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ABSTRACT
Toll quality Voice-over-IP (VoIP) provision over Service Over-
lay Networks (SONs) is still a big challenge for the current
best-effort Internet. The end to end network delay, as one
of the most important performance concerns, is the focus in
this paper. In the paper, network delay characteristics, e.g.
probability distribution and autocorrelation are studied. We
propose an approach to synthesize network delay traces for
QoS routing research in a full mesh Service Overlay Net-
work(SON) given only partial information of the network
delay trace. The main contributions of the paper include:
1) A parametric model of the network delay; 2) Method to
synthesize network delay traces for voice packets sent over
SONs. The synthesized network delay traces are shown to
be close to real network delay traces. The synthetic network
delay traces can be used to study quality of service provision
mechanisms for VoIP applications over the Service Overlay
Networks.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Miscellaneous

General Terms
Performance

Keywords
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1. INTRODUCTION
With the Next Generation Internet (NGI) still in its in-

fancy, the current best-effort Internet has to face the chal-
lenges of increasing real-time multimedia communication ap-
plications, e.g. Voice-over-IP(VoIP), on-line games, video
conferences, etc. We are especially interested in the VoIP
application. Transmitting voice packets over heterogeneous
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Figure 1: Service Overlay Network.

networks at toll quality level is a big challenge for VoIP ser-
vice provision over current best-effort Internet. VoIP has
strict requirements on network performance impairments,
i.e. network delay, delay jitter and loss.

The current Internet is basically a hierarchy of intercon-
nected Autonomous Systems (ASes), whereby no single ISP
has control of the end-to-end service quality. Indeed a given
VoIP call might originate within a wireless LAN offering
only a best effort service (no QoS guarantees), then tran-
sit a local ISP before reaching a tier one or backbone ISP
which implements MPLS/DiffServ, before going down the
hierarchy of local ISP, and perhaps an ADSL loop and then
reaching a standard fixed telephone. The packet delay, loss
and jitter are introduced within each segment of the end-to-
end path with no one being responsible for the end-to-end
quality of the call.

An overall quality evaluation of VoIP service with E-model
is recommended by ITU-T G.107[1], in which the end-to-
end network delay is one of the most significant network
impairments that determine the quality for VoIP. Therefore,
we focus on studying network delay in the paper.

Network traffic modeling and synthesis have been studied
extensively. However, network delay modeling and synthe-
sis are not studied a lot, although network delay charac-
teristics have been studied by some research[5][6]. In the
paper we try to synthesize delay traces for research on QoS
mechanisms which employ trace based simulations. Similar
work SS-SVM [3] is proposed as a non-parametric method
that generates network delays. However, the synthetic de-
lay trace generated by SS-SVM is only statistically similar
to the real trace in terms of the marginal probability dis-
tribution of real delays, and there is no explicit comparison



between the synthetic delay trace and the real delay trace
in the paper [3]. Our work is different from SS-SVM in that
we developed a parametric model of the end-to-end network
delay in SONs by fitting various distributions to network de-
lay traces measured by sending UDP packets periodically in
a SON, and we estimated the parameters of the model with
the statistics of the network delay trace. We also synthe-
sized new delay trace for voice packets in the SON with the
network delay model. A comparison of the synthesized net-
work delay trace with the real network delay trace is shown
at the end of the paper.

2. MODELING THE PACKET DELAY IN SER-
VICE OVERLAY NETWORKS

Service Overlay Networks, as shown in Fig. 1, have been
employed for applications such as VoIP and multi-media
communications as a cost effective approach to provide value-
added services over the current best-effort Internet. Re-
cently a variety of SON architectures for VoIP have been
reported[2][4].

The most important impairments for a VoIP phone call
in the SON is the network delay. We use network delay
measurements of a network service provider. They are col-
lected by sending UDP probing packets to the network ser-
vice provider’s SON periodically per 30ms among seven glob-
ally located monitors. A total of forty-two SON paths and
seven service overlay gateways are involved, which form a
small full mesh SON network. We study the autocorrela-
tion and the probability distribution of the network delays
experienced by the UDP probing packets, and construct a
parametric model for the packet level network delay which
is given in the section 2.1.

2.1 Probability distribution
One-way network delay is composed of three parts: prop-

agation delay, transmission delay and queueing delay. We
consider the propagation delay, which is constant assum-
ing the path does not vary during the whole measurement
period, as the minimum delay that a voice packet will ex-
perience. The transmission delay considered as negligible
since it is very small for a high speed link. and we con-
sider the queueing delay is a random variable which fol-
lows a certain distribution. By fitting various distributions
to real measurements on various links at various time, we
find that shifted gamma distribution is a good approxima-
tion. As shown in fig.2 visually, gamma distribution fits
best to the 100 queuing delay samples ( it is also true for
large quantity of delay samples ). The Weibull distribu-
tion also gives good fit. The Chi-square test on goodness
of fit also shows that gamma distribution is a good fit. We
use the gamma distribution to model queueing delay and
the total network delay is modeled by a shifted gamma dis-
tribution. The Probability Distribution Function (PDF) of
a random variable X with shifted gamma distribution is:

f(x) =
( x−θ

β
)(γ−1)

