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Abstract

This paper proposes a novel framework for delay-tolerant particle filtering that is computationally

efficient and has limited memory requirements. Within this framework the informativeness of a delayed

(out-of-sequence) measurement (OOSM) is estimated using a lightweight procedure and uninformative

measurements are immediately discarded. The framework requires the identification of a threshold that

separates informative from uninformative; this threshold selection task is formulated as a constrained

optimization problem, where the goal is to minimize state estimation error whilst controlling the compu-

tational requirements. We develop an algorithm that provides an approximate solution for the optimization

problem. Simulation experiments provide an example where the proposed framework processes less than

40% of all OOSMs with only a small reduction in state estimation accuracy.

Index Terms

Tracking, particle filtering, out of sequence measurement (OOSM), resource management.

I. INTRODUCTION

Tracking is frequently performed using multiple sensor platforms, with measurements being relayed to a

central fusion site over a wireless network. This can lead to some measurements being delayed through

packet losses or processing delays. The fusion centre is then faced with out-of-sequence measurements

(OOSMs). For some highly non-linear tracking tasks, the particle filter significantly outperforms the

Extended or Unscented Kalman Filter (EKFs/UKFs). Incorporating delayed measurements into a particle

filter in an efficient manner can be a challenging task. The goal is to retain state estimation error accuracy

while minimizing storage and computational requirements.

In this paper, we propose a novel framework for delay-tolerant particle filtering that is computationally

efficient and has limited memory requirements. To derive the framework we formulate a constrained
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optimization problem of selectively processing only the most informative OOSMs (those that provide the

most reduction in state estimation error), where the constraint specifies a maximum allowable average

computational expenditure. We develop an algorithm that addresses an approximation of this optimization

problem. The method combines a Gaussian approximation of the particle distribution at the current time

step and a linearization of the dynamics (similar to the EKF) to derive a procedure for rapidly predicting

the anticipated mean squared error (MSE) reduction associated with processing each OOSM. We then

derive a threshold for selecting the “best” OOSMs while respecting the average processing cost constraint.

Any measurements which are deemed insufficiently informative are thus immediately discarded.

We report simulation results for an example tracking scenario where the proposed algorithm processes

only 40% of all delayed measurements. The algorithm achieves an accuracy that is almost equivalent to

that achievable by re-running the particle filter each time a delayed measurement is received, but reduces

the computational cost by a factor of almost two.

A. Related Work

There has been substantial work on the efficient incorporation of out-of-sequence measurements OOSMs

in Kalman filters [1]–[9]. Fewer techniques have been proposed for processing delayed measurements

using particle filters. In [10], Orton et al. propose an approach that stores sets of particles for the last `

time steps, where ` is the predetermined maximum delay. The algorithm samples new particles at the time

step of the delayed measurement and uses these to update the current particle weights. This method was

improved with a Markov chain Monte Carlo (MCMC) smoothing step to mitigate the potential problem

of degeneracy in [11]. When a large number of particles is needed for accurate state estimation, the

algorithm has an excessive storage requirement.

Mallick et al. propose an approximate OOSM particle filter based on retrodiction in [12]. When

the filter receives an OOSM, it retrodicts (predicts backwards) the particles to the time step of the

delayed measurement and uses these particles to update the current weights. The algorithm in [13] also

uses retrodiction, but employs the Gaussian particle filter of [14]. Retrodiction requires a backwards

information filter, i.e. a filter that runs backwards in time. Constructing such a filter is possible for

linear state dynamics, and these are the systems that are studied in [12], [13]. Recent advances in

particle smoothing [15]–[17] can be adopted to extend the applicability of these techniques to non-linear

systems. However, running the backwards information filter remains a computationally intensive exercise,

equivalent to re-running the particle filter from the time of the delayed measurement.

In [15], Orguner et al. develop strategies to reduce both the memory requirements and computational

April 7, 2011 DRAFT



3

complexity of OOSM particle filters. They propose a “storage efficient particle filter” that only stores

statistics (single mean and covariance) of the particle set, rather than the particles themselves, at previous

time steps. Auxiliary fixed point smoothers are then employed to determine the likelihood of the delayed

measurement conditioned on each particle in the current set, and this likelihood is used to update the

weight of each particle. The algorithm can only adjust particle weights, not change particle locations;

this can lead to a particle degeneracy problem if an OOSM is highly informative and should induce a

significant change in the filtering distribution. Orguner et al. propose a heuristic of ignoring OOSMs that

lead to filter degeneracy, but this is not satisfactory, since the highly informative OOSMs are often the

most important to process.

The algorithm we propose in this paper involves selective processing of OOSMs. This was first

discussed by Orton and Marrs in [10]; they advocated a heuristic approach of discarding all measurements

that are delayed beyond a constant time, with the constant to be determined through experiment. More

recently, selective OOSM processing has been considered by Tasoulis et al. in [18] and in our previous

work [19]. Tasoulis et al. proposed a number of heuristic metrics to estimate the utility of delayed measure-

ments and develop threshold-based tests to discard measurements of low utility. They incorporate these

tests into three Kalman filtering algorithms that are designed to process delayed measurements. In [19]

we proposed a threshold based procedure to discard uninformative delayed measurements, calculating

their informativeness using mutual information and Kullback-Leibler distance metrics. We applied our

approach in the general non-linear setting, using a combination of the storage-efficient particle filter

proposed in [15] and a re-run particle filter.

The approach proposed by Tasoulis et al. is developed for the Kalman Filter and it is difficult to

extend to more general filtering problems with non-linearities. The proposed utility metrics are heuristic

and do not truly capture the potential that each delayed measurement has to improve the state estimation

performance. The latter issue is also a failing of our own work in [19]; although mutual information and

Kullback-Leibler distance metrics measure the potential for information gain, they do not directly assess

the potential reduction in estimation error. Perhaps most importantly, neither [18] nor [19] identifies a

procedure for threshold selection, despite the fact that the choice of this threshold can have a major

impact on performance and the appropriate value is a highly application-sensitive quantity.

No rigorous formulation of selective OOSM processing and the associated task of setting a threshold

exists in the literature. To fill this void we cast the problem as a sequential constrained optimization task.

Subject to a bound on the expected average OOSM processing cost, we strive to process at each time

step the set of OOSMs that will minimize the one-step MSE. We estimate this one-step MSE using a
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Gaussian approximation of the posterior at each filtering time instant and use this estimate to formulate

a threshold-based test. In contrast to previous methods, the selection of the threshold in our framework

has a theoretical foundation.

B. Paper Organization

The rest of the paper is organized as follows. Section II provides a formal problem statement. Section III

describes memory efficient OOSM particle filters. Section IV presents the proposed novel framework

for selecting informative OOSMs. In Section V we explore the approximations made in the derivation

of the framework and present a theorem identifying asymptotic conditions under which one of the key

approximations becomes exact. Section VI presents a concrete OOSM particle filtering algorithm based

on the selection framework and Section VII describes simulation experiments for an example tracking

scenario. We make concluding remarks in Section VIII.

