selection prior to the distribution of the

projections. In this approach, the computational complexity is pushed to the end user, i.e., the end user

needs to know the basis in which the original signal is compressible in order to solve a minimization

problem for the reconstruction of the signal. On the other hand, selective gossip requires each node to

know one row of the transform matrix prior to executing selective gossip iterations.

The comparison of the two algorithms is carried out using the simulation setting of Section V-A. We

investigate the necessary amount of communication for these two algorithms to reach the same MSE

value. Gossip is run 25 times for each of the algorithms and the results presented here show the average

performance. To reach the same MSE value, we choose a threshold value of τ = 0.25 for selective gossip

and the number of random projections is chosen as 195 for decentralized compression. Figure 5 illustrates

that selective gossip is more efficient than decentralized compression in terms of number of scalar values

transmitted. Note that the sparsity of the reconstructed signals are not same for the two algorithms.

Selective gossip yields an approximation which has 16.4% nonzero elements, whereas decentralized

compression reaches the same error value with a less sparse result of 57.8% nonzero elements.

C. Real sensor network data and general topologies

In this section we investigate the performance of selective gossip on irregular topologies. For regular

topologies such as chains or grids we can adopt bases typically used in signal and image processing

applications. For general graphs however we need bases adapted to the network topology. One of the

transforms for irregular sampled signals is diffusion wavelets [23] which provides multiscale analysis on

graphs and manifolds. However this method is proposed for systems with large number of nodes and

does not apply to the datasets we work on. Here we use the eigenvectors of the graph Laplacian which

provides an orthonormal basis for signals supported on the graph. The graph Laplacian matrix L for the

graph G = (V, E) is defined as follows, [24],

Lij =


−1 if (i, j) ∈ E

deg(i) if i = j

0 otherwise,

(14)

where deg(i) is the degree of vertex i, i.e., the number of its neighbors. Decentralized computation of

eigenvectors of L can be carried out using, e.g., the scheme of [25].
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Fig. 6. Network topology, formed based on the distances between the sensors of the Intel Lab data set. The temperature

measurements at nodes are indicated with the color coding.

First we used selective gossip on the Intel Lab dataset [26]. In this dataset, 53 sensors are spread in

the Intel lab, and they gather measurements of humidity, temperature, light and voltage values once every

31 seconds. We chose to do averaging over temperature measurements (in degrees Celsius). At a single

time instant not all nodes have measurements, hence we selected a time interval in which each node has

a measurement. Note that the time interval is short enough so that temperature values are nearly constant

at all nodes. We took the mean of temperature measurements over this interval at every node and use that

as temperature value input to selective gossip. Furthermore, instead of using the network connectivity

given in the dataset, we formed a topology based on the distance between sensors such that nodes close

to each other are connected. The reason is that nodes which are geographically close to each other are

more likely to have similar measurements and hence the signal is smooth on the graph. The constructed

graph topology is shown in Figure 6. This figure also shows the temperature readings that are chosen as

gossip values.

The network topology of the Intel Lab dataset is not regular and so we cannot use the basis we have

previously used for grid topology. Since the temperature is likely a smooth function it can be represented

accurately (i.e., sparsely) in a Laplacian eigenvector basis. Hence we construct an orthonormal basis using

the eigenvectors of the graph Laplacian and provide simulation results for selective gossip. Figure 7 shows

that the basis that we have chosen is actually sparsifiying the data, and with a threshold of τ = 1.25

only 5 coefficients are significant out of a total of 53. The simulation is repeated 50 times with different

random seeds and Figure 8 illustrates the average result over 50 runs for the reconstructed measurements.

Here worst case reconstruction means that we use the transform coding coefficients of the node with the
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Fig. 7. Transform coefficients for Intel Lab data using the basis constructed from the eigenvectors of the graph Laplacian

shown with the threshold value τ = 1.25.
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(b) Worst case reconstructed measurements

Fig. 8. Comparison of original and worst case reconstructed temperature measurements from Intel Lab data for selective gossip,

threshold value τ = 1.25.

highest reconstruction error. Observe that even the worst case reconstructed signal which is shown in

Figure 8(b) is a good approximation of the original signal shown in Figure 6. Furthermore, we chose more

time intervals in the Intel Lab dataset to see the performance over the average of these time intervals.

Figure 9 illustrates the MSE performance averaged for 20 time intervals and 50 runs for each interval.

Selective gossip is faster compared to running randomized gossip sessions in parallel which is equivalent

to having τ = 0.

Next, we investigate the performance of selective gossip on data from California Irrigation Management
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Fig. 9. A comparison of selective gossip and randomized gossip for Intel Lab data, averaged over 20 different time intervals

and 50 runs of the algorithm per interval.

