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ABSTRACT
This paper introduces a distributed auxiliary particle filter for target
tracking in sensor networks. Nodes maintain a shared particle fil-
ter by coming to a consensus about the likelihoods associated with
each particle using the selective gossip procedure. Selective gos-
sip provides a mechanism to efficiently identify the particles with
largest weights and focus communication on sharing these impor-
tant weights. We demonstrate through simulations that the algorithm
performs well; compared to state-of-the-art approaches it either sig-
nificantly improves the accuracy at the expense of a small increase
in communication overhead, or achieves comparable accuracy with
much lower communication overhead.

Index Terms— Particle filters, gossip algorithms, target track-
ing, distributed computation

1. INTRODUCTION

Target tracking is an important task for sensor networks and parti-
cle filtering becomes an attractive approach when the dynamics are
highly non-linear or the noise distribution is non-Gaussian. One ap-
proach to implementing a particle filter is the leader-node frame-
work [1], in which one node is appointed as leader (the selected node
may change over time). All measurements are relayed to this node
so that it can run a centralized particle filter using all data. This has
a few disadvantages: only one node can be queried; there is a single
point of failure; and the leader node must be aware of the obser-
vation models (including calibration parameters and possibly node
locations) of all sensors. In addition, since only the leader node has
access to an approximation of the posterior, it has to make all sensor
management decisions (whether nodes take measurements; which
sensing modality they use).

An alternative approach is to distribute the computation. Each
node calculates its local likelihood and the information is fused to
form a global posterior. Virtually all such distributed filters rely
on an assumption of conditional independence of the measurements
made at each node. Several of these distributed particle filters re-
quire a spanning tree or Hamiltonian cycle for communication [2,3].
Construction and maintenance of such routes can be very challeng-
ing when nodes are mobile or wireless conditions are adverse and
the algorithms are thus highly vulnerable to link and node failures.

Recently, several more robust approaches have been introduced,
which involve an increased communication overhead [4–7]. These
algorithms employ gossip (consensus) methods to distribute the in-
formation. The algorithm in [4] uses a gossip-based expectation-
maximization (EM) algorithm to estimate the parameters of a mix-
ture approximation to the global posterior, but it imposes undesir-
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able constraints on the structure of the likelihood function. In the
procedure in [7] each node forms a Gaussian approximation to a
(weighted) local posterior and then the gossip algorithm is used to
fuse these to construct a Gaussian approximation of the global pos-
terior. This algorithm has a much reduced communication overhead,
but its accuracy diminishes when posteriors cannot be adequately
captured by the Gaussian approximations.

The algorithms in [5, 6] are more closely related to the one we
present here. Rather than forming parametric approximations to the
posterior, these algorithms share particles among different nodes.
In [5], particles undergo a random walk through the sensor network,
and their weights are successively multiplied by a function of the lo-
cal likelihood. The function is carefully chosen so that the particle
weights converge to the same values that a centralized particle fil-
ter would calculate. This algorithm has attractive properties, but it
only supports importance-sampling from the prior, which can lead to
poor performance of a particle filtering algorithm [8]. The algorithm
also has no mechanism for eliminating particles with small weights,
leading to wasteful communication.

The algorithm in [6] was designed to allow sampling from a bet-
ter importance distribution (one that better matches the posterior). It
estimates regions of concentrated mass in the global posterior by cal-
culating the intersection of the regions of concentration in the local
posteriors. The importance sampling function is then constructed to
focus on the calculated region, and the gossip procedure is used to
calculate the global likelihoods and hence the particle weights. This
procedure achieves high accuracy, but the communication cost (in
terms of number of values exchanged) is high because the weights
of all particles must be calculated, even if many are very small.

In this paper, we present a distributed version of the (two-stage)
auxiliary particle filter [9]. In most practical cases, the auxiliary par-
ticle filter (APF) significantly outperforms the sequential importance
resampling (SIR) filter, especially when the SIR filter uses the prior
as the importance function. Our method employs the selective gos-
sip procedure from [10] to calculate both the first- and second-stage
weights of the APF. The important aspect of selective gossip is that
it can automatically identify the largest values in the vector of par-
ticle weights and then only gossips on these values. Our algorithm
thus avoids wasteful communication by focusing only on particles
with large global weight. We demonstrate through numerical sim-
ulations that the algorithm can be significantly more accurate than
the distributed particle filter of [7] at the expense of an increased
communication overhead. It achieves comparable accuracy to the
algorithm in [6] but has significantly less communication overhead.

The remainder of the paper is organized as follows. Section 2
provides a problem statement and Section 3 presents background
material on the auxiliary particle filter and selective gossip. Sec-
tion 4 describes the proposed distributed auxiliary particle filter and
Section 5 presents simulation results. Finally, Section 6 makes con-
cluding remarks.