II. PROBLEM STATEMENT

We now provide a formal statement of the OOSM filtering problem that we address and formulate the

optimization task. We consider the general discrete-time Markov state-space model with state dynamics

and measurement models both defined by non-linear maps. The process and observation noises are

modelled as additive Gaussian. At each timestep k, there is an active set of distributed sensors, Vk, that

make measurements and K = supk≥1 |Vk| is the maximal number of active sensors. These measurements

are relayed to the fusion centre. A subset of them Sk experience minimal delay and can be processed

at time k. Other measurements are delayed and only become available for processing at later timesteps.

Measurements delayed by more than ` timesteps are discarded. We assume that the probability of target

detection by any sensor is 1 and hence the treatment of clutter and data association are beyond the scope

of this paper.

The system is described by the following state-space model:

Xk = fk(Xk−1) + ϑk (1)

Y s
k = hsk(Xk) + ζsk (∀s ∈ Vk) (2)

Yk = {Y Skk : Sk ⊆ Vk} (3)

Zk = {Y Sk−`,kk−` , Y
Sk−`+1,k

k−`+1 , . . . , Y
Sk−1,k

k−1 } (4)

Here {Xk} denotes the state sequence, which is a Markov diffusion process with initial distribution

X0 ∼ p(x0), and {Y s
k } denotes the measurement sequence at the s-th sensor, with Y Skk = {Y s

k : s ∈ Sk}.
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ϑk is the process noise with Gaussian distribution N (0,Vk), and ζsk is the measurement noise with

Gaussian distribution N (0,Qs
k). The functions fk : Rd → Rd and hsk : Rd → Rms are the state transition

and measurement maps. Yk denotes the set of non-delayed measurements received at time k. Zk denotes

the set of OOSMs received at time k. Note that it does not include any other delayed measurements

received at previous time instants k− 1, k− 2, . . .. The set Sτ,k is the subset of active sensors at time τ

whose measurements are received at time step k (Sk,k ≡ Sk); Y Sτ,kτ is the set of measurements made at

time τ that arrive at the fusion centre at time k.

1) OOSM Filtering: LetWi:j,k denote the set of measurements generated in the interval [i, j] available

at the fusion centre by time k. This includes all the non-delayed measurements Yi:j =
⋃j
m=i Ym and

OOSMs Zi:j,k = {Zsτ,k ∈ Zk : τ ∈ [i, j], s ∈ Sτ,k}, where Zsτ,k is the OOSM that was acquired at time τ

by the sensor s ∈ Sτ,k ⊆ Vτ and was received at the fusion centre at time k. Let W̃i:j,k =Wi:j,k \Zk, i.e.

the set of all measurements available at time k except those in Zk. In other words, W̃i:j,k andWi:j,k differ

in that the latter includes Zk and the former does not. Lastly, note that Zτ,k ≡ Zτ :τ,k, Wτ,k ≡ Wτ :τ,k

and W̃τ,k ≡ W̃τ :τ,k.

The sequential OOSM filtering task involves forming an estimate X̂k of the current state, given all

available measurements at time k, W1:k,k. In this work, we construct the estimate by calculating an

approximate expectation of the state by sequentially computing a particle representation of the posterior

distribution.

2) Selective Processing for Computational Constraints: In this paper we are interested in reducing

computational requirements by processing only the informative OOSMs. We formulate this problem as

an optimization problem that involves minimizing the mean-squared error (with respect to an L2 norm)

subject to satisfying a constraint (Cave) on the expected computation at each time step.

Let bsτ,k ∈ {0, 1} be the indicator of OOSM Zsτ,k arrival and denote by psτ,k the expected value of bsτ,k,

conditioned on all the measurements received prior to time k. Denote by Csτ,k the computational cost

associated with processing the OOSM Zsτ,k. Let dsτ,k ∈ {0, 1} be our decision to process or reject OOSM

Zsτ,k and Dk =
⋃k−1
τ=k−`

⋃
s∈Vτ{d

s
τ,k} be the current set of all possible decisions. Our goal is to ensure

that the computational constraint is obeyed on average at each time step, i.e. in expectation with respect
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to all possible arrivals of OOSMs. We thus address the following optimization task for each k:

min
Dk∈{0,1}

Pk−1
τ=k−` |Vτ |

E
{
|Xk − X̂k|2

}

subject to
k−1∑
τ=k−`

∑
s∈Vτ

dsτ,kp
s
τ,kC

s
τ,k ≤ Cave (5)

III. OOSM PARTICLE FILTERS

Previously proposed OOSM particle filters primarily differ in how they incorporate the OOSMs from

the set Zk. The simplest approach is to discard them, but this often results in poor state estimation

performance. Another obvious approach is to restart the filter at the time step immediately prior to the

time step associated with the earliest OOSM in Zk and re-run to the current time step k. This requires that

we record all the particles, weights and the measurements for the maximal delay window. We call this

approach the “OOSM re-run particle filter” and consider it to be an accuracy benchmark. This method

has two unattractive qualities: the storage requirements can be immense and the computation cost is high.

As discussed in Section I-A, several methods have been proposed to alleviate these costs. In this

section, we provide a brief review of the storage efficient particle filter of [15] and describe a relatively

obvious alternative algorithm that we introduced in [19]. In both algorithms, the past particle distributions

are approximated by Gaussian approximations. The memory requirements are thus reduced by storing

statistics of the particle sets from past time steps instead of the particles themselves. The stored information

is then the mean and covariance matrix of particles at each time step from k − ` − 1 to k − 1 and

the measurement set W̃k−`:k,k. Note that the Gaussian approximation of posterior approximation at time

k−`−1 is necessary to initiate the OOSM processing for the set including OOSMs from steps k−` . . . k−1

(see Section III-A). Denote, respectively, by ξk, ωk the sets of the values and weights of particles at time

k, and let µk, Rk denote their mean and covariance. The stored information is then

Ωk = {µk−`−1:k−1,Rk−`−1:k−1, W̃k−`:k,k}, (6)

Here µk−`−1:k−1 and Rk−`−1:k−1 denote, respectively, the means and covariances of the particle sets for

time-steps ranging from k− `−1 to k−1. Note that the proposed selective OOSM processing algorithm

discussed in Sections IV–VI stores all the measurements W̃k−`:k,k up to time lag `.

A generic storage efficient OOSM particle filtering algorithm is summarized in Algorithm 1. If there

are no OOSMs at time k, we write Zk = ∅.
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Algorithm 1: Generic OOSM Particle Filter

At time k1

Input: Zk, Ωk, ξk−1, ωk−1

(ξk, ωk) ← ParticleFilter(Yk, ξk−1, ωk−1) ;2

(µk, Rk) ← SaveGauss(ξk, ωk) ;3

if Zk 6= ∅ then4

(ξk, ωk, Ωk) ← ProcessOOSM(Zk, ξk, ωk, Ωk);5

In this algorithm, the function ParticleFilter can be any standard particle filtering method. If

Yk = ∅, ParticleFilter only propagates the particles and skips the measurement processing step.