Information System (CIMIS) [27]. This dataset is generated by more than 100 automated weather stations

in the state of California. The weather stations are equipped with sensors which measure solar radiation,

temperature and wind speed every hour. We used the air temperature readings for 24 hours, where each

hour corresponds to a time instant in the dataset, to illustrate the field estimation of selective gossip.

The signal that we use is measured by 121 sensors. In the original setting of CIMIS, the sensors send the

measurements to a fusion center. Here since we have a distributed scheme we assume a communication

network of the sensors. As we have done for Intel Lab dataset, we form a topology by connecting nodes

which are close to each other. The resulting network is shown in Figure 10. The signal we first consider

is the temperature readings of one hour and is shown with color coding on the topology. Note that the

temperature readings of the CIMIS dataset have a much greater dynamic range than Intel Lab dataset

temperature values.

Since the topology of the CIMIS network is not regular, again we construct an orthonormal basis from

the eigenvectors of the graph Laplacian. Figure 11 shows the resulting transform coefficients as well as

the threshold value. We observe that this basis is successful at sparsifiying the CIMIS signal and with

the threshold of τ = 5, only 10 coefficients are significant from a total of 121. In Figure 12, we show

the original and reconstructed measurements after simulating 50 runs of selective gossip. Again, worst

case reconstruction means that we use the transform coding coefficients from the node with the highest

reconstruction error. We can also observe the approximation quality by comparing the original signal in

Figure 10 to the worst case reconstruction result in Figure 12(b). Figure 13 illustrates the gain of using

selective gossip to distribute an approximation of the data instead of running parallel randomized gossip
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Fig. 10. Network topology, constructed based on the sensor distances of the CIMIS data set. The temperature measurements

at nodes are indicated with the color coding.
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Fig. 11. Transform coefficients for CIMIS data using the basis constructed from the eigenvectors of the graph Laplacian and

the threshold value τ = 5.

sessions for the whole data. The result shows the performance averaged for 24 hours and 25 runs per

hour.

The results obtained for the Intel Lab and the CIMIS datasets are similar for selective gossip although

the two topologies are very different from each other as shown in Figures 6 and 10. We can conclude that

the choice of basis is successful for these two topologies and the temperature measurements. Furthermore,

the performance of selective gossip compared to randomized gossip is better in terms of the number of

scalar values transmitted, i.e., the energy spent for the estimation of the field.

Note that, throughout this section, we only considered static networks with lossless links. This helped

November 13, 2010 DRAFT



21

0 20 40 60 80 100 120
0

5

10

15

20

25

sensor index, sorted

te
m

pe
ra

tu
re

 

 
original
worst case reconstructed

(a) Original and worst case reconstructed measurements
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(b) Worst case reconstructed measurements

Fig. 12. Comparison of original and worst case reconstructed temperature measurements from CIMIS data for selective gossip,

threshold value τ = 5.
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Fig. 13. A comparison of selective gossip and randomized gossip for CIMIS data, averaged over 24 hours and 25 runs of the

algorithm per hour.

us illustrate the performance of selective gossip in a controlled environment. However we know that

gossip algorithms in general are robust to changing topologies and unreliable networking conditions, as

they only depend local information exchanges and routing is not required. Hence, the results presented

here can be shown for more general scenarios.

VI. ADAPTIVE THRESHOLD MECHANISM

Until now, we used a fixed preset threshold, τ , to determine the significance of the transform coefficients

that are computed by gossip. However in a sensor network setting having a fixed threshold is not practical
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as we do not have accurate prior knowledge of coefficient distribution. In this section we describe an

adaptive threshold mechanism. Nodes find the appropriate threshold in a decentralized way, without any

dependence on the signal or the transform that is used.

Instead of setting a threshold value before aggregating the network data, we would like to have the

nodes reach consensus on a preset approximation level. The preset approximation level can be defined

by specifying the number of terms m to use in a best m-term approximation so that the quality of

approximation is chosen by the user, regardless of the signal to be approximated and the transform

basis. Note that the selective gossip algorithm described above does not directly compute an m-term

approximation. One could imagine modifying the algorithm so that, rather than gossiping on components

with magnitude greater than τ , nodes gossip on the union of their m coefficients with largest magnitude.

However, for this modification, there will be cases where the algorithm will no longer produce the correct

result. For example, it can happen that a particular coefficient is significant, but the initial values |xi(0)|

are small at all nodes, in which case the network will never gossip on this component, and all nodes will

wrongly consider it insignificant.

