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Abstract—In transparent optical networks, signals propagate
over all-optical lightpaths. The absence of regenerating devices
that act in the electrical domain renders end-to-end monitoring
difficult. The Quality of Transmission (QoT) assesses through a
variety of metrics the degradation in quality a signal experiences
as it traverses a lightpath. Hardware monitors that can directly
measure QoT are expensive, which motivates the development
of monitoring schemes that require fewer monitors but can still
generate accurate QoT estimates. In this paper we describe a
monitoring scheme that estimates the QoT of multiple lightpaths
in a network. Our focus is on estimating Bit-Error-Rates (BERs),
but the methodology is also applicable for other metrics. One of
the primary innovations in this monitoring framework is the
establishment of “active lightpaths” — lightpaths that carry no
useful data but are instead used as measurement probes. We
describe a method for choosing where to establish the active
lightpaths in order to maximize the information gain. We demon-
strate with simulations the possibility to trade-off the amount of
costly hardware monitoring equipment with cheaper, temporary
active lightpaths, while still achieving accurate monitoring.

Index Terms—Optical networks; monitoring; physical impair-
ments; estimation.

I. I NTRODUCTION

Optical signals sustain impairments stemming from their
propagation in the fiber medium. In transparent optical net-
works, the absence of electrical regeneration at every node
means that signals can traverse very long distances leadingto
the accumulation of significant impairments. This can result
in the unacceptable degradation of end-to-end transmission
performance, as measured by Quality of Transmission (QoT)
metrics. A standard QoT metric is the Bit-Error Rate (BER);
the Q-factor (defined in Section 2) is another common metric.
In transparent optical networks, network operators are inter-
ested in monitoring the QoT of eachlightpath, which is the
combination of a route and a wavelength used to transmit
a signal. Inadequate performance of a lightpath in terms of
BER can indicate that a component on the lightpath is not
performing as originally planned (a case of soft failure, where
connectivity is maintained but degraded) or that the Routing
and Wavelength Assignment algorithm used to pick the de-
graded lightpath made a poor decision. Signal monitoring is
essential, both for the detection of failures and to make better

Manuscript received November 22, 2010. This work is an extended version
of a paper presented at ICTON’2008 [1]. This work was supported by the Nat-
ural Sciences and Engineering Research Council (NSERC) of Canada through
through grant SPSC 356934-2007 and the Mathematics of Information Tech-
nology and Complex Systems (MITACS) Network of Centres of Excellence
(NCE). This work of Y. Pointurier was conducted while he was with McGill
University. He is now with Alcatel–Lucent, Bell Labs, France (corresponding
author; e-mail: yvan@ieee.org). M. Coates and M. Rabbat arewith the Depart-
ment of Electrical and Computer Engineering, McGill University, Montréal,
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network decisions in order to satisfy service level agreements.
It is a challenging task, however, because the absence of
electrical generation and the high cost of monitoring devices
mean that signals can be monitored only at selected — and
possibly few — locations in the network.

In this paper, we describe a QoT monitoring scheme that
strives to reduce the amount of hardware needed to perform
monitoring while preserving the accuracy of the performance
metric estimates. There are two main novel components of
this scheme: (i) an optical network probing technique, which
we call active lightpath monitoring; and (ii) an inference
technique that exploits topological knowledge and incorporates
regularization to permit performance metric estimation for
unmeasured lightpaths.

The active lightpath monitoring technique involves the con-
struction of lightpath probes. These are additional lightpaths
that are lit only for QoT monitoring purposes; they do not carry
any meaningful data (they should carry random bits). They are
established for a small period of time (a fraction of a second
or a few seconds, depending on the monitored parameters) to
make measurements, and the resources they are using can be
re-allocated at any time. If in-band probing is undesirable, an
out-of-band optical monitoring channel can be used instead.

Automated optical networks employ wavelength-selective
switches and reconfigurable optical add/drop multiplexer
nodes (so-called “ROADMs”), making it possible to dynam-
ically establish and reconfigure lightpaths. Moreover, such
networks must be over-provisioned — at any point in time
resources, including transmitters, receivers, and wavelengths,
must be ready to accommodate future demands. These re-
sources are natural candidates for use by the active probing
framework introduced in this paper since, although they will
already be configured and lit, they will not carry customer
traffic.

