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Deniz Üstebay

Electrical & Computer Engineering

McGill University
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Abstract—Motivated by applications in compression and dis-
tributed transform coding, we propose a new gossip algorithm
called Selective Gossip to efficiently compute sparse approxi-
mations of network data. We consider running parallel gossip
algorithms on the elements of a vector of transform coefficients.
Unlike classical randomized gossip, communication between ad-
jacent nodes is data driven and only performed if deemed to
significantly improve the estimate of the signal vector. In partic-
ular nodes adaptively estimate and focus on using communication
resources to compute significant coefficients (above a pre-defined
threshold in magnitude). Consequently, energy and bandwidth
are conserved by not gossiping on insignificant coefficients.
The proposed procedure guarantees that all nodes will reach
consensus on (i) the values of significant coefficients and (ii) the
indices of insignificant coefficients. Insignificant values are not
computed. We illustrate the significant communication savings
over global randomized gossiping in a distributed transform
coding application.

I. INTRODUCTION

Decentralized signal processing algorithms are needed for

wireless sensor networks and cyber-physical systems appli-

cations, where battery-powered devices autonomously form

an ad hoc network and operate as a collective system. In

this setting, collecting and processing data at a fusion center

causes a bottleneck, and previous studies have shown that

in-network processing can lead to significant energy savings.

Gossip algorithms are emerging as an attractive mechanism for

in-network signal processing. Gossiping refers to an iterative

decentralized framework for computation where each node

maintains a local estimate of the quantity being computed,

and the goal is to reach a consensus where all nodes agree

on the same estimate. At each iteration, neighboring nodes

(that communicate directly) exchange information and then

update their local estimates. Because all information exchange

is local and asynchronous, there is no need for network-wide

coordination, and consequently, no communication or security

bottlenecks arise, e.g., around a fusion center.

This paper describes selective gossip, a decentralized algo-

rithm designed specifically for computing approximations to

large vectors of data over a network. To reach consensus on

a vector of data, a direct approach would be to gossip on

each component of the vector in parallel. However, in many

applications, one may only be interested in the components

which contain significant energy (i.e., they exceed a pre-

specified threshold in absolute value); and components that

are below the threshold are simply ignored or forced to zero.

In such applications, there is always a dilemma: a priori we

do not know which components are the significant ones. If

we knew which were significant, we would save energy by

disregarding the insignificant ones from the outset. Without

knowing, one must somehow estimate which are significant,

or compute all components in advance and then discard the

insignificant ones. Of course, this latter approach is wasteful

and we would prefer to conserve energy and bandwidth

resources by only gossiping about significant values.

Selective gossip is an asynchronous decentralized algorithm

that adaptively determines which components are significant

and insignificant while gossiping. In each gossip round, two

neighboring nodes exchange information for components of

the vector that at least one believes to be significant, based

on their current estimates. By doing so, few transmissions are

spent gossiping on insignificant coefficients. We prove that

selective gossip converges asymptotically, in the following

sense. Significant components (those with energy above the

pre-defined threshold) converge asymptotically to their true

value at every node in the network. Insignificant components

eventually reach a state where the local estimates at every node

are below the threshold, and in this manner all nodes consent

to disregard the component. We demonstrate the utility of

selective gossip for sparse approximation in a field estimation

application and find that selective gossip obtains a network-

wide estimate while transmitting significantly fewer values

than an approach that gossips in parallel on all coefficients.

A. Background and Related Work

Distributed consensus, which has its roots in the seminal

work of Tsitsiklis [1], has recently been identified as a canon-

ical problem in distributed signal processing and control (see,

e.g., [2] for a survey). In the context of average consensus, for

a network of n nodes where each node has an associated scalar

value yi, the goal is to compute the average ȳ = 1
n

∑n

i=1 yi

at every node in a decentralized fashion. Although simple to

formulate, if one can solve the average consensus problem then

one can compute any linear function of the network data in

a decentralized fashion. Consequently, consensus algorithms

have proven useful in many applications ranging from decen-

tralized compression [3] to localization in sensor networks [4].

Gossip asymptotically solves the average consensus prob-

lem through iterative information exchange between neighbor-

ing nodes. Since information exchange is local, gossip algo-



rithms are simple, scalable, and robust to changes in network

topology or unreliable communications. Randomized gossip is

one such algorithm and is analyzed in [5]. At every iteration

of randomized gossip one of the nodes wake up uniformly

at random and randomly selects one of its neighbors. These

two nodes take the average of their values and all other nodes

remain unchanged. Under very mild conditions on how the

neighbor is selected, it can be shown that the values at every

node converge to the initial average. Recently, several variants

of randomized gossip have been proposed with the purpose of

accelerating the speed of convergence [6]–[9].