Unlike the original selective gossip algorithm which has a pre-defined and fixed threshold which is

identical at every node, in the proposed decentralized adaptive mechanism every node keeps an estimate

of the threshold as well as the approximations of the coefficients. Initially, the threshold at each node

is set to some high value and the goal is to reach the desired best m-term approximation level at every

node by adaptively modifying this threshold. During selective gossip iterations, each node checks its

approximation quality. If its current threshold value provides fewer than m significant coefficients, the

node decreases the threshold value. If the node has more than m significant coefficients, the threshold

value is increased at that node. Otherwise, if the node approximation is already at m then the threshold

remains unchanged.

Formally, each node i has a threshold estimate τi(k) at time k. Let Ti(k) be the number of significant

coefficients of node i at time k, i.e. Ti(k) =
∑n

j=1 1{|xij(k)|≥τi(k)}. The initialization of threshold estimates

insures that every node has one significant coefficient at time k = 0: τi(0) = maxj xij(0). Then nodes

update their threshold according to the following rule

τi(k + 1) =


(1 + c1)τi(k) Ti(k) > m

(1− c2)τi(k) Ti(k) < m

τi(k) Ti(k) = m

(15)

where c1, c2 > 0 are some constants. Note that we choose c1 6= c2 as having c1 = c2 cause oscillations
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Fig. 14. Left panel: A comparison of selective gossip with centralized constant threshold value of τ = 0.25 and decentralized

adaptive threshold mechanism with best m = 18 terms. Averaged over 25 runs of the algorithm. Right panel: Evolution for one

run of the algorithm. Top: Number of significant coefficients at every node, plotted on top of each other. Bottom: Threshold τ

over the iterations, at every node, plotted on top of each other.

in the threshold estimates.

We now compare the clairvoyant threshold mechanism (constant, preset τ ) to the proposed adaptive

mechanism through simulations. The simulation is performed for the same field as in Section V-A which

is now sensed by 64 nodes over a 8×8 grid. The linear transform that is used is the 2-level Haar wavelet

transform. The simulation is run 25 times with different random seeds. Figure 14(a) illustrates the decrease

in mean squared error as gossip iterations are performed for the centralized case with τ = 0.25 and for the

decentralized adaptive case with m = 18. Note that for this signal, taking only the highest 18 coefficients

is practically same as thresholding at τ = 0.25. The constants are chosen as c1 = 0.025 and c2 = 0.05.

The left panel of Figure 14 illustrates that the decentralized algorithm yields nearly the same MSE

values as the clairvoyant algorithm with τ = 0.25. The right panel of Figure 14 shows the behavior of

the estimated values at nodes for number of significant coefficients and threshold estimates over time. All

nodes converge to the required best 18-term approximation level, and even though the initial threshold

values are very high and vary among nodes, every node is still able to converge to the desired threshold

eventually.

VII. DISCUSSION

In this paper we describe selective gossip, an algorithm for decentralized sparse approximation. Selec-

tive gossip is aimed at computing a vector of data, where some components of the vector are insignificant
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and do not need to be computed exactly, but the locations of these components are not known in advance.

Instead, selective gossip adaptively determines which components are significant while the computation is

being carried out, and automatically adjusts where transmissions are invested in order to efficiently obtain

a good approximation. We prove that the algorithm converges. We provide simulation results comparing

selective gossip to parallel randomized gossip on elements of a vector and decentralized compression.

We observe that selective gossip requires fewer scalar values to be transmitted while achieving same

error value. Furthermore, we provide a decentralized adaptive threshold mechanism which removes the

requirement for a fixed threshold. Selective gossip in conjunction with the adaptive threshold mechanism

provides best m-term approximations of network data.

The future work includes investigating the rates of convergence for selective gossip. In an abstract

level, the rates of convergence can be associated with the study of voter models from interacting particle

systems [28]. In the voter model each node has binary value, i.e. vote. A node chooses a random neighbor

with some probability and adopts the state of this neighbor. Hence the significance of component values

in selective gossip can be seen as the votes in the voter model. For finite graphs, the authors of [29] show

that the convergence time of voter model process is related to the hitting times of the random walks on

the graph. Using analogy from this theory, the convergence of selective gossip can be related to hitting

times.

The current version of selective gossip is implemented using standard, pair-wise randomized gossip as

a building block. In order to further improve the rates of convergence we will investigate implementing

selective gossip with the synchronous distributed averaging algorithm of [30]. This algorithm provides

faster rates compared to randomized gossip at the cost of extra memory at nodes.

In this paper, we focused on compression of network data as an application of selective gossip. Our

algorithm can also be used for distributed ranking in a mobile social network. An example application

would be people having mobile devices and ranking songs, movies, etc. on their devices. In this case,

selective gossip can be used to approximate highest ranked titles over the network in a decentralized

fashion.
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