Our proposed inference methodology exploits the spatial
correlation between the QoT metrics of all established light-
paths, both the data-carrying lightpaths (we will call these the
passive lightpaths) and the lightpath probes (active lightpaths).
This spatial correlation is induced because the physical impair-
ments are caused at the link level, so that if two lightpaths (on
different wavelengths) share one or more links, their BERs
become correlated. It is only possible to directly monitor
a lightpath’s performance if it terminates where a hardware
monitor is located. This can mean that only a small fraction
of the passive (data-carrying) lightpaths are directly measured.
The lightpath probes, which are designed to terminate at
hardware monitors, provide valuable information (throughthe
correlation) about the performance of the passive lightpaths
that cannot be measured.
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There is a clear trade-off between the amount of monitoring
hardware and the accuracy of QoT estimates. Our monitoring
scheme adds another factor into this trade-off — the number
of lightpath probes. Our proposed monitoring scheme can
preserve the estimation accuracy while reducing the numberof
hardware monitors by creating lightpath probes. This is an ex-
ample of “cross-layer” network monitoring, because network
layer information (the routing and wavelength assignment state
of the network) is exploited to address a physical layer task
(lightpath QoT monitoring).

A. Applications

We now highlight a few potential applications of the pro-
posed monitoring framework :
Application 1: users of a core network infrastructure expect
that the QoT of their lightpaths is guaranteed to be above a
certain level as defined in a Service Level Agreement (SLA)
between customer and operator. Enforcing the SLA requires
that the core network operator should be able to monitor the
QoT of all lightpaths at all times. An operator can use the
framework outlined in this work to reduce the amount of
monitoring equipment required to achieve this task.

Application 2: Hard failures such as link cuts can be
detected and located relatively easily using power monitors,
which are deployed in most networking equipment. In contrast,
soft failures are caused by the degradation rather than the
complete failure of a transmission device. By correlating the
alarms generated by the proposed monitoring scheme when
monitored quantities become unacceptable, it is possible to
detect where a soft failure has occurred using failure localiza-
tion algorithms such as those in [2], [3]. In a more preventive
context, operators can use the proposed monitoring framework
to anticipate soft failures.

Application 3: Instead of monitoring the lightpaths that are
already established, a network manager may want to predict
the QoT of a potential lightpath, before deciding whether
to actually establish it. Using monitoring information from
lightpaths already established and the estimation framework
presented here, QoT prediction before establishment becomes
possible (see [4] for one approach).

B. Related Work

There has been a significant amount of work directly
addressing the problem of monitoring in transparent optical
networks [5]. Typically, in optical networks, monitoring en-
compasses bothimpairment monitoring, where the focus is
a single (type of) impairment (e.g., noise/OSNR or chromatic
dispersion) [6], andperformance monitoring, where the effects
of all impairments are evaluated as a whole using a metric that
reflects the end-to-end QoT of a lightpath (e.g., BER or Q-
factor) [5]. Although we focus in this paper on performance
monitoring, the monitoring technique described herein can
also be applied to impairment monitoring. Research in this
direction has been presented in [4], [7].

The monitoring framework we propose is distinct from
existing strategies because it addresses the network-wide
estimation of end-to-end (lightpath-level) QoT performance

metrics and it involves the establishment of active lightpath
probes. There have been other efforts to exploit spatial and
temporal correlation in order to perform network-wide path-
level performance estimation [8]–[11]. These techniques focus
primarily on network performance metrics such as path delay
and loss rather than the physical layer QoT metrics. The
monitoring framework we propose builds upon thepassive
monitoring scheme (without any active probing) for transpar-
ent optical networks that we presented in [11]. As indicatedby
the simulation results presented in Section IV, the use of active
lightpath monitoring makes a major difference in terms of the
number of monitoring devices required to achieve a specified
estimation accuracy. We presented a preliminary method and
associated results in [1].

C. Contributions and Organization

The contributions of this paper are three-fold. First, we
adapt estimation techniques to the problem of network-wide
monitoring of transparent optical networks, refining them to
take advantage of prior knowledge about the physical layer.
This allows performance estimation for lightpaths that arenot
directly measured; the regularization procedure we employ
leads to significantly more accurate estimates. Second, we pro-
pose the procedure of establishing active lightpaths (lightpath
probes) to gain additional information and we provide an algo-
rithm for selecting the routes. The algorithm strives to select
the most informative paths to maximize the effective coverage
of an existing monitoring hardware deployment. Third, we
propose an algorithm for monitor placement to address the
scenario when network designers must make decisions about
where to deploy equipment to maximize estimation coverage
and performance. We present simulation results that indicate
that the proposed monitoring scheme provides much better
estimates and monitoring coverage than the passive monitoring
approach of [11]. The simulations also clearly illustrate the
trade-offs between number of monitors, number of lightpath
probes, and estimation accuracy.

This paper is organized as follows. In Section II, we state
our assumptions concerning the network physical layer and
hardware monitors. Section III gives an overview of the esti-
mators used in in this work and presents our active monitoring
scheme. We present simulation results in Section IV and we
conclude the paper in Section V.