2. PROBLEM STATEMENT

We consider a network of geographically distributed (potentially mo-
bile) sensor nodes. Our goal is to perform discrete-time tracking
of a state xt, which may represent a target’s position and velocity
or a set of environmental conditions (e.g., soil moisture, tempera-
ture). We abstract the network as a graph, with a set of vertices
V = {1, . . . , N} and a set of edges Et, which constitute unordered
pairs u, v ∈ V . The presence of an edge at time t indicates that the
two nodes can perform bidirectional wireless communication with
high probability. We assume that the network is connected at each
time t, and that although nodes are unaware of the global topology,
they do have knowledge of their local neighbours.

At time t each sensor node makes a noisy measurement yut using
one of its measurement modalities. The likelihood of the observa-
tion is characterized by the function pt(yut |xt) where p is time- and
sensor-dependent because the choice of sensor(s) may vary. Nodes
are unaware of the measurement modalities and observation models
employed by other nodes. We do assume conditional independence
given the state, which implies that the joint likelihood can be factor-
ized:

p(yVt |xt) =
∏
u∈V

pt(y
u
t |xt). (1)

Here yVt = {yut : u ∈ V} is the complete set of measurements
acquired by the network at time t. The time history of such mea-
surements is denoted yV1:t = {yVj : 1 ≤ j ≤ t}. We assume that
there is coarse-grained synchronization between nodes so that mea-
surements with the same time-index are conducted at approximately
the same time (so they are affected by the same state).

3. BACKGROUND

We provide a very limited discussion of particle filtering and focus
on the auxiliary particle filter. For a more detailed tutorial with ex-
cellent discussion, see [8].

3.1. Auxiliary Particle Filter

The sequential importance resampling (SIR) particle filter strives to
maintain a weighted particle approximation {x(i)

1:t, w
(i)
t }Ki=1 to a pos-

terior of interest p(x1:t|y1:t). Assuming it has a weighted particle
approximation at time t − 1, it does this by propagating (extend-
ing) the particles to time t by sampling from an importance function
q, evaluating the likelihoods of the extended particles, and updating
the weights accordingly. There is then an optional resampling step
to construct a set of particles with more evenly distributed weights.
Resampling replicates particles with high weights and discards par-
ticles with low weights. In almost all distributed particle filters, the
prior is used as the importance function, i.e., q = p(xt|x(i)

t−1). The
exception is the algorithm in [6]. Particle filters perform much better
if q takes into account information provided by the measurements
yt.

The auxiliary particle filter, introduced in [9], strives to do this
by modifying the sampling step. It calculates a first-stage weight
ρ
(i)
t for each particle based on the particle’s compatibility with the

observation at the next time-step. A good choice for the weight ρ(i)t
is an approximation p̂t(yt|x(i)

t−1) to the likelihood pt(yt|x(i)
t−1) =∫

pt(yt|xt)p(xt|x(i)
t−1) dxt. The APF performs a resampling step

according to these weights, prior to conducting the actual importance
sampling process. Subsequent to the resampling, the particles are

sampled according to an importance function q(xt|x(i)t−1), and the
weights associated with the samples are updated. There is then an
optional second resampling procedure.

3.2. Distributed Approximation via Selective Gossip

Randomized gossip algorithms are an attractive approach to decen-
tralized computation over wireless networks because they are robust
to changing topologies and to unreliable communications. They
have simple implementations and they do not have a single point
of failure. See [11] for a recent survey. The prototypical version
of randomized gossip solves the average consensus problem. Let
G = (V,E) be a graph representing the communication topology
of the network. The graph has an edge (u, v) ∈ E if and only if
nodes u and v communicate directly. Each node initially has a vec-
tor, denoted γu(0) ∈ RL, and the goal is to compute the element-
wise average, γ̄ = |V |−1∑

u∈V γ
u(0). In randomized gossip, each

node u iteratively and asynchronously computes γ̄ by averaging a
local estimate, γu(k), with one of its neighbors. In particular, at
iteration k, a node u is chosen randomly and it contacts a random
neighbor v (for which (u, v) ∈ E); then u and v exchange estimates
γu(k) and γv(k), and compute updates γu(k + 1) = γv(k + 1) =
1
2

(
γu(k) + γv(k)

)
. Standard results for gossip algorithms show

that, under mild conditions on the connectivity of G, the estimates
converge γu(k) → γ̄ as k → ∞ at every node u ∈ V , and
rates of convergence depends on the network topology (see [11] and
references therein for details). Note that the version of gossip de-
scribed above can easily be modified to compute any linear func-
tion of the initial vectors by appropriate weighting. In particular,
if each node re-weights its initial vector by |V |, then randomized
gossip will compute the sum rather than the average. The overall
communication overhead of randomized gossip depends on the rate
of convergence—and thus, the network topology—since two mes-
sages are transmitted each iteration, and the size of these messages
depends on L, the dimension of the vectors being averaged.