The function SaveGauss calculates the estimates of the mean and covariance given the weighted sample

set ξk, ωk and stores these in Ωk:

µk =
N∑
i=1

ω
(i)
k ξ

(i)
k (7)

Rk =
N∑
i=1

ω
(i)
k (ξ(i)

k − µk)(ξ
(i)
k − µk)

T (8)

The function ProcessOOSM specifies how OOSMs are processed and varies depending on the specific

algorithm.

A. Gaussian Approximation Re-run Particle Filter (OOSM-GARP)

A simple modification of the re-run particle filter involves storing only Gaussian approximations of the

particle distributions at previous timesteps. When a batch of OOSMs arrives, the particle filter is re-run

from the time step preceding the earliest OOSM. Since the particle set from that time step is unavailable,

particles are generated from the stored approximation.

When OOSM-GARP receives Zk at time k, it returns to the time step τ̃k−1 (let τ̃k denote the earliest

time step of all OOSMs in Zk). It samples particles from N (µeτk−1,Reτk−1), propagates them to the

time step τ̃k and runs the filter as standard particle filter using all stored measurements. At each step, it

updates the mean and covariance matrix in the stored set Ωk as described in Algorithm 2.
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Algorithm 2: ProcessOOSM-GARP
Input: Zk, Ωk

τ̃k = min
τ
{τ : yτ ∈ Zk} ;1

{ξ(i)eτk−1}
N
i=1 ∼ N (xeτk−1,µeτk−1,Reτk−1) ;2

ω
(i)eτk−1 = 1/N, i = 1 . . . N ;3

for j = τ̃k, . . . , k do4

(ξj , ωj) ← ParticleFilter(Wj,k, ξj−1, ωj−1);5

(µj , Rj) ← SaveGauss(ξj , ωj) ;6

endfor7

In many tracking tasks, the Gaussian provides a reasonable approximation to the particle distributions.

In OOSM-GARP, the Gaussian is only used to re-start the particle filter (to draw initial samples), so the

impact of approximation errors on filtering performance is relatively small. OOSM-GARP thus performs

almost as well as the basic re-run particle filter but requires much less memory. However, OOSM-GARP

is relatively computationally complex since it reprocesses all the particles for k− τ̃k + 1 steps. Note that

the cost to process OOSMs corresponding to a single time step, Zj,k, is approximately equal to that of

processing the whole batch of OOSMs Zj:k−1,k since we have to execute the particle filter from time

j to time k in both cases. This cost is proportional to the total computational complexity of functions

ParticleFilter and SaveGauss multiplied by a factor of k − j.

B. Storage Efficient Particle Filter with EKS (SEPF-EKS)

We now provide a brief review of the storage efficient OOSM particle filter from [15]. Orguner et al.

described three versions of the filter, which differed according to the auxiliary fixed-point smoother

they employed. We focus on the filter that employs Extended Kalman Smoother, since it is the least

computationally demanding but has comparable state estimation performance.

The SEPF-EKS is based on the following weight-update equation (recall that W̃i:j,k = {Wi:j,k−1,Yk}):

ω
(i)
k ∝ p(Zτ,k|ξ

(i)
k , W̃1:k,k)ω

(i)
k,τ̄ . (9)

Here ω(i)
k,τ̄ and ω(i)

k denote the weights before and after processing Zτ,k. The SEPF-EKS estimates this

likelihood expression in two stages. First it approximates p(xτ |ξ(i)
k , W̃1:k,k) by applying an augmented-

state extended Kalman smoother [20], treating the current particle ξ(i)
k as a measurement. The SEPF-

EKS then employs an EKF approximation of p(Zτ,k|xτ ) to construct an estimate of the likelihood
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p(Zτ,k|ξ
(i)
k , W̃1:k,k).

Although the original algorithm was designed to treat individual OOSMs, it can be easily extended

to treat batches of OOSMs by running a separate update for each time-step. This extended algorithm is

presented as Algorithm 3.
Algorithm 3: ProcessSEPF-EKS

Input: Zk, Ωk, ωk,τ̄ , ξk

for Zτ,k ∈ Zk do1

Compute approximation p(Zτ,k|ξ
(i)
k , W̃1:k,k) for all i;2

ω
(i)
k ← ω

(i)
k,τ̄p(Zτ,k|ξ

(i)
k , W̃1:k,k) ∀i ;3

endfor4

ωk = ωk/
∑

iω
(i)
k ;5

SEPF-EKS achieves significant computational savings because the filtering operations for step 2 are

common to all N particles except for a single time-step. This means that the effective computational cost

is equivalent to running one time step of a particle filter, and is therefore usually less than that of the

OOSM-GARP filter. The advantage diminishes when it is common for OOSMs to arrive in batches with

different delays because of the seemingly unavoidable loop in the algorithm.

IV. SELECTIVE OOSM PROCESSING

The computational cost of processing an OOSM is relatively high and frequently it is wasted effort,

resulting in minimal change to the filtering distribution or the state estimation accuracy. In this section

we design a procedure for addressing the optimization problem posed in Section II, that of minimizing

the mean squared error while controlling the computational effort.

The optimization problem is challenging and generating an exact solution would be more costly than

simply processing all OOSMs with a re-run particle filter. We therefore strive to approximate the problem

so that we can develop an efficient procedure for selecting the informative OOSMs. The complexity of

this procedure must not depend on the number of particles in the filter.

Our method employs a Gaussian approximation of the joint distribution of the current state and the

current set of OOSMs. We derive this approximation using an EKF-type linear approximation of the

general state-space model. Second, we model the OOSMs from different sensors or different times

as approximately unconditionally independent. This second approximation allows us to disentangle the

effects of processing different OOSMs on the filtering error. In section V we study asymptotic conditions

under which this assumption holds exactly. This provides a solid theoretical justification for our choice of
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this simplifying approximation and we consider that it is sufficiently accurate in practice for our purpose

of selecting the informative OOSMs. It is important to stress that these approximations are only used for

the purpose of selecting the measurements to process; they are not employed within the filter itself.

A. State Estimation MSE Under Gaussian Approximation

We employ the well known EKF-type linear approximation of the general state-space model:

Xk = fk(µXk−1) + Fk(Xk−1 − µXk−1) + ϑk (10)

Y s
k = hsk(µXk) + Hs

k(Xk − µXk) + ζsk, s ∈ Vk (11)

Here Fk and Hs
k are linearizations (through Taylor expansion at µXk−1 and µXk , respectively) of the

non-linear dynamic and measurement maps.