II. M ODELING

Our key assumptions are that the physical-layer metrics
of interest are (i) measurable by a hardware device; and (ii)
approximately linear, in the sense that the end-to-end (path-
level) metric associated with a lightpath is approximatelyequal
to the sum, over the traversed links, of the corresponding link-
level metrics. We will provide more details and strive to justify
these assumptions, but first we outline the physical-layer prop-
erties of the networks under study. We assume that transparent
optical regeneration, except for standard optical amplification,
is not available. We further assume that wavelength converters
are not available and that the wavelength continuity constraint
holds: lightpaths are established over the same wavelength
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from end to end. The latter assumption is not essential (our
monitoring framework could readily be adapted to scenarios
where it does not hold), but it serves to make our analysis
concrete. We also assume that a routing and wavelength as-
signment (RWA) algorithm is in charge of selecting lightpaths
on call arrivals. This algorithm enforces both the wavelength
continuity constraint and the QoT constraint. The monitoring
technique described in this paper makes no assumption about
the nature of the RWA algorithm.

The impairments we consider are amplifier noise and inter-
symbol interference (ISI). We estimate the BER of a lightpath
through its so-called Q-factor:Q = µ0−µ1

σ0+σ1

(where µ0 and
µ1 are the means of the distributions of the “0” and “1”
symbols at the photo-detection stage, andσ0 andσ1 are their
respective standard deviations). The BER is related to the
Q-factor as follows:BER = 1

2erfc
(

Q/
√

2
)

. We model the
impact of amplifier noise and ISI as additive variances (σ2

n

andσ2
isi, respectively) inσ2

1 such thatσ2
1 = σ2

n +σ2
isi [12]. In

addition, we model single channel nonlinear effects, namely,
the interaction between Self-Phase Modulation (SPM) and
chromatic dispersion. We ignore other nonlinear effects such
as Cross-Phase Modulation (XPM) and Four-Wave Mixing
(FWM)1. In general, the methods presented in this paper can
be used to monitor impairments that either do not depend on
the wavelength or have a weak dependence—i.e., impairments
that are flat across the transmission spectrum.

We make no assumption about the exact nature of the
hardware monitors deployed in the network, but we do require
that they can measure electrical power and noise, either di-
rectly or indirectly. The hardware monitors can then determine
estimates ofµ0, µ1, σ0 andσ1. This type of monitoring falls
under the category of histogram-based performance monitor-
ing [13]. We model a hardware monitor as a device located
at the extremity of a link, after photo-detection and inside
the receiver modules (the alternative of placing a monitor
directly on a transmission line requires the undesirable di-
version of signal power). A consequence is that we can only
measure lightpaths that terminate at a link where a monitor is
located. However, our monitoring framework would change
only moderately if power diversion were available. Using
the notation introduced in the next section, the availability
of intermediate measurement points for already established
lightpaths can easily be incorporated as additional rows in
the monitoring matrixGm; regarding active lightpaths, the
proposed framework can easily be adapted by reinterpreting
the numberna of active lightpaths that can be established in
the network as the number of additional monitoring resources
used to perform active monitoring.

Although the current work is applied specifically to
intensity-modulated networks, it could be generalized to co-
herent systems, which are currently being deployed in very

1In existing networks (and envisioned optical networks of the future),
the network generally operates in a fully-loaded steady state. Although all
wavelengths are not constantly lit, they are all consistently used. In this case,
XPM and FWM effects depend only on network topology, in whichcase
they can also be addressed using the framework described in this paper. It is
possible that unused wavelengths remain consistently dark, making XPM and
FWM effects state- and wavelength-dependent; such dependencies are much
more difficult to handle and are out of the scope of this paper.
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Fig. 1. Linearity of the physical impairments metrics. The depicted metrics
are generated using analytical models with the network parameters specified in
Section IV. The metricsµ0, µ1, σ0, andσ1,isi are generated via propagation
simulation using the split-step Fourier method; the metricσ1,isi is generated
by ASE noise analytical modeling as described in [15]. The solid curves were
obtained through linear regression.

high capacity backbones. The detection algorithm in coherent
receivers (such as DP-QPSK receivers) tracks many physical
parameters of lightpaths, such as polarization mode dispersion
(PMD), the nonlinear phase, and the chromatic dispersion of
the signals, which are responsible for various impairments. In
networks where some lightpaths are intensity-modulated (e.g.,
10 Gb/s on-off keying) and others are coherent (e.g., 40 Gb/s
or 100 Gb/s DP-QPSK), monitoring data available from the
coherent receivers terminating established or active lightpaths
can be used to estimate the QoT of lightpaths terminated
at non-coherent receivers using the estimation framework
proposed here and the QoT estimator presented in [14]. In
networks equipped with coherent devices only, the coherent
receivers can be used in lieu of additional hardware monitors,
and the monitoring framework presented in this work can also
be leveraged, in conjunction with a QoT estimator adapted to
coherent systems.