Selective gossip, proposed in [10], is specifically geared toward
decentralized approximation of high-dimensional vectors. In partic-
ular, selective gossip seeks to approximate γ̄ at every node by only
computing the largest elements of γ̄. The indices of these elements
are not known in advance, since the values of elements of γ̄ are func-
tions of the initial conditions at all nodes. To save on communication
cost, in selective gossip nodes only exchange information and up-
date those elements they believe to be significant. Specifically, each
node maintains a threshold, τu(k), which induces a list of signifi-
cant indices, Iu(k) = {i : [γu(k)]i ≥ τu(k)}. Then, when two
nodes u and v gossip, they only exchange information and update
the elements in the union Iu(k) ∪ Iv(k), and the other elements
remain fixed. When |Iu(k) ∪ Iv(k)| � L, this can result in sig-
nificant savings in communication resource usage. If an appropriate
value for the threshold is known in advance, such that one wishes
to only compute elements i for which [γ̄]i ≥ τ∗, then the thresh-
olds τu(0) = τ∗ can be initialized and held constant throughout
computation. It is more common that one does not know τ∗ ini-
tially, but instead would only like to compute the largest M out of
L elements of γ̄. In this case, node u adapts τu(k) using stochastic
approximation-like updates, as its estimate γu(k) evolves, so that
τu(k) tracks the midpoint between the M th and (M + 1)st element
of γu(k).



4. DISTRIBUTED APF ALGORITHM

We strive to construct a distributed APF algorithm such that every
node has a copy of the same filter (the same weights and particles).
To do this, the nodes must execute a synchronization routine so that
their random number generators have the same seeds; in this way,
they always sample the same values.

The challenge in implementing a distributed auxiliary parti-
cle filter lies in the fact that the global first-stage weights ρV,(i)t

must depend on the measurements yVt , but each node only has
access to its local measurement yut . We address this challenge
by identifying local first-stage weights ρu,(i)t and two (non-linear)
functions g and fu such that the global first-stage weight ρV,(i)t =

g( 1
N

∑N
u=1 fu(ρ

u,(i)
t )). With this form, we can employ selec-

tive gossip to perform the averaging operation, and to identify and
estimate the largest global first-stage weights.

Although it is not an ideal choice because it can lead to un-
bounded variance in the estimates [8], one choice that satisfies these
criteria is the following: ρu,(i)t = pt(yt|µ(i)

t ), fu = N log(·) and
g = exp(·). Here µit is the mean, mode, or a random draw from
pt(xt|x(i)

t−1); this was one of the suggested approaches in [9].
Selective gossip identifies a set I of the particles with the largest

global first-stage weights and provides each node with estimates of
these weights. We then run a max gossip procedure to ensure that all
nodes have exactly the same value (in max gossip, the local update
operation is a maximum rather than an average). We then perform
the APF resampling step using the particles in I. In the second stage
of the algorithm, the nodes need to calculate the global likelihood
pt(y

V
t |x

(i)
t ). This is done in the same fashion — each node calcu-

lates N log pt(y
u
t |x

(i)
t ) and then selective gossip is used to identify

the largest average values and perform the averaging for these largest
values. Once these likelihoods have been calculated, the weights can
be updated and resampling conducted to generate K particles. The
complete algorithm is described in Algorithm 1.

5. SIMULATIONS

In this section we investigate the performance of our algorithm
through numerical experiments. In our simulation setup we have N
sensor nodes distributed uniformly at random on unit square. The
communication topology is a random geometric graph, i.e., nodes
within radius of

√
(2 logN/N) are connected. The sensor nodes

track a single target for a duration of 50 seconds during which the
target makes a full clockwise turn. We model the target motion by a
nearly coordinated turn model [12] which assumes that the turn rate
is constant and known whereas the cartesian velocity is unknown.
The sampling interval is 1 second.

In our simulations, the sensors are capable of measuring four
different features: bearing, received signal strength, range and radial
velocity. The measurement models are the same as those in [7] —
see this paper for more detail. Each measurement includes Gaussian
noise with the standard deviations of 0.6981, 8, 0.04, 0.016, respec-
tively. Each sensor measures one of these features, with the sensing
modality chosen randomly.