Let Pk and µk be the covariance matrix and the mean of the Gaussian approximation of the joint

probability distribution of the current state and the current set of OOSMs conditioned on all available

measurements. The covariance matrix and the mean have the following structure:

Pk =

R
XkXk|fW1:k,k

R
XkZk|fW1:k,k

RZkXk|fW1:k,k
RZkZk|fW1:k,k

 , µk =

µXk|fW1:k,k

µZk|fW1:k,k

 (12)

where R
XkXk|fW1:k,k

is the current state covariance, R
XkZk|fW1:k,k

and RZkXk|fW1:k,k
= RT

XkZk|fW1:k,k
is the

state-measurement cross-covariance and RZkZk|fW1:k,k
is the measurement set covariance. Note that the

means and covariances are conditioned on W̃1:k,k which includes the set of non-delayed measurements

made at time k and the set of all measurements made in interval [1 : k−1] and received by time k−1. In

the following discussion, we will often skip this conditioning to avoid unnecessarily complicated notation,

but this conditioning is implied unless explicitly stated otherwise.

The optimal MMSE estimator X̂k of the state is known to be the conditional mean µ
Xk|fW1:k,k,Zk ,

which in the case of our Gaussian approximation is simply:

X̂k = µXk + RXkZkR
−1
ZkZk(Zk − µZk). (13)

Let Bk =
⋃k−1
τ=k−`

⋃
s∈Vτ{b

s
τ,k} be the set of random variables that indicate OOSM arrivals at time k.

This set defines the structure of the set Zk along with the associated mean µZk and (cross-)covariance

terms RXkZk and RZkZk . By the law of total variance the variance of the estimator can be expressed as:

var(Xk − X̂k) =E{var(Xk − X̂k|Bk)}+ var(E{Xk − X̂k|Bk}). (14)
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Since, according to our linearization, E{Xk|Bk} = fk(µXk−1) and E{X̂k|Bk} = µXk = fk(µXk−1) we

have for any realization of Bk: E{Xk − X̂k|Bk} = 0. Thus the variance of the MMSE estimator is equal

to the expectation of its variance conditioned on the realization of indicators Bk:

var(Xk − X̂k) = E{var(Xk − X̂k|Bk)}. (15)

For a specific realization of indicators Bk this variance is defined by the components of the joint covariance

matrix (recall that Zk is a function of Bk):

var(Xk − X̂k|Bk) = RXkXk −RXkZkR
−1
ZkZkRZkXk (16)

The mean squared error of estimating the state Xk conditioned on the OOSM set Zk (as well as all the

previous measurements) is thus given by

tr var(Xk − X̂k) = E{tr var(Xk − X̂k|Bk)}

= tr RXkXk − E{tr RXkZkR
−1
ZkZkRZkXk} (17)

Under the assumption that the measurements made by different sensors (or the same sensor at different

times) are approximately unconditionally independent, RZkZk is approximately block-diagonal. This

implies that we can approximate the above expression as follows:

tr var(Xk − X̂k) ≈ tr RXkXk − E

{
k−1∑
τ=k−`

∑
s∈Vτ

dsτ,kb
s
τ,k tr RXkY sτ R−1

Y sτ Y
s
τ
RY sτ Xk

}
. (18)

Here the expectation is taken with respect to the measurement arrival indicators bsτ,k, RY sτ Y
s
τ

= var(Y s
τ )

is measurement covariance and RY sτ Xk = cov(Y s
τ , Xk) is the state-measurement cross covariance. If we

denote

Rsτ,k = tr RXkY sτ R−1
Y sτ Y

s
τ
RY sτ Xk , (19)

the factor that we will refer to as the measurement utility then the expression for the MSE can be further

simplified:

tr var(Xk − X̂k) ≈ tr RXkXk −
k−1∑
τ=k−`

∑
s∈Vτ

dsτ,kp
s
τ,kR

s
τ,k. (20)

where psτ,k = E
{
bsτ,k

}
is the probability that the measurement acquired by sensor s at time τ arrives

at time k (conditioned on the measurement arrivals up to time k). The above expression is a natural
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objective function to be minimized to assure the best state estimation quality. The minimal value of the

objective is reached when all measurements are processed (dsτ,k = 1,∀ τ, s) since Rsτ,k ≥ 0.

B. One-step Constrained Minimization of Approximate MSE

Given the discussion above and the identified approximations, the constrained optimization problem

posed in Section II can be formulated as follows:

min
{dsτ,k:s∈Vτ ,τ∈[k−`,k−1]}

tr var(Xk − X̂k)

subject to
k−1∑
τ=k−`

∑
s∈Vτ

dsτ,kp
s
τ,kC

s
τ,k ≤ Cave (21)

The unconstrained objective to be minimized can be formulated using Lagrange relaxation with Lagrange

multiplier γk:

J(Dk) = tr var(Xk − X̂k) + γk

(
k−1∑
τ=k−`

∑
s∈Vτ

dsτ,kp
s
τ,kC

s
τ,k − Cave

)

= tr RXkXk −
k−1∑
τ=k−`

∑
s∈Vτ

dsτ,kp
s
τ,k(R

s
τ,k − γkCsτ,k)− γkCave. (22)

For a fixed γk the optimal solution of (22) can be found by optimizing each dsτ,k independently since the

contribution of each term under the sum corresponding to a particular dsτ,k is independent of all other

variables to be optimized. It is clear that setting dsτ,k = 1 whenever Rsτ,k − γkCsτ,k ≥ 0 and dsτ,k = 0

whenever Rsτ,k − γkC
s
τ,k < 0 produces the smallest value of the objective function for a given γk.

Substituting this solution into the constraint we obtain

k−1∑
τ=k−`

∑
s∈Vτ

1{Rsτ,k−γkCsτ,k}p
s
τ,kC

s
τ,k ≤ Cave, (23)

where 1{·} is the indicator function. If we denote R̃sτ,k = Rsτ,k/C
s
τ,k, the measurement utility diminished

by the processing cost incurred, the above is equivalent to

∑
{s,τ : eRsτ,k≥γk}

psτ,kC
s
τ,k ≤ Cave. (24)

The optimal value of γk is thus the smallest value for which (24) holds. A simple practical algorithm

can be devised to identify this value of γk. The algorithm, summarized in Algorithm 4, assumes that we

can evaluate psτ,k, which is usually possible given sufficient knowledge about the measurement apparatus
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and the network delay profile.

Algorithm 4: Threshold selection algorithm

Input: {R̃sτ,k}, {psτ,k}, {Csτ,k} of cardinality T =
∑k−1

τ=k−` |Vτ | and Cave ;

Order set {R̃sτ,k} by decreasing value, output ordered sequence {Ron}Tn=1 ;1

Construct sequences {pon}Tn=1, {Con}Tn=1 using mapping (τ, s) 7→ n used for the previous set ;2

Construct sequence {Ψo
n}Tn=1 with elements Ψo

n =
∑n

j=1 p
o
jC

o
j3

Identify n∗ = arg maxn Ψo
n : Ψo

n ≤ Cave4

Output: γk = Ron∗ ;

We can now describe the operation of the proposed OOSM selection algorithm. At every filtering step

the selection algorithm first calculates the measurement utilities diminished by the processing cost, R̃sτ,k,

along with probabilities of arrival for all possible OOSMs, psτ,k. It then identifies a threshold γk such

that the expected processing cost does not exceed Cave (step 4 in Algorithm 4). The final step of the

algorithm is to select arriving OOSMs with utility R̃sτ,k surpassing the calculated threshold.