III. A CTIVE MONITORING FRAMEWORK

The active monitoring technique consists of two compo-
nents. First, we select the set of active lightpaths, and then
we estimate the BERs of the unobserved lightpaths using
both passive and active measurements. In Section III-A, we
describe our inference methodology. In Section III-B, we
present the active monitoring technique that establishes ad-
ditional monitoring lightpaths to improve estimation accuracy.
In Section III-C, we propose a hardware monitor placement
algorithm.

A. Estimation methodology

We adapt two distinct estimation techniques to the problem
at hand: the network kriging procedure of [8] and least-squares
minimization withℓ2-norm regularization. The latter technique
was formerly employed for more general network performance
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metric estimation in [9]. Both estimation techniques rely on the
assumption of a linear relationship between link-level metrics
and the path-level metrics. In transparent optical networks,
neither BERs nor Q-factors are linear with respect to the
number of spans over which a signal is transmitted, and the
required linear relationship does not hold. However, the linear-
ity assumption holds, to within an acceptable approximation
error, for each of the four quantitiesµ0, µ1, σ0, andσ2

1 , as
indicated by the linear fits in Fig. 1. We can thus apply these
link-level estimation strategies for each of these four quantities
and combine the estimates to form an estimate of BER (note
that we in fact form estimates oflog(BER), which is a more
meaningful QoT metric for network operators).

Consider a transparent optical network ofnℓ links and
N nodes wherenp lightpaths are established. We denote by
yp ∈ R

np a column vector containing path-level QoT metrics
(µ0, µ1, σ0, orσ2

1 for some lightpaths) and byx ∈ R
nℓ the cor-

responding link-level metrics. Denote byGp the routing matrix
that describes the network state, that is,Gp ∈ {0, 1}np×nℓ ,
where (Gp)i,j = 1 when lightpathi traverses linkj. We
partitiony andGp into two components. For thenm lightpaths
that terminate at one of the hardware monitor locations, we
denote byym andGm ∈ {0, 1}nm×nℓ the observed (directly
measured) path metrics and corresponding routing matrix. For
the other unobserved lightpaths, those that do not terminate
at a hardware monitor location, we use the notationyn and
Gn ∈ {0, 1}(np−nm)×nℓ . Thus we haveym = Gmx and
yn = Gnx.

We also establish a limited numberna of lightpath probes
(active lightpaths) which terminate at nodes with hardware
monitors. We defer the discussion of how to choose the routes
of these paths until Section III-B. Denote byGa ∈ {0, 1}na×nℓ

the routing matrix of the active lightpaths. Letya = Gax

be the column vector for metrics corresponding to these
active lightpaths. CallGA =

[

GT
m, GT

a

]T
(where T denotes

transpose) the routing matrix corresponding to all observed
lightpaths andyA =

[

yT
m,yT

a

]T
the column vector containing

the metrics for all observed paths. The general estimation
problem can be expressed as: given a routing matrixGp =
[GT

m, GT
n ]T , the end-to-end observationsyA = GAx where

the link-level metricsx are unknown, estimate all unobserved
end-to-end metricsyn = Gnx.

Denote the estimator̂yn. If we employ mean-squared error
E[||ŷn − yn||22] as the quality of the estimator, then the best
estimator is given by the conditional expectationE[yn|yA].
This cannot be computed unless we have knowledge of the
joint distributional structure ofyn andyA. We can make the
task of finding a good estimator more tractable by focusing on
linear estimators (where the estimator can be expressed in the
form ByA for some matrixB). Deriving an expression for
the best linear estimator does not require knowledge of the
joint distribution ofyn andyA, but it does require knowledge
of the mean and covariance ofx. A natural solution is to
estimate this mean from the available data, using for example
generalized least squares. If enough data is available thenthe
covariance matrix could also be estimated, but we assume a
diagonal covariance matrix for simplicity. This leads to the

following estimator:

ŷn = GnGT
A(GAGT

A)+yA. (1)

Here(·)+ denotes a pseudo-inverse such as the Moore-Penrose
inverse. A more general version of this estimator is presented
in a paper called “network kriging” [8], and we will retain
that name here. The complexity of the kriging estimator is
dominated by the complexity of computing the pseudo-inverse
in (1), that is,O((nm + na)3).

The main problem with the network kriging estimator is
that there is no positivity constraint (we know that the four
metrics of interest are always positive quantities). This can
be remedied by projecting onto the viable space of solutions
or by incorporating the non-negativity constraint directly in
the optimization. In formulating the second estimator, we add
the constraint, but we also choose to incorporate an additional
prior belief about the “best” explanation for the observed data.2

The second estimator we formulate in this paper is based on
ℓ2-norm minimization. The associated optimization problem
is:

min
x,r

‖r‖2
2 + ‖x‖2

2 (2)

subject toGAx + D2r = yA,x ≥ 0.