·exp(− x−θ
β

)

β·Γ(γ)
; x ≥ θ; θ, γ, β > 0, where γ and

β are the shape parameter and scale parameter respectively,
and θ represents the minimum network delay experienced
by a voice packet. Therefore the mean network delay is
µ = θ + γβ, the standard deviation of network delay is
σ =

√
γβ, and the skewness is k = 2

√
γ
. It is easy to es-

timate parameters (θ, γ, β) given samples of network delay
traces with maximum likelihood or MAP method. However,
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Figure 2: Cumulative Distribution Function fit of
100 queueing delay samples.
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Figure 3: Network delay measurements showing
weak autocorrelation and no autocorrelation

it is difficult to infer the parameters with less than three
statistics of the network delay trace.Section 3 gives methods
on the inference of the parameters.

2.2 Autocorrelation
The autocorrelation coefficient of lag k of a time series Yi,

i=1,Ě,N is given in the formula:

rk =

∑N−k

i=1 (Yi − Ȳ )(Yi+k − Ȳ )
∑N

i=1(Yi − Ȳ )2

where Ȳ is the average of Yi,i=1,...,N. We differentiate time
series according to r1.The time series has strong autocorre-
lation if |r1| > 0.75; it has medium autocorrelation if 0.75 >

|r1| > 0.5; it has weak autocorrelation if 0.5 > |r1| > 0.2;
it is random if |r1| < 0.2. Delay spikes occur when traffic
arrives in short or long bursts. We find short burst in traf-
fic will only lead to random delay spikes. By plotting the
autocorrelation function of the network delay measurements
on different links at different time, we find that the autocor-
relation is usually negligible when no delay spikes or when
delay spikes occur randomly, as shown in Fig. 3.

Assuming the time series in Fig. 3 are stationary random
processes, we can use an identical and independent shifted
gamma distribution model it when the time series has no
spike or random spikes.



If there is strong or medium autocorrelation in the random
process, we need to modify the model to add autocorrelation
in. A possible model is to use AutoRegressive (AR) model
with a residual that follows the gamma distribution.

3. PARAMETER ESTIMATION FOR NET-
WORK DELAY TRACES

We have only one statistics of the network delay trace, i.e.
the sample mean of network delay. In order to reconstruct a
synthetic which is statistically similar to the original network
delay trace from the sample mean of network delay, we first
need to estimate the parameters. We can then reconstruct a
statistically similar network delay trace with the same mean
network delay as the real measured network delay trace.

Rewrite the problem in a formal way as: reconstruct a sta-
tionary and ergodic random sequence Xi, i=1,...,M, where
Xi is independently and identically distributed with a shifted
gamma distribution with parameter (θ, γ, β) given statistics
of network delay. Possible statistics that one can collect are
the sample mean of N samples x̄ = 1

N

∑N

i=1 xi, the unbiased

standard deviation of N samples S =
√

1
N−1

∑N

i=1(xi − x̄),

and the minimum network delay D of the path. It seems im-
possible to estimate three parameters from a single statistic,
however, we can study the correlation between the delay sta-
tistical parameters, and infer other statistics from the par-
tial information, i.e. the sample mean, and the estimate the
parameters (θ, γ, β) from the statistics.

3.1 Parameter estimation for modeling network
delay traces

We now solve the problem under different conditions on
how many statistics we have: (1) We have statistics on the
sample mean x̄, the sample standard deviation S and the
minimum network delay D;(2)We have only x̄ and D; (3)
We have only x̄. The method proposed here will be used to
synthesize network delay in the next section.

3.1.1 The sample mean x̄,the standard deviation S
and the minimum network delay D are known

Suppose we have known the sample mean x̄ and sample
standard deviation S, we can estimate the real mean and
real standard deviation with µ̂ = x̄ and σ̂ = S, which gives

µ̂ = θ + γβ = x̄ (1)

σ̂ =
√

γβ = S (2)

And if we can have the measured minimum delay D, we can
estimate θ. Then we can synthesize the original random
sequence.

θ̂ = D (3)

3.1.2 Only the sample mean x̄ and the minimum de-
lay D are know

In this case, we miss the sample standard deviation S,
which means we have to infer it from x̄ and D. Let the
estimator of S be Ŝ, the estimator of sample mean be X̄

and the estimator of minimum delay be D̂. The best es-
timator of sample standard deviation given sample mean
is Ŝ = E{S|X̄},which gives minimum mean square error.
However, the conditional distribution is hard to calculate.
An alternative way that is easier to implement is linear
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Figure 4: Linear estimation of the sample standard
deviation S (ms) with (x̄ − D) (ms), (a) Linear fit
of skewness ( each point in the figure is S

x̄−D
of 100

samples) (b)CDF fit of skewness fitting error

estimation. One can find the best homogeneous or non-
homogeneous linear estimator of a random variable Y from
another random variable X provided that the covariance of
X and Y and the variance of Y are given. However, we
don’t have these statistics available. Therefore, we choose
to use the linear regression method to estimate Y from X.
We study the correlation between sample standard devia-
tion S and (x̄−D) , and fit their relation to a line as shown
in Fig. 4(c).