To execute the proposed algorithm we need expressions for the (cross-) covariance matrices RXkY sτ and

RY sτ Y
s
τ

. These matrices can be calculated online using the extended Kalman smoother (EKS) algorithm.

We employ the Rauch-Tung-Striebel (RTS) backward recursion realization [21]. We apply the RTS

recursion starting from the Gaussian approximation of the posterior at the current time k and moving

backwards in time until time step k− `. As a result, we obtain a sequence of smoother means µ
Xτ |fW1:k,k

and covariance matrices RXτXτ for k − ` ≤ τ < k.

At time k we have the set of measurements W̃1:k,k, so the linearizations (10) can be made more general

(and, hopefully, accurate) with the use of the EKS statistics µ
Xτ |fW1:k,k

, τ < k − 1:

Xτ = fτ (µ
Xτ−1|fW1:k,k

) + Fτ (Xτ−1 − µXτ−1|fW1:k,k
) + ϑτ (25)

Y s
τ = hsτ (µ

Xτ |fW1:k,k
) + Hs

τ (Xτ − µXτ |fW1:k,k
) + ζsτ , s ∈ Vτ . (26)

Here the Jacobians Fτ and Hs
τ are evaluated at the points defined by the respective EKS means. With

the use of the above linearization, calculation of the required approximate covariance matrices becomes

straightforward. Noting that E{Y s
τ } = hsτ (µXτ ), and observing the independence of ζsτ and Xτ − µXτ ,

we can derive

RY sτ Y
s
τ

= Hs
τRXτXτH

s
τ
T + Rζsτζ

s
τ
. (27)
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Note that RXτXτ is the covariance of the extended Kalman smoother.

Next, we calculate the cross-covariance RXkY sτ . Since E{Xτ} = fτ (µXτ−1), we have for any τ < k:

Xk − E{Xk} = Fk(Xk−1 − µXk−1) + ϑk (28)

= Fk(Fk−1(Xk−2 − µXk−2) + ϑk−1) + ϑk (29)

= FkFk−1(Fk−2(Xk−3 − µXk−3) + ϑk−2) + Fkϑk−1 + ϑk (30)

= Fk,τ (Xτ − µXτ ) +
k∑

j=τ+1

Fk,jϑj (31)

where we have introduced the notation Fk,τ =
∏k
j=τ+1 Fj and Fk,k = I. We can thus evaluate the

cross-covariance using the expression:

RXkY sτ = Fk,τRXτXτH
s
τ
T . (32)

V. ASYMPTOTICS OF THE PROPOSED ALGORITHM

In this section we will consider the conditions under which the unconditional measurement inde-

pendence approximation made in the previous section is expected to hold, assuming that the Gaussian

approximation is accurate. The assumption simplifies the algorithm derivation and reduces its computa-

tional requirements, but it leads to sub-optimality of the derived constrained MSE minimization algorithm.

The conditions established in this section help us understand when the performance of the proposed sub-

optimal algorithm is expected to approach that of the optimal OOSM selection algorithm, assuming that

the Gaussian approximation and linearization are accurate.

The following theorem specifies that, under mild regularity assumptions, if an asymptotic condition on

the minimal eigenvalues of the noise matrices holds, then the block-diagonal approximation employed

to derive the OOSM selection algorithm in the previous section holds exactly. The proof is provided in

Appendix A.

Theorem 1. Let RZkZk , RXkZk be defined as in (12) and let BZkZk be the block-diagonal matrix whose

diagonal blocks match those of RZkZk (the covariances of measurements from the same sensor at the

same time). Suppose that the following assumptions hold:

A1: ρ(RXnXn) <∞, ∀k − ` ≤ n < k

A2: ρ(Hs
mHs

m
T )1/2 <∞ and ρ(Hs

m
THs

m)1/2 <∞, ∀k − ` ≤ m < k and ∀s ∈ Vm
A3: ρ(Fm,nFT

m,n)1/2 <∞, ∀k − ` ≤ n ≤ m and k − ` ≤ m ≤ k
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Then we have for any `,K <∞, Zk and k > 1:

min
s,m

λmin(Rζsmζ
s
m

)→∞⇒ | tr RXkZkR
−1
ZkZkRZkXk − tr RXkZkB

−1
ZkZkRZkXk | → 0, (33)

where λmin(·) = mini λi(·)

The regularity conditions imposed in Theorem 1 are mild and natural. Assumption A1 requires the

extended Kalman smoother covariance RXnXn to have finite spectral radius. Thus assumptionA1 basically

requests the stability (including the numerical stability) of the EKS. Assumption A2 and A3 require

the spectral radia of matrices Hs
mHs

m
T , Hs

m
THs

m and Fm,nFT
m,n to be finite. If the measurement and

transition functions, hsk(·) and fk(·), are differentiable (sufficiently smooth), leading to Fm and Hs
m with

finite elements, then assumptions A2 and A3 hold by the Gershgorin disc theorem [22]. Any scenario

when the EKS functions normally and can be implemented leads to the assumptions being satisfied.

The asymptotics in the theorem are with respect to mins,m λmin(Rζsmζ
s
m

)→∞. The implications are

best illustrated by way of example. If Rζsmζ
s
m

is scalar for all sensors at all times and Rζsmζ
s
m

= σ2s
m,

then λmin(Rζsmζ
s
m

) = σ2s
m. The asymptotic condition thus implies that the measurement noise variance

approaches infinity for all sensors at all times, or, equivalently, that all measurements become utterly

uninformative. If, on the other hand, Rζsmζ
s
m

is 2× 2 with equal component variances, for all sensors at

all times:

Rζsmζ
s
m

= σ2s
m

 1 rsm

rsm 1

 (34)

then λmin(Rζsmζ
s
m

) = σ2s
m(1 − |rsm|). Thus the asymptotic specifies that measurement components are

not absolutely (positively or negatively) correlated (|rsm| 6= 1,∀m, s), and that they have asymptotically

large variance.

VI. SELECTIVE OOSM PARTICLE FILTER

In this section we specify an OOSM particle filter that employs the general OOSM selection framework

presented in Section IV. For clarity, we describe the filter in the context of a specific application scenario,

but it can be easily adapted to different delay models and OOSM processing costs.