In (2), r is a regularization parameter andD2 is a diagonal
matrix specifying the error tolerance (how closely the path-
level metric estimates must match the associated measure-
ments). Problem (2) can be written as a convex quadratic
program. Indeed, define vectorz = [rT ,xT ]T ; then the
objective function in (2) is simplyzT Iz = zT z, where all
constraints are linear inz. Note that, in general, quadratic
programs have objective functions of the formzT Gz + zT c,
with linear constraints onz. In (2), we havec = 0, and the
problem is convex sinceG = I is positive definite. In that case,
there are polynomial-time algorithms for solving (2) as well. In
particular, there exist efficient solved software packagessuch
as PDCO [16] that can solve problem (2).

The assumption of the (approximate) linear relation-
shipsym = Gmx, yn = Gnx and ya = Gax allows us to
use the network kriging andℓ2-norm minimization procedures
to estimateyn given Gn, Gm, Ga and ym. This estimation
procedure is run in turn forym,yn,ya ∈ {µ0, µ1, σ0, σ

2
1}

to return estimates for each of these four quantities for
the unobserved lightpaths. Based on these, we can construct
estimates for theQ-factors and BERs. Since the four metrics
µ0, µ1, σ0, andσ2

1 are only approximately linear with respect
to distance, additional estimation error will accrue from the
linearity approximation.

B. Active monitoring

In this section, we address the task of choosing which
lightpaths to activate for monitoring. We assume that hardware

2Note that the pseudo-inverse in the network kriging estimator does select
one of (infinitely) many possible values ofx that can explain the observed
data. Thus in employing the kriging estimator we are implicitly specifying
a definition of the “best” explanation. In our second estimator, “best” is
defined in terms of an attribute of̂x (minimum ℓ2-norm). In the kriging
estimator, “best” is specified by the choice of the linear mapping function,
GT

A
(GAGT

A
)+ that takes us fromyA to x̂.
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monitors have been placed at fixed locations and that we have
a limited budget ofna active lightpaths. The task is to design
an active routing matrixGa ∈ {0, 1}na×nℓ , where each row
corresponds to an active lightpath.

Our goal is to choose a set of active pathsGa in order to
maximize the “energy” of the unobserved, passive lightpaths
(described byGn) captured by the measurements; this is
equivalent to selecting paths to measure (i.e., rows ofGa) that
span the space ofGp not captured byGm and are as linearly
independent fromGm as possible. We justify this criterion by
recalling that the mean-squared errorE(‖ŷn − yn‖2

2) of our
estimator can be rewritten as the sum of a bias-squared term,
‖E(ŷn)−yn‖2, and a variance term,E(‖ŷn−E(ŷn)‖2

2). If we
accept the fact that the bias-squared term is difficult to address
directly, because it is largely due to our incomplete knowledge
about the statistics (e.g., mean and covariance) of the metrics
yn, then it makes sense to minimize the variance term. The
variance term increases for each row ofGn that lies outside
the row-space ofGA (which we denote byRGA

). Let BGp,GA

denote a matrix whose columns form an orthonormal basis for
the subspaceRGp

∪ RGA
of unmeasured lightpaths spanned

by rows of GA. Maximizing the energy of the unobserved
lightpaths is equivalent to maximizing‖GnBGp,GA

‖F , where
‖ · ‖F denotes the Frobenius norm.

The choice of which active lightpaths to use in forming
Ga is subject to the constraints that (i) each row ofGa must
correspond to a lightpath that meets the wavelength continuity
constraint and (ii) the last link of each active lightpath must
be equipped with a monitor. The QoT constraint does not
apply for these lightpaths since they do not carry useful
data. However, since additional lightpaths use resources and
may disturb existing lightpaths through, for example, crosstalk
injection, it is desirable to limit the total length of the active
lightpaths.

Our active lightpath selection scheme begins by identifying
a set of candidate lightpaths that are likely to be good
choices. We assume that we can activate lightpaths from any
source node to one of the nodes equipped with a monitor.
A sensible candidate set could include all of the one-hop
and two-hop paths to each monitor, since these paths are
short and potentially provide information about multiple paths.
One could continue to three-hop and greater neighborhoods of
each monitor, but the size of this candidate set would quickly
explode. In addition to one-hop and two-hop lightpaths, any
active lightpath whose performance is highly correlated with
one or more unobserved lighpaths can be very informative. We
can construct such lightpaths by appending to each unobserved
lightpath the shortest path from its destination to a monitor.
Let Gc denote the 0/1-valued matrix whose rows correspond
to all of the candidate paths identified; that is we assume that
Gc hasnc > na rows and exactlynℓ columns.

Once we have identified the set of candidate lightpaths,
the problem becomes choosingna of these candidates with
the goal of maximizing||GnBGp,GA

||F . The procedure com-
mences by initializingGA = Gm. We then employ a greedy
heuristic to select rows fromGc to add toGA. At each step
of the heuristic, we evaluate, for each candidate rowi of Gc,
a basisB(i)

Gp,GA
that would result if we added the row toGA.