In this paper we propose a new variant of randomized

gossip called selective gossip. Unlike randomized gossip,

which computes the average for a single scalar value, selective

gossip is designed for efficiently reaching consensus on a

vector of values where some components may be insignificant

relative to the others. We illustrate the utility of selective

gossip in a distributed field estimation application. In [3] and

[10] the authors describe alternative field estimation methods

using gossip algorithms to compute random linear transfor-

mations of the network data, and then recover the field using

techniques from compressed sensing. This approach is useful

for exploratory data analysis but is inefficient when one has

available a linear transformation that sparsifies the data. In [11]

and [12] wavelet transform methods are proposed for wireless

sensor networks. However both of these methods aggregate

data along trees and therefore require coordination to form

and maintain specialized routes.

II. ALGORITHM

We consider a network of n nodes and represent network

connectivity with a graph G = (V, E). The vertices, V =
{1, . . . , n}, are the nodes and edges are the communication

links between the nodes, E ⊂ V×V . We assume that links are

symmetric and the network is connected. Each node i in the

network has an initial vector, yi ∈ R
m. The goal is to compute

ȳ = 1
n

∑n

i=1 yi. Let yi,j denote the jth component of the

vector at node i, and let ȳj denote the jth component of ȳ. We

are given a threshold τ > 0 which indicates the significance

for components of ȳ. A component ȳj is considered significant

when |ȳj | ≥ τ ; otherwise ȳj is insignificant.

Selective gossip asymptotically computes the values of

significant components, and only invests enough transmissions

on insignificant components to have every node consent on

their insignificance. At the kth iteration each node maintains

a local estimate xi(k) of ȳ, and the estimates are updated in

an iterative fashion. Node i initializes its jth component to

xij(0) = yi,j . At the kth iteration, a node s is chosen uni-

formly at random from {1, . . . , n} (this can be implemented

using the asynchronous time model described in [13]), and s
randomly selects a neighboring node t uniformly at random.

Then s and t gossip only on the components of y which are

significant; i.e., they update components j for which either

|xs,j(k − 1)| ≥ τ or |xt,j(k − 1)| ≥ τ by setting

xs,j(k) = xt,j(k) =
1

2

(

xs,j(k − 1) + xt,j(k − 1)
)

. (1)

No change is made to component j when |xs,j | < τ and

|xt,j | < τ , and these values are not transmitted.

III. CONVERGENCE OF SELECTIVE GOSSIP

In this section we prove that selective gossip converges to

the correct values. Since there is no coupling between the

different components of the vector, we treat each individually.

Without loss of generality, let xi(0) denote the initial value for

this component at node i, let x̄ denote the average, and let τ >
0 be the given threshold. Below, we prove convergence in the

sense that when |x̄| ≥ τ , for all i, xi(k) → x̄ as k →∞, and

when |x̄| < τ , there exists a K such that, for every i, |xi(k)| <
τ for all k ≥ K. It is well known that, under the assumptions

stated above, randomized gossip converges asymptotically to

the average consensus [5]. Selective gossip only differs from

randomized gossip in that, at some iterations, two nodes may

choose not to gossip about a particular component, so it will

not be updated. Thus, intuitively, to show convergence when

x̄ ≥ τ (resp., −x̄ ≤ τ ) we just need to show that nodes gossip

sufficiently often so that eventually they all have xi(k) ≥ τ
(resp., −xi(k) ≤ τ ); at that point the algorithm becomes just

randomized gossip. Similarly, when |x̄| < τ , we just need to

show that nodes gossip enough so that eventually they reach

a state where |xi(k)| < τ for all i, at which point the entire

network will cease to gossip about the insignificant coefficient.

To make this argument rigorous we will define a cost

function measuring the average distance to x̄, and demonstrate

that it is strictly decreasing in expectation. In doing so, we will

make use of the following lemma.

Lemma 1: Let S(k) =
∑n

i=1(xi(k) − x̄)2, and let s and t
be the nodes that gossip at iteration k. Then S(k) = S(k −
1)− 1

2 (xs(k − 1)− xt(k − 1))2.

This follows directly from the definition of S(k) and the

update rule (1).