We consider a situation when there are several sensors sending measurements (e.g. bearing or range)

of the target to a common fusion centre. All sensors are assumed to have communication issues leading

to OOSMs. An OOSM arrives at the fusion centre from a given sensor with probability posm and delay

d. The delay d is uniformly distributed in the interval [0, `]. The probability posm characterizes the event
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that the OOSM reaches the fusion centre at all. For example, this corresponds to the scenario when

OOSMs delayed by more than ` are automatically dropped by the network.

We implement the proposed OOSM processing framework using the SEPF-EKS algorithm of [15].

In this case the OOSMs with the same time stamp arriving from different sensors can be processed

in one sweep of SEPF-EKS algorithm (see Algorithm 3 and associated discussion). Instead of a single

OOSM Zsτ,k we thus consider a set Z{I}τ,k consisting of {Zsτ,k} and designated by the ordered index set

I = {0, 1}|Vτ | such that Zsτ,k ∈ Z{I}τ,k if and only if the element corresponding to sensor s, I(s) = 1.

We set the cost to process Z{I}τ,k as C{I}τ,k = 1, (the cost to run the SEPF-EKS algorithm on a given

hypothetical realization Z{I}τ,k ), irrespective of the particular combination of Zsτ,k. We make this choice

because the computational complexity of the SEPF-EKS algorithm is approximately the same as one

timestep of the particle filter. The average cost constraint analogous to (21) is then:

∑
I∈I

d
{I}
τ,k p

{I}
τ,k ≤ Cave, (35)

where d{I}τ,k is the decision whether or not to process a given realization Z{I}τ,k and J is the set of all

possible realizations of I. Cave can be interpreted as the average number of SEPF-EKS algorithm sweeps

per filtering step or, in other words, the average additional overhead caused by OOSM processing.

We have an expression for the MSE analogous to (20):

tr var(Xk − X̂k) = tr RXkXk −
k−1∑

m=k−`

∑
I∈I

d
{I}
τ,k p

{I}
τ,k R

{I}
τ,k . (36)

Here R
{I}
τ,k is calculated similarly to (19) with Y

{I}
m being the vector constructed from those Y s

m for

which I(s) = 1:

R
{I}
m,k = tr RXkY

{I}
m

R−1

Y
{I}
m Y

{I}
m

RY
{I}
m Xk

. (37)

The probability p{I}τ,k that an OOSM with a given sensor combination I active at time τ arrives at time

k can be calculated as:

p
{I}
τ,k =

∏
s∈Vτ :I(s)=1

psτ,k
∏

j∈Vτ :I(j)=0

(1− pjτ,k). (38)

Here psτ,k = 0 if the measurements from sensor s at time τ have already arrived. If not, then:

psτ,k = Pr{∆s
τ = k − τ |bsτ,k−1 = 0, . . . , bsτ,τ = 0} (39)
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where ∆s
τ is the delay that the OOSM from sensor s experiences at time τ . For the case of the uniform

delay distribution and probability of successful transmission posm, we have:

psτ,k =
posm

`+ 1− (k − τ)
(40)

Equipped with the expressions above we can calculate R̃{I}τ,k , the analog of R̃sτ,k, and apply a slightly

modified version of Algorithm 4 to set the threshold γk. This algorithm employs a similar measurement

covariance matrix block-diagonality approximation as in the general framework described in Section IV.

In this case, however, the blocks are larger and consist of matrices RY
{I}
m Y

{I}
m

, rather than RY smY
s
m

. The

modified approximation is thus that blocks RY
{I}
m Y

{J}
n

are close to zero for all combinations of sensors

I and J and any m 6= n.

As a final heuristic refinement of the algorithm we use the OOSM-GARP algorithm to process

those OOSMs for which the SEPF-EKS algorithm performs poorly, namely the highly informative

measurements that should induce significant shifts in the current filtering distribution. We add a test to

check whether the effective number of samples in the particle filter drops significantly after the application

of the SEPF-EKS processing; if this occurs, we reprocess the OOSM using the OOSM-GARP filter. This

allows the algorithm to adjust both weights and locations of particles to account for the new information

embedded in the OOSMs. We have observed that this step greatly improves the performance of the filter

at a minimal cost.

The OOSM particle filtering algorithm based on the above discussion is presented in Algorithm 5.

This algorithm describes only the OOSM processing procedure corresponding to ProcessOOSM in

Algorithm 1 (Algorithm 1 presents the complete high level OOSM particle filter pseudocode). In Algo-

rithm 5, as we discussed in Section IV, we first calculate the sequence of EKS means and covariance

matrices, which are further used to compute the Jacobians and the utilities {R̃τ,k}. These are used in

CalcGamma (a minor modification of Algorithm 4), which has the task of setting the current value of

threshold γk. This threshold is used to determine which OOSMs should be processed with the function

ProcessSEPF-EKS summarized in Algorithm 3. The failure of this algorithm, which is expressed

through particle degeneracy, is detected via the second threshold test (where the value of ν should be

small, e.g. 1/40). If a failure is detected, the algorithm switches to recalculate the current particle set via

function ProcessOOSM-GARP summarized in Algorithm 2.
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Algorithm 5: Particle Filter with selective OOSM processing (ProcessOOSM)

At time k1

Input: Zk, ξk, ωk, Ωk, Cave

(µXk−`:k , RXk−`:kXk−`:k) ← EKS(Ωk) ;2

(γk, {R̃τ,k}) ← CalcGamma(µXk−`:k , RXk−`:kXk−`:k , Cave) ;3

EKSfailed = 0 ;4

for τ : Zτ,k ∈ Zk do5

if R̃τ,k ≥ γk then6

(Nprior) ← 1/‖ωk‖22 ;7

(ωk) ← ProcessSEPF-EKS(Zτ,k, ξk, ωk, Ωk) ;8

(Npost) ← 1/‖ωk‖22 ;9

if Npost < νNprior then10

EKSfailed = 1 ;11

break ;12

endif13

endif14

endfor15

if EKSfailed then16

(ωk, ξk, Ωk) ← ProcessOOSM-GARP(Zk, Ωk) ;17

VII. NUMERICAL EXPERIMENTS

In our simulations we consider a two-dimensional scenario with a single target that makes a clockwise

coordinated turn of radius 500m with a constant speed 200km/h. It starts in the y-direction with initial

position [−500m, 500m] and is tracked for 40 seconds.

The target motion is modeled in the filters by the nearly coordinated turn model [23] with unknown

constant turn rate and cartesian velocity. The state of the target is given as xk = [pxk, p
y
k, v

x
k , v

y
k , ωk]

T ,

where p, v and ω denote the position, velocity and turn rate respectively. The dynamic model for the
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coordinated turn model is

Xk+1 =



1 0 sin(ωk)
ωk

cos(ωk)−1
ωk

0

0 1 1−cos(ωk)
ωk

sin(ωk)
ωk

0

0 0 cos(ωk) − sin(ωk) 0

0 0 sin(ωk) cos(ωk) 0

0 0 0 0 1


Xk + ϑk+1

where ϑk+1 is Gaussian process noise, ϑk+1 ∼ N (0,Vk+1), Vk+1 = diag([302, 302, 102, 102, 0.12]),

and the sampling period is 1 second. We assume that the filter initially knows little about the state of

the target and therefore it is initialized with the state value µX0 = [0, 0, 0, 0, 0]T and a large covariance

RX0X0 = diag([10002, 10002, 302, 302, 0.12]).