We then calculate||GnB
(i)
Gp,GA

||F and choose the rowi that
maximizes this quantity, adding it toGA and removing it from
Gc. The process is repeated until we have addedna lightpaths
from Gc.

C. Physical monitor placement

When the number of monitors is limited, the monitoring
performance can vary substantially depending on where the
monitors are located. Estimation performance is improved if
more lightpaths terminate at monitors and if the observed light-
paths provide substantial information about the unobserved
lightpaths (if they are highly correlated). Optimizing monitor
placement requires the ability to accurately predict which
lightpaths will be established. This in turn requires that the
traffic demands are highly predictable and that a fixed routing
and wavelength assignment (RWA) strategy is employed.

In a dynamic transparent optical network, neither of these
conditions are likely to hold. But even coarse approximations
to the routes and traffic demands can provide us with enough
information to choose a set of monitor locations that will be
more informative, on average, than a randomly selected set.

We now describe a greedy heuristic for choosing moni-
tor locations. Most RWA algorithms choose shortest paths
where possible, so lightpath routes determined by shortest
path routing provide a reasonable approximation to the true,
possibly time-varying routes. Let the binary matrixGs denote
the shortest path routes in the network for all possible source-
destination pairs. If the following algorithm is applied directly
to Gs, then we are assuming uniform traffic demand. If
we have more knowledge about traffic demands, we can
incorporate it by weighting each row inGs by the demand
of the corresponding path.

Our task is to selectM monitor locations to maximize
estimation performance. This is a similar problem to the active
lightpath selection task, except that each monitor location adds
the ability to measure multiple lightpaths. We can employ
the same algorithm as before, with a minor modification.
We initialize Gm as an empty matrix. At each step of the
heuristic, we evaluate, for each candidate monitor location i,
the rowspaceR(i)

Gm
(and a corresponding orthonormal basis

B
(i)
Gm

) that would result if we added toGm all of the lightpaths
that terminate on linki. We then choose the monitor locationi
that maximizes||GsB

(i)
Gm

||F . The algorithm terminates when
we have selectedM monitor locations.

IV. SIMULATIONS

We simulate the operation of a scaled-down version of the
NSFNET topology (Fig. 2) with standard physical parameters
(10 Gbps NRZ signals traveling over 70 km spans of 100%
post-dispersion compensated SMF, noise figure of 6 dB, 8
wavelengths); The topology has a diameter close to 800 km,
ensuring that end-to-end transparency is feasible even without
FEC and with standard, non-advanced dispersion maps and
modulation formats. Although the actual physical reach of
signals with no regeneration in real networks can be much
longer than 800 km thanks for instance to the utilization of
FEC, advanced dispersion maps and modulation formats, our
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Fig. 2. Network topology used throughout this work. The numbers on the
links indicate the number of 70 km spans on each link; the topology we used
here is roughly 5 times smaller than the actual NSF network toensure end-
to-end transparency, while retaining topological realism. The squares above
link terminations indicate the placement of a monitor when the placement
procedure oulined in Section III-C is used.

models do not depend on those parameters. Only the details but
not the essence of the conclusions would change. The network
contains 42 unidirectional links and hence would require 42
monitors to gather a complete observation set about the QoT
in the network.

Arriving traffic demands are drawn from a uniform distribu-
tion over all (source,destination) pairs. Demands are assumed
to arrive according to a Poisson process with rateλ and de-
mand durations are exponentially distributed with mean1/µ;
numerical results are given for a network load ofλ/µ = 50
Erlang, which is a usual load for a network of this size. Note,
however, that the techniques demonstrated in this paper do not
depend on the demand arrival/duration processes.

The route taken by a new demand is determined by an
adaptive route-wavelength assignment (RWA) algorithm. The
selected route depends on the network state at the time a
demand arrives; routes are not necessarily shortest paths,and
two demands with the same source and destination do not nec-
essarily take the same route. In each network state, the number
of concurrent lightpaths in the network is approximately 50
(varying between 40 and 54 due to the randomness in the
demand generation). The results presented in this section are
averages over 500 network states.

Monitors are deployed at the locations determined by the
monitor placement algorithm described in Section III-C. In
Fig. 2, we indicate the locations of the top 15 monitors re-
turned by the placement algorithm described in Section III-C.
We use different symbols for the top 5 monitors (monitors 1-
5), the next 5 monitors (monitors 6-10) and the again the next
5 monitors (monitors 11-15). Note that the proposed placement
algorithm returns nested placements: if we run the placement
algorithm to select, independently,M andM ′ locations such
that M < M ′, then theM locations form a subset of theM ′

locations returned by the placement algorithm. This property
is useful in the context of incremental monitoring hardware
deployment.