To compare the performance of our proposed scheme, we imple-
mented a centralized particle filter as well as the distributed Gaussian
approximation particle filter scheme of [7]. For the centralized par-
ticle filter implementation, we gather all the sensor measurements at
one point and calculate the particles centrally. Hence this filter rep-
resents the best performance we can hope to achieve with distributed
filters. The number of particles for the centralized filter is fixed at

10,000. For the other two schemes, we use 1000 particles at each
sensor. The network size is 50 throughout the simulations.

Algorithm 1: Distributed Auxiliary Particle Filter

// Initialization at time t = 1
for u = 1, . . . , N do1

for i = 1, . . . ,K do2

Sample x
(i)
1 ∼ q1(·);3

Set γui = N log p1(yu1 |x
(i)
1 );4

endfor5

endfor6

[γ̃u, I] = Selective gossip({γu}Nu=1);7

γ̂[I] = Max gossip({γ̃u[I]}Nu=1);8
for u = 1, . . . , N do9

for i ∈ I do10

Set w̃(i)
1 =

exp(γ̂i)p(x
(i)
1 )

q1(x
(i)
1 )

;
11

endfor12

Normalize weights w̃(i)
1 so that

∑
i∈I w̃

(i)
1 = 1;13

Resample
{
x
(i)
1 , w̃

(i)
1

}
i∈I

to obtain
{
x
(i)
1 , 1

K

}K
i=1

;14

endfor15

// For times t > 1:
for u = 1, . . . , N do16

for i = 1, . . . ,K do17

Calculate local first-stage weight ρu,(i)t ;18

Set γui = fu(ρ
u,(i)
t );19

endfor20

endfor21

[γ̃u, I] = Selective gossip({γu}Nu=1);22

γ̂[I] = Max gossip({γ̃u[I]}Nu=1);23
// Resample
for u = 1, . . . , N do24

for i ∈ I do25

Set ρ(i)t = g(γ̂i);26

Set w(i)
t = w̃

(i)
t−1 × ρ

(i)
t );27

endfor28

Resample
{
x
(i)
t−1, w

(i)
t

}
i∈I

to obtain
{
x
′(i)
t−1,

1
K

}K
i=1

;29

for i = 1, . . . ,K do30

Set x(i)
1:t−1 = x

′(i)
1:t−1 and ρ(i)t = ρ

′(i)
t ;31

Sample x
(i)
t ∼ qt(xt|x

(i)
t−1);32

Set γui = N log pt(y
u
t |x

(i)
t );33

endfor34

endfor35

[γ̃u, I] = Selective gossip({γu}Nu=1);36

γ̂[I] = Max gossip({γ̃u[I]}Nu=1);37
for u = 1, . . . , N do38

for i ∈ I do39

Set w̃(i)
t =

exp(γ̂i)p(xt|x
(i)
t−1)

ρ
(i)
t q(xt|x

(i)
t−1)

;
40

endfor41

Resample
{
x
(i)
1:t, w̃

(i)
t

}
i∈I

to obtain
{
x
(i)
1:t,

1
K

}K
i=1

;42

endfor43

Here we provide the results of 1000 Monte-Carlo trials. For each
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Fig. 1. Position error performance comparison for the centralized
filter, proposed filter and the filter of Oreshkin et. al. [7].

trial we use a random node distribution on the unit square, hence
the network connectivity is different each time. In addition, the se-
quence of gossiping pairs of nodes changes for each trial. Figure 1
illustrates the median of squared position error performances over
the Monte-Carlo trials. For the selective gossip approach, we gossip
over only the 50 largest terms. We observe that, for this example
problem, our proposed selective gossip based approach gives an er-
ror performance close to the centralized filter.

Next we investigate the communication cost of our algorithm.
Figure 2 shows the position error versus associated communication
overhead. The communication overhead is calculated in terms of
gossiped values. Numbers on the plot indicate the number of gossip
iterations. Hence this plot illustrates how error and required commu-
nication overhead varies as we change the number of selective gossip
iterations. In [7] the communication overhead is given as 50 ×N2,
hence it is 1.25 × 105 for this setup. We conclude that selective
gossip approach achieves substantial improvement in tracking per-
formance compared to the Gaussian approximation approach. The
trade off is the increased communication cost.

6. CONCLUSIONS

We have presented a distributed implementation of the auxiliary par-
ticle filter. In this algorithm, nodes maintain a common particle fil-
ter. Selective gossip is used to efficiently calculate the first-stage and
second-stage weights of the filter. Numerical simulations indicate
that the algorithm provides advantages to other state-of-the-art ap-
proaches; either it provides a substantial improvement in accuracy
at the expense of a small increase in communication overhead or it
provides comparable accuracy with much less communication over-
head. In future work, we will explore strategies for identifying better
first-stage weights and mechanisms that allow selective gossip to au-
tomatically determine how many terms should be included in I.
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