There are three sensors S1, S2 and S3 sending bearing-only measurements of the target to a common

fusion centre. The sensor locations are [Sx1 , S
y
1 ] = [−200, 0], [Sx2 , S

y
2 ] = [200, 0], [Sx3 , S

y
3 ] = [−750, 750]

and the bearings-only measurement function is:

hjk(xk) = arctan(
pyk − S

y
j

pxk − Sxj
) j = 1, 2, 3. (41)

The measurements from the sensors are corrupted with additive independent Gaussian noises with zero

mean and standard deviation σs = 0.05. An OOSM arrives at the fusion centre from a given sensor with

probability posm and delay d. The delay d is uniformly distributed in the interval [0, 5]. The probability

posm that an OOSM reaches the fusion centre at all is set to 0.7.

A. Benchmarked Filters

We have implemented five different particle filters, all based on the Sampling Importance Resampling

(SIR) filtering paradigm [24]. The prior distribution is used as the importance function1. The filters were

implemented in Matlab and the code was highly optimized.

PFall: collects all measurements from all active sensors (no OOSMs). This is an idealized filter that

provides a performance benchmark; a real-time implementation is impossible.

PFmis: discards all OOSMs and therefore only processes the measurements with zero delay.

SEPF-EKS: Storage efficient particle filter using EKS smoothing as described in [15] (Algorithm 3).

1Although better performance could be achieved by using a more carefully-chosen importance function, this generally comes
at the cost of some computational expense. By using the same, simple importance function for all particle filters we achieve a
fair performance comparison.
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Fig. 1. State estimation performance of the particle filters as a function of time using RMS error as a performance metric. (a)
The curves show the means of 5000 Monte-Carlo trials. (b) Errorbars showing the variation of position RMS for SEPF-EKS,
PF-GS and PF-SEL, when they use 2000 particles. The box has lines at the lower quartile, median(red line), and upper quartile
values. Outliers (red ’+’) are values beyond the range of 5 times the interquartile range from the ends of the box.
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PF-GS: The OOSM-GARP algorithm described in Algorithm 2.

PF-SEL: Selective OOSM processing based on the proposed framework and described in Algorithm 5.

We use the root mean-squared (RMS) position error to compare the performances of the particle filters.

Let (pxk, p
y
k) and (p̂xk,i, p̂

y
k,i) denote the true and estimated target positions at time step k for the i-th of

M Monte-Carlo runs. The RMS position error at k is calculated as

RMSk =

√√√√ 1
M

M∑
i=1

(p̂xk,i − pxk)2 + (p̂yk,i − p
y
k)

2 (42)

B. Results and Discussion

In our first experiment we fix the computational cost Cave = 0.6. We thus allow 0.6 sweeps of the

SEPF-EKS algorithm to be performed on average per filtering step. Over an extended period of time of

sufficiently large length L this leads to an additional OOSM processing overhead of ∼ 0.6LCEKS where

CEKS is the cost of one sweep of the SEPF-EKS algorithm. If we do not apply the proposed procedure

and process all the available OOSMs this cost in our application scenario is approximately 1.5LCEKS .

This implies that we process only approximately 40% of all measurements.

In Fig. 1, we plot the respective RMS position performance for the tracking period of 40s for the

algorithms with these settings. Corresponding error-bar plots of the RMS performance are shown in

Fig. 1(b). The actual number of individual OOSMs processed by the SEPF-EKS after application of

the first threshold γk measured in our experiment is 40.04%. After the second threshold ν = 1/40 the

percentage of most informative OOSMs processed by rerunning the particle filter using OOSM-GARP

is 1.57%.

Fig. 1 indicates that despite processing only a relatively small fraction of the OOSMs, the proposed

algorithm performs almost as well as the much more complex OOSM-GARP algorithm (PF-GS). The

calculation of the selection criterion has minimal overhead, so discarding the uninformative measurements

results in significant computational savings. Thus the proposed filter is more computationally efficient

than the SEPF-EKS filter and yet, as can be seen from Fig. 1, it has better RMS performance. Fig. 1(b)

indicates that the performance of SEPF-EKS is not as stable as that of PF-GS and PF-SEL. In the

proposed algorithm the increased robustness and performance stability is achieved by using the second

threshold to detect situations when reweighting particles induces sample degeneracy problems.

In our next experiment we study the computational complexity versus accuracy trade-off for the

proposed algorithm. We illustrate this by varying the computational complexity of the proposed algorithm

by adjusting Cave and plotting the RMS error vs. computational load measured in MATLAB. The compu-
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tational load is measured in flops using the PAPI performance evaluation interface [25]. We use the fol-

lowing values to control the OOSM processing overhead: Cave = {0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, 1, 1.3, 2},

γ2 = 1/40. These results are reported in Fig. 2. In this figure we show the relationship between complexity

and performance for the proposed algorithm with ten values of Cave and results of 10 simulations for

other algorithms. Each simulation involves 1000 Monte Carlo runs. We compare the performance of all

particle filters when they use 2000 particles; qualitatively similar results were observed for 1000 and 5000

particles. For 200 particles we report the results in Fig. 3. When the thresholds are chosen so that the

proposed filter has the same computational complexity as SEPF-EKS, it achieves significantly better state

estimation performance. Alternatively, for the same fixed RMS error performance, the selective processing

algorithm reduces the computational load by 30 − 40%. Compared to the OOSM-GARP algorithm, a

50% reduction in computational requirements leads to only a small increase in estimation error. The

results illustrate that we can adjust Cave to control the trade-off between the average computational load

or power supply consumption and the state estimation performance.

VIII. CONCLUSIONS

This paper presents a framework for selective processing of the out-of-sequence measurements. Based on

this framework we develop a computationally efficient algorithm for delay-tolerant particle filtering that

has limited memory requirements. By identifying and discarding the uninformative delayed measurements,

the algorithm reduces the computational requirements. By processing the most informative measurements

with a re-run particle filter, the algorithm achieves better state estimation performance than the storage

efficient particle filter of [15].

In our framework, the threshold to discard uninformative measurements is set by minimizing the one-

step MSE calculated from the Gaussian approximation of posterior at every filtering time instant. The

threshold setting could be improved by employing a finite horizon approximate dynamic programming

technique to take into account the MSE reduction over several forthcoming steps. In this case additional

approximations might have to be made to avoid the combinatorial complexity of the multi-step OOSM

selection problem. It is also interesting to explore whether the fusion centre can provide feedback to the

sensor nodes so that they can locally assess measurement informativeness. This would allow sensor nodes

to avoid unnecessary energy expenditure by discarding uninformative measurements prior to transmission.
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(c) N = 2000, t = 30

Fig. 2. RMS vs Complexity from 10 simulations with different Cave. Each simulation shows the average of 1000 MC runs.We
select three timesteps, t = 10, 20, 30 for filters with 2000 particles. The complexity is measured by running time for tracking
40s of each filter. The results are run on a Dell laptop with Genuine Intel(R) CPU T2400 1.83GHz, 0.99GB RAM and Win-XP
OS.