Indeed, the slope of linear fit shown in Fig.4(a) gives the
skewness of the shifted gamma distribution which is k = 1

√
γ
.

And as shown in Fig.4(b), the error of linear fit is a Gaus-
sian distributed random variable. The linear fit of skewness
shows that the shape of the gamma distribution does not
change much along time. It verifies the assumption that
the random process is approximately ergodic in distribu-
tion. In cases where there are some outliers, is due to the
fact that the delay trace is not stationary and ergodic dur-
ing the whole measurement period. With the assumption
of stationarity and ergodicity, we can estimate the sample
standard deviation S from (x̄ − D) if we have the estimate

of the skewness k̂.

σ̂ = k̂(x̄ − D) (4)

1√
γ̂

= k̂ (5)

One thing to note is that the skewness k̂ varies on different
links as shown in Fig. 5. We also find the slope α of the linear
fit of each path is highly correlated with the mean delay of
that path.

If we do not assume stationarity and ergodicity, i.e. the
relationship between S and x̄ − D is not always linear, we
use the equation (6) to estimate σ̂, in which a parameter α

can be tuned to be mostly constant and to vary with x̄−D

for outliers shown in Fig. 5.

σ̂ = α ∗ (x̄ − D) + ω (6)

ω is a very small Gaussian noise. With σ̂, x̄ and D, we can
synthesize network delay on a link according to the network
delay model defined in section 2.1.

3.1.3 Only the sample mean x̄ is known
In the case that we have only the sample mean delay x̄,

it is even harder to estimate the three parameters. By the
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Figure 5: Linear fit for the skewness on 15 different
links (x̄ − D is the average queueing delay per 100
network delay samples, S is the standard deviation
per 100 network delay samples)

derivation of the previous two cases, we will just estimate D
in this case, and apply the same method in the last case to
estimate all parameters. The minimum delay and length of a
path are linearly related. However, the correlation between
the minimum delay and geographical distance is not very
high since paths do not necessarily go through the shortest
route between end points. It is difficult and even infeasible to
measure real link distances in terms of meters of cables due
to legacy issues. An alternative approach is to estimate min-
imum delay by using the minimum of sample mean delays
in the night and dawn to estimate it. Then we can estimate
other parameters using the methods previously discussed.

4. NETWORK DELAY SYNTHESIS
We want to simulate VoIP phone calls over a full mesh Ser-

vice Overlay Network (SON). The Service Overlay Gateways
are distributed through the world. We only have partial net-
work delay measurements from a network service provider.
We have mean delay measurements per 100 samples during
a week for a full mesh SON, and network delay samples with
a sampling interval of 30ms between a single source and all
other nodes in the SON. Therefore, we have to infer the net-
work delay samples for the whole Service Overlay Network
from the partial information of the network.

Given only the sample mean delay, we must estimate the
slope of the linear fit as shown in Fig. 4 and estimate the
minimum delay of the path with the method in section 3.1.2
and 3.1.3 respectively. Then we can estimate parameters
of the shifted gamma distribution model with methods in
section 3.1.1. Then we can synthesize network delay traces
with the model described in section 2. Fig. 6 shows that the
synthetic network delay trace is similar to the real measured
trace.

The synthetic delay trace can be used to evaluate QoS
routing mechanisms for VoIP in Service Overlay Networks.
It can give similar quality score compared to that given by
the real trace.
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Figure 6: Real delays vs. synthetic delays(4000 sam-
ples).

5. CONCLUSION
In the paper, a shifted gamma distribution model is fit-

ted to the network delay measurements and a network delay
synthesis method is proposed. The method is able to syn-
thesize network delay traces, including random delay spikes,
given only the sample mean of network delay . It is validated
by comparing the network delay traces synthesized with the
model to the real network delay traces. The synthesized de-
lay traces can capture the changes of network delays which
include peaks in the office hours and dips in the evening and
the dawn. The synthesis method is an easy way to get net-
work delay traces for evaluating QoS provision mechanisms
for VoIP phone calls in our research. It saves substantial
cost of gathering traces, especially for large SONs with hun-
dreds of nodes. Therefore, it saves the substantially high
cost of network delay measurements for research based on
network delay matrices.

The method proposed in the paper can synthesize real
network delay traces given partial statistics (i.e. only the
sample mean) of the network delay. Future work will be on
developing more sophisticated model for strongly autocorre-
lated delay traces and evaluating the error between synthetic
delay trace and real delay trace.
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