Theorem 1: Let S(k) be defined as above and suppose

|x̄| > τ . Then E[S(k)] ≤ (1− 1
2n7 )kS(0).

Proof: We will show that there exist a pair of neighboring

nodes s and t for which (xs(k) − xt(k))2 > S(k)/n5, and

this pair has at least probability of 1/n2 of gossiping at the

(k + 1)th iteration. Then we will apply Lemma 1 and find

that at every iteration we decrease the cost function by at

least S(k)/(2n7) in expectation. In the rest of the proof, we

consider the case x̄ ≥ τ (the case x̄ ≤ −τ is analogous).

The first step is to show that there exists a node a with

xa(k) ≥ x̄ + 1
n

√

S(k)
n

. Without loss of generality assume

that S(k) > 0 (otherwise consensus has been attained). Note

that there exists a node i for which (xi(k) − x̄)2 ≥ S(k)/n,

otherwise we get a contradiction
∑n

i=1(xi(k) − x̄)2 < S(k).
Let i denote such a node. If xi(k) > x̄ then xi(k) ≥
x̄ +

√

S(k)/n and we take i to be the node a we are

looking for. If xi(k) < x̄, then xi(k) ≤ x̄ −
√

S(k)/n. Note

that
∑

j 6=i xj(k) = nx̄ − xi(k) = (n − 1)x̄ + x̄ − xi(k),

and therefore
∑

j 6=i xj(k) ≥ (n − 1)x̄ +
√

S(k)/n. This

implies that there is at least a node a such that xa(k) ≥

1
n−1

(

(n− 1)x̄ +
√

S(k)
n

)

≥ x̄ + 1
n

√

S(k)
n

.



Now, define H = {h ∈ V : xh(k) < x̄} and note that H
is non-empty since S(k) > 0. Recall that xa(k) > x̄, and

let a = a1, a2, . . . , am = h be a shortest path in G from a
to H such that h ∈ H and aℓ /∈ H for all ℓ < m. Because

xa(k) ≥ x̄+ 1
n

√

S(k)
n

and xh(k) < x̄ it follows that there is at

least one step (aℓ, aℓ+1) along this path for which |xaℓ
(k)−

xaℓ+1
(k)| ≥ 1

mn

√

S(k)
n

. Since m < diam(G) ≤ n and aℓ is

not in H the probability that these nodes gossip at iteration

k + 1 is at least 1/n2 (aℓ ticks with probability 1/n, and it

has at most n− 1 neighbors). From Lemma 1 it then follows

that E[S(k + 1)|S(k)] ≤ S(k) − S(k)
2n7 = (1 − 1

2n7 )S(k) and

recursing back to 0 from iteration k leads to the claim.

When a component is significant, selective gossip will

always compute the correct value in expectation. Standard

arguments [5] based on Markov’s inequality can then be

applied to show convergence in probability. To prove that the

algorithm converges for insignificant components (|x̄| < τ ) a

similar methodology can be used, but using a modified cost

function instead, S̃(k) =
∑

i:|xi(k)|≥τ (xi(k) − x̄)2. We omit

the full proof here due to lack of space.

It is also worth noting that the bounding arguments used in

the proof above are extremely loose, and should not be taken

as an indicator of the rate of convergence. In fact, it is easy

to see that once all nodes agree the component is significant,

selective gossip behaves identically to randomized gossip, and

so asymptotically the rates of convergence are the same. As

illustrated in the simulations presented below, the error decay

rate of selective gossip, as a function of the number of values

transmitted per iteration, is in fact substantially faster than

randomized gossip when some components are insignificant.

IV. DISTRIBUTED TRANSFORM CODING

Next, we show how selective gossip can be used to carry out

decentralized sparse approximation of transform coefficients.

In general, an orthonormal linear transformation can be ex-

pressed as matrix Φ ∈ R
n×n which takes a signal f ∈ R

n to

a set of coefficients β = ΦT f . Informally, if the signal f is

compressible in Φ then β will have many components which

are nearly zero (e.g., |βj | < τ ), and one can obtain a sparse

approximation f̂ to f by forcing these insignificant coefficients

to zero to obtain β̂, and then inverting the transformation to

get f̂ = Φβ̂. The main challenge for efficiently computing

the sparse approximation β̂ in a decentralized fashion is that

we generally do not know in advance which components are

insignificant.

To apply transform coding in the context of sensor network

field estimation, we view the data value at each node as one

element of the signal f . The goal is to compute β̂ at every

node, so that an approximation to the network data is available

everywhere. Each transform coefficient is a linear function of

the network data, and thus can be computed using gossip.

