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Abstract—Microwave radar imaging for breast cancer de-
tection is one promising technique to replace/supplement X-
ray mammography and MRI. Previously developed imaging
algorithms have been applied to the signals generated from breast
models comprising large dielectric contrast and relatively homo-
geneous tissue. This study investigates five imaging algorithms
applied to the signals generated from more realistic models. The
signals were generated from the finite-difference time-domain
simulations of the microwave interaction with breast models.
We find that, under a good estimate of the average dielectric
properties of the tissue and tumor, the generalized likelihood
ratio test algorithm is capable of detecting tumors, in the sense
of a good signal-to-interference-and-noise ratio in the presence
of reduced dielectric contrast and increased tissue heterogeneity.
This establishes the motivation to estimate the average tissue
properties and extend the algorithm to handle multi-staticsignals
for microwave breast imaging.

I. I NTRODUCTION AND BACKGROUND

Microwave radar imaging was proposed in the late 1990s
as a screening method to complement the conventional X-
ray mammography for breast cancer detection. The underlying
physical principle that enables tumour detection is the contrast
in the dielectric properties between healthy and tumorous tis-
sue. Recent characterization of the dielectric propertiesof the
breast tissue suggests that high contrast may be observed only
between the adipose-dominant and tumorous tissue [1], [2].
The contrast between the glandular-dominant and tumorous
tissue often does not exceed 1.1. This fact complicates the
breast imaging tasks for tumour detection, especially in cases
where the tumour is located inside the glandular tissue.

Microwave imaging algorithms have been studied previ-
ously and have been applied to the signals generated from two-
dimensional (2-D) or simple three-dimensional (3-D) breast
models with large dielectric contrast and relatively homo-
geneous tissues. Mostly known algorithms presented in the
literature include the delay-and-sum (DAS) algorithm [3],[4],
the delay-multiply-and-sum (DMAS) algorithm [5], the mono-
static space-time beamformer (STB) algorithms [6], [7], the
time-reversal algorithm [8], the generalized likelihood ratio
test (GLRT) algorithm [9] as well as the mono-static robust
capon beamformer (RCB) algorithm [10] and the multi-static
adaptive microwave imaging (MAMI) algorithm [11], which
is a two-stage implementation of the RCB algorithm.

Currently, the STB algorithm has been extended to handle
multi-static signals [12], and the MAMI algorithm has been
modified [13] to exploit the one-to-many relation between the

transmit and receive antennas in the signals, which was pre-
viously neglected. They have shown improved performance,
when being applied to the signals generated from more real-
istic breast models based on [1], [2].

In this paper, we report on the study of applying five
imaging algorithms to the signals from 2-D breast models.
They include DAS, DMAS, STB, GLRT and RCB algorithms.
We find that the DAS and DMAS algorithms exhibit small
localization error in the generated images, but they fail inthe
scenarios of high breast tissue density. The STB algorithm has
an improved capability to image breasts due to its rejection
of interference, but is prone to localization errors. Undera
good estimate of the average dielectric properties of the tissue
and tumor, the generalized likelihood ratio test algorithmis
capable of detecting tumors, in the sense of a good signal-
to-interference-and-noise ratio. Since the microwave breast
imaging strives to achieve the best signal-to-interference-and-
noise ratio, the GLRT algorithm holds the promise for this aim.
As the current GLRT algorithm handles mono-static signals,
this study motivates to extend the GLRT algorithm to handle
multi-static signals.

This paper is structured as follows. Section II presents the
five imaging algorithms and Section III presents the design
of numerical simulations. Section IV discusses the imaging
results based on the common performance metrics. This is
followed by Section V to conclude the paper and delineate
our future work.

II. I MAGING ALGORITHMS

Microwave radar imaging algorithms exploit the space and
time-invariance of the wave equation. They synthetically align
the received signals in time, and attempt to draw the scattering
properties at the synthetic focal point. This avoids solving
the ill-posed and computationally-demanding inverse problem
as in microwave tomography. We consider the scenario that
consists of antennas placed at a distance away from the breast,
both of which are immersed in some coupling medium. This
is shown in Fig. 1.

Five algorithms have been implemented for this study. Their
properties are reviewed in the following section.

A. DAS Algorithm

The signals transmitted from antennas undergo delay and
attenuation as they reach the focal point and are reflected



Fig. 1. Coronary slice of the permittivity extracted from one of the healthy
breast phantoms. The locations of the current sources are marked by×.

back to antennas. The DAS algorithm proposed in [3], [4]
assumes the delay and attenuation of the propagation channels
are modelled in the frequency domain as

(

e−jkbgdbg

√

dbg

e−jktsdts

√
dts

)2

, (1)

where dbg and dts denote the propagation distances in the
background medium and tissue, andkbg andkts denote their
wave numbers, respectively. The denominators denote the
amplitude reduction due to the cylindrical spreading in 2-
dimensional cases, and the numerators denote the delay and
attenuation due to loss in the media. The power of two
corresponds to the forward and backward propagation. Eq. (1)
assumes operation in the far-field region. The effect of skin
is not included due to its small electrical length. The DAS
algorithm assumes the knowledge ofkbg andkts at the central
frequency of the microwave pulse, and the knowledge ofdbg
anddts. Thus, the effect due to the propagation channels, as
predicted in (1), can be inverted. Then