We first examine the accuracy of the estimators in terms
of the relative mean squared error (RMSE) forlog(BER).
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Fig. 3. Relative mean squared error performance of kriging estimator andℓ2-
norm minimization estimator for a fixed number of hardware monitors (ten),
and a varying number of active lightpaths. The case of 0 active lightpaths
corresponds to passive monitoring. The kriging estimator generates negative
estimates; these are set to zero when calculating estimation error.

Fig. 3 compares the accuracy of the two estimators presented
in Section III-A for a fixed number of monitors (ten), varying
the number of active lightpaths in the network. The kriging
estimator generates negative estimates for the BER for 5-10
percent of the lightpaths, even when the number of active
lightpaths is relatively high, i.e. 30. These are not physically
meaningful values, so we map thelog(BER) to zero for
these estimates. The accuracies of both estimators improve
as more active lightpaths are injected. The estimator basedon
ℓ2-norm minimization outperforms the kriging-based estimator
when the number of active lightpaths is relatively small (less
than 15), but when more lightpath probes are employed the
accuracies are comparable. The remainder of our performance
analysis focuses on theℓ2-norm minimization estimator.

Fig. 4(a) displays how the RMSE for theℓ2-norm mini-
mization estimator is affected by changes in both the number
of active lightpaths and the number of monitors. Values for
na = 0 active lightpaths denote passive monitoring results.
Establishing even a relatively small number of active lightpaths
(e.g., 15) results in a sharp decrease in the estimation error,
especially when fewer monitoring devices are installed. There
exists a trade-off between the number of physical devices
and the number of active lightpaths required to achieve a
specifed estimation accuracy. For example, to achieve an
estimation error of approximately 7%, one can either deploy
20 monitors and use passive monitoring, or deploy 5 monitors
and use active monitoring with 25 active lightpaths. Note that
this trade-off could be captured by a single cost function
combining both estimation accuracy and number of established
active lightpathsna (for instance, a linear combination of
those two metrics). Such a cost function would likely vary
depending on the operator, hence, we are not proposing
any such cost function but report detailed results for both
estimation accuracy andna.

The estimation error does not converge to 0 asna increases.
It exhibits an error floor that decreases as the number of
monitors increases. This can be attributed to the approximation
error incurred through the linearization step. Indeed, Fig. 4(b)
confirms this assessment. It shows the RMSE in the case
where all four metricsµ0, µ1, σ0, and σ2

1 are artificially
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(b) Linearized metrics

Fig. 4. Relative mean square error for passive (0 active lightpaths) and active monitoring, for various numbers of hardware monitors and active lightpaths.
When estimated metrics are artificially linearized, the error floor for largena disappears.
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Fig. 5. Sample estimation results for a network configuration with 5 monitors;
9 lightpaths are observed by the monitors, and the BER of 44 lightpaths must
be estimated. Estimation results for− log(BER) are given in the top panel
for both passive (na = 0) and active (na = 20) monitoring, using the L2-
minimization procedure. Missing data points indicate thatthe estimator failed
to return an estimate. In the bottom panel we show the RMSE forboth passive
and active monitoring.

linearized, i.e. they are assigned values that are exactly linear
with distance. With genuinely linear metrics, the estimation
error converges to 0 as the amount of monitoring hardware or
the number of active lightpaths,na, increases.

The benefits of active monitoring are illustrated in Fig. 5
using a more concrete example. At the depicted point in
time, 53 lightpaths are established in the network and only
9 of these are directly observed by 5 hardware monitors. We
show the BER and the absolute error for the 44 unobserved
lightpaths (in arbitrary order, labeled from 1 to 44). The plots
compare passive monitoring with active monitoring employing
na = 20 active lightpaths. In the case of passive monitoring,
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Fig. 6. Top panel: Rank of
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(bold) and

ˆ

GT
m, G∗T
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˜T
.

The rank of
ˆ

GT
m, G∗T

a

˜T
increases steadily as the number of active

lightpaths increases towards the number of links in the network nℓ = 42,
indicating that our active lightpaths selection algorithmis adding informative
measurements. Bottom panel: The average energy of the unobserved lightpaths
that resides in the monitored subspace (the rowspace of

ˆ

GT
m, G∗T

a

˜T
) as a

function of the number of active lightpaths.

the estimation technique cannot generate estimates for 25
lightpaths, whereas with active monitoring, the BERs for only
2 lightpaths are not estimated. The technique cannot generate
a meaningful estimate for any lightpath that does not share
a link with any of the measured lightpaths. For nearly all
lightpaths, the estimates obtained using active monitoring case
are consistently closer to the real BER values than the passive
monitoring estimates. There is no apparent correlation between
the values of the BERs and the associated RMSE.