We assume each node i knows its corresponding row of the

transformation matrix, Φ, and node i takes yi,j = nΦi,jfi.

Then ȳ = β. By using selective gossip with threshold τ , we
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Fig. 1. Original, sensed and approximated field values as gray scaled image.

compute an approximation β̂ at every node, where coefficients

with |βj | < τ are forced to zero.

V. SIMULATION RESULTS

In this section we illustrate the performance of selective

gossip algorithm via simulations. The field to be estimated is

a 128×128 discrete sampling of a piecewise smooth field with

additive Gaussian noise, N (0, σ2). Figure 1(a) shows this field

as a gray scaled image. 256 sensor nodes are arranged with

network connectivity forming a 16 × 16 grid. Figure 1(b) is

an image generated from the noisy sensor measurements. We

use a three-level Haar wavelet basis as the linear transform.

Selective gossip is run 20 times and the results presented here

illustrate the average performance.

Figure 1(c-f) illustrates the results of approximation. For

Figures 1(c) and (e) the approximations are obtained using

centralized wavelet transform (assuming all the data was

gathered to a single location) to compute coefficients and then

insignificant coefficients are discarded. Figures 1(d) and (f)

show the results of approximation using selective gossip to

estimate significant wavelet coefficients. The approximation

error is the mean square error, 1
n

∑n

i=1 ‖f̂
i − f‖

2
where f is

the vector of sensor measurements and f̂ i is the reconstructed

field using only significant coefficients estimated by node i.
We conclude that selective gossip estimates of significant coef-

ficients are similar to the percentage of significant coefficients

found by centralized wavelet transform and gossip reaches

similar approximation error values. Varying τ changes the

approximation quality.

Figure 2 plots mean squared error versus number of gos-

siped coefficients for different values of the threshold, τ . First,
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Fig. 2. Mean square error in coefficient estimates vs total number of gossiped
values: (a) error due to approximation and gossip, (b) error due to gossip.

Figure 2(a) accounts errors due to both approximation (thresh-

olding coefficients) and gossip, 1
n

∑n

i=1 ‖β̂i − β‖2, where

β = ΦT f is the vector of true wavelet coefficients and β̂i

is the vector of estimated coefficients at node i. The selective

gossip curves level off when gossip has effectively converged,

and all remaining error is only due to approximation. Figure

2(b) shows the error due to gossip only, 1
n

∑n

i=1 ‖β̂i − β̂‖2

where β̂ is the thresholded version of β, as if computed in

a centralized fashion, and β̂i is the gossip estimate of β̂ at

node i. The error is calculated using thresholded coefficients

instead of true coefficients hence error due to approximation

is ignored. As expected, higher values of τ result in higher

approximation error, but with fewer transmitted values.

Figure 3 illustrates the effect of two different values of τ on

number of transmissions required to approximate coefficients

well. The top panel shows the original wavelet coefficients in

absolute value, sorted in descending order. The panel below

shows the number of gossip transmissions for each coefficient,

where the order of indexing is the same as the sorting above.

The two curves shown on the bottom panel correspond to

two different thresholds, τ = 0.25 and 0.6, as illustrated in

the panel above. The total number of transmissions shown is

that required to reach a relative mean squared error of 10−4.

Observe that selective gossip automatically determines which

coefficients are insignificant, and spends a minimal number of

transmissions on these coefficients.

VI. DISCUSSION

In this paper we propose a new gossip algorithm for

decentralized sparse approximation. Selective gossip is aimed

at computing a vector of data, where some components of

the vector are insignificant and do not need to be computed

exactly, but the locations of these components are not known in

advance. Instead, selective gossip adaptively determines which

components are significant while the computation is being

carried out, and automatically adjusts where transmissions are

invested in order to efficiently obtain an accurate estimate.

We prove that the algorithm converges. Investigating the
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Fig. 3. Coefficients and corresponding convergence requirements. Top: origi-
nal wavelet coefficients and threshold levels, Bottom: Number of transmissions
per coefficient for convergence to error value 10

−4.

rate of this convergence is the next step and the topic of

ongoing research. In the future, we will study sparsifying

transforms for general network topologies which are amenable

to decentralized implementation and/or construction. Another

interesting question is how to design a schedule for controlling

τ to automatically compute the best (in terms of MSE)

approximation for a given budget of transmissions.
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