APPENDIX A

PROOF OF THEOREM 1

We here provide a brief proof of Theorem 1, some detailed explanations are not provided. A more

detailed proof is available in [26]. We first state a lemma that is employed within the main proof. Denote

the spectral radius of a matrix by ρ(·) = maxi |λi(·)|. The proof (see [26] for detailed explanation)

follows by expanding the variational characterization of the spectral radius in terms of the blocks of A

and applying the Cauchy-Schwarz inequality to each term in the expansion.
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(c) N = 200, t = 30

Fig. 3. RMS vs Complexity from 10 simulations with different Cave. Each simulation shows the average of 5000 MC runs.We
select three timesteps, t = 10, 20, 30 for filters with 200 particles. The complexity is measured by running time for tracking
40s of each filter. The results are run on a Dell laptop with Genuine Intel(R) CPU T2400 1.83GHz, 0.99GB RAM and Win-XP
OS.

Lemma 1. Let A ∈ RK×K be a block matrix consisting of blocks Ai,j ∈ RKi×Mj . Then ρ(A) ≤∑
i,j ρ(AT

i,jAi,j)1/2.

Proof of Theorem 1:

Employing the EKF linear approximation in (10) and using the independence of measurement and

process noises from each other and from the state and independence of ζsm and ζjn for any m 6= n or
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s 6= j, we have for m > n and any s, j:

RY smY
j
n

= Hs
mFm,nRXnXnH

j
n
T

(43)

Note that for m < n RY smY
j
n

= RT
Y snY

j
m

= Hs
mRXmXmFT

n,mHj
n
T

.

Recall that BZkZk is the block-diagonal matrix whose blocks match the diagonal blocks of RZkZk .

We now establish finite upper bounds on two spectral radii, ρ(BZkZk −RZkZk) and ρ(RXkZkRZkXk).

Throughout the proof we employ the fact that ρ(CTAC) ≤ ρ(A)ρ(CTC) for a square matrix A and an

arbitrary real matrix C.

Since all the diagonal blocks of BZkZk −RZkZk are zero, we have from Lemma 1 and (43):

ρ(BZkZk −RZkZk)

≤
k−1∑

m=k−`

∑
s∈Sm,k

 k−1∑
n=k−`,n 6=m

∑
j∈Sn,k

ρ(RY smY
j
n
RY jnY sm

)1/2 +
∑

j∈Sm,k,j 6=s
ρ(RY smY

j
m

RY jmY sm
)1/2


≤ K`(K`− 1) max

s,m
max

j 6=s∨n6=m
ρ(RY smY

j
n
RY jnY sm

)1/2

≤ K`(K`− 1) max
n

ρ(RXnXn) max
s,m

ρ(Hs
mHs

m
T )1/2 max

s,m
ρ(Hs

m
THs

m)1/2 max
n≤m

ρ(Fm,nFT
m,n)1/2 (44)

Observing that RXkZkRZkXk =
∑

s,m RXkY smRT
XkY sm

and recalling (32) we can write:

ρ(RXkZkRZkXk) ≤
∑
s,m

ρ(RXkY smRT
XkY sm

)

≤ K`max
s,m

ρ(Fk,mFT
k,m)ρ(Hs

m
THs

m)ρ(RXmXm)2. (45)

Assumptions A1-A3 ensure that the bounds in (44) and (45) are finite.

We now develop an upper bound for ρ(R−1
ZkZk −B−1

ZkZk)

ρ(R−1
ZkZk −B−1

ZkZk) = ρ(R−1
ZkZk(BZkZk −RZkZk)B

−1
ZkZk)

≤ ρ(R−1
ZkZk)ρ(BZkZk −RZkZk)ρ(B−1

ZkZk)

= λ−1
min(RZkZk)λ

−1
min(BZkZk)ρ(BZkZk −RZkZk). (46)

Since the eigenvalues of the block-diagonal matrix are the eigenvalues of its blocks we have: λmin(BZkZk) =
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mins,m λmin(RY smY
s
m

). This implies:

λmin(BZkZk) = min
s,m

λmin(Hs
mRXmXmHs

m
T + Rζsmζ

s
m

)

≥ min
s,m

λmin(Rζsmζ
s
m

). (47)

The last inequality holds because (i) for any matrices A and C λmin(A+C) ≥ λmin(A) +λmin(C) and

(ii) Hs
mRXmXmHs

m
T is positive semidefinite.

Similarly, since RZkZk is a covariance matrix and as such is positive semidefinite we deduce for

sufficiently large mins,m λmin(Rζsmζ
s
m

):

λmin(RZkZk) = λmin(BZkZk + (RZkZk −BZkZk))

≥ max[0, λmin(BZkZk) + λmin(RZkZk −BZkZk)]

≥ min
s,m

λmin(Rζsmζ
s
m

)− ρ(BZkZk −RZkZk)

The last line is valid provided mins,m λmin(Rζsmζ
s
m

) > ρ(BZkZk −RZkZk), which holds for sufficiently

large mins,m λmin(Rζsmζ
s
m

) due to the finite bound derived for the spectral radius in (46).

We can now derive the following bound on the expression of interest in the theorem, employing the

relationship tr(·) =
∑

i λi(·) and assuming that mins,m λmin(Rζsmζ
s
m

) is sufficiently large:

| tr RXkZkR
−1
ZkZkRZkXk − tr RXkZkB

−1
ZkZkRZkXk |

= | tr RXkZk(R
−1
ZkZk −B−1

ZkZk)RZkXk |

≤ K`ρ(RXkZk(R
−1
ZkZk −B−1

ZkZk)RZkXk),

≤ K`ρ(R−1
ZkZk −B−1

ZkZk)ρ(RXkZkRZkXk),

≤ K`λ−1
min(RZkZk)λ

−1
min(BZkZk)ρ(BZkZk −RZkZk)ρ(RXkZkRZkXk),

≤ K`ρ(RXkZkRZkXk)ρ(BZkZk −RZkZk)
(mins,m λmin(Rζsmζ

s
m

)− ρ(BZkZk −RZkZk)) mins,m λmin(Rζsmζ
s
m

)
.

The finite bounds on the expressions in the numerator lead us to the conclusion that mins,m λmin(Rζsmζ
s
m

)→

∞⇒ | tr RXkZkR
−1
ZkZkRZkXk − tr RXkZkB

−1
ZkZkRZkXk | → 0, completing the proof.
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