As discussed in Section III-B, the active monitoring strategy
strives to decrease the “variance term” in the estimation error,
which involves trying to construct an observation subspace
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Fig. 7. Impact of the monitor placement algorithm on the estimation
accuracy: the RMSE is decreased if the proposed monitor placement algorithm
is used (squares) instead of uniform random monitor placement (circles).
Results are presented forna = 0 (passive monitoring; top panel) andna = 25
active lightpaths (bottom panel). The standard deviation of the error for each
configuration is less than 0.01.

that contains as much of the energy of the unobserved
lightpaths as possible. We can measure how successful the
algorithm is by assessing the average fraction of energy of
each unobserved lightpath that is contained in the constructed

space. The rank of the constructed space,
[

GT
m, G∗

a
T
]T

, also
provides an important indication. If the technique is placing
monitors in good locations and activating informative active
lightpaths, then the rank should increase rapidly as the number
of monitors or active lightpaths is increased (indicating that
the addition of resources is providing new information). The

top panel of Fig. 6 depicts how the rank of
[

GT
m, G∗

a
T
]T

changes when we vary either the number of monitors or the
number of active lightpaths. For low numbers of monitors
and active lightpaths, the rank is much less than the number
of lit links, making BER estimation inaccurate. However, as

na increases,rank

(

[

GT
m, G∗

a
T
]T

)

increases with a slope

of approximately1, converging torank

(

[

GT
m, GT

n , G∗

a
T
]T

)

.

This latter value (depicted as a bold line with no markers)
is the rank of the complete routing matrix, which includes
observed, unobserved and active lightpaths. The bottom panel
of Fig. 6 shows the average fraction of energy of the unob-
served lightpaths that lies in the space spanned by the vectors
[

GT
m, G∗

a
T
]T

. As desired, this fraction increases rapidly as the
number of monitors is increased and as the number of active
lightpaths is increased.

We now analyze the performance of the monitor placement
algorithm, comparing it to a naive strategy of randomly placing
monitors in the network. Fig. 7 compares the RMSE achieved
by using these two placement strategies followed by applica-
tion of the ℓ2-norm minimization estimator. Performance is
assessed for the two cases of passive monitoring (na = 0,
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Fig. 8. Top panel: Comparison between the proportion of lightpaths that are
observed when the proposed monitor placement scheme is used(thin line)
and when random placement is employed (thick line). The random placement
line corresponds to the proportion of monitored links out ofthe total of 42.
Bottom panel: The average fraction of energy of the unobserved lightpaths
that lies in the monitored subspace, for both the proposed placement scheme
and the random placement scheme.

top panel) and for 25 active lightpaths (na = 25, bottom
panel), with the number of hardware monitors ranging from 5
to 35. To obtain the random placement curve, we averaged the
RMSE for 20 random placements with 50 different network
states. The error bars correspond to one standard deviation.
The curve corresponding to our proposed monitoring strategy
(which is deterministic) is obtained by averaging over 500
network states. The proposed algorithm achieves a 10-20%
improvement in estimation accuracy compared to random
placement.

The top panel of Fig. 8 displays the proportionnm/np of
(passive) lightpaths that are actually observed directly using a
monitor when the proposed monitor placement is used. The
bold line is the proportion of monitored links (there are 42
links in total). This line also corresponds to the expected
fraction of lightpaths that would be observed using a uniform
random monitor placement strategy. Using the monitor place-
ment algorithm presented in Section III-C, we monitor more
lightpaths (consistently 5-10% more) than would be captured
if monitors were randomly placed. Although the number
of directly monitored paths has some impact on estimation
accuracy, of more interest is how well the monitored lightpaths
capture the subspace occupied by the unobserved lightpaths.
The bottom panel of Fig. 8 displays the average fraction of
energy of the unobserved lightpaths that lies in the monitored
subspace, comparing the cases when the proposed placement
algorithm is employed to when monitors are placed on random
links. It is clear that the greedy placement algorithm results in
a monitored subspace that contains much more of the energy
of the lightpaths in the network. This leads to the improved
estimation performance observed in Fig. 7.
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V. CONCLUSIONS

We showed that it is possible to decrease the number of
hardware monitors needed to monitor the QoT of lightpaths in
a transparent optical network by establishing carefully selected
“active lightpaths”, without sacrificing estimation accuracy. In
addition, we studied the sparse monitor placement problem
and proposed an algorithm to select locations where hardware
monitors should be installed in the network in order to improve
estimation accuracy.

The estimation technique relies on a linearization of the
quantities involved in the QoT computations. Generalizingour
technique to more complex cases where linearity does not hold
will be the subject of future work. The estimation technique
currently assumes that wavelength-dependent impairments
such as XPM and FWM are negligible. It also assumes that the
physical layer effects of interest are statistically independent
and identically distributed across channels. Accounting for
channel dependence is a challenging but important topic of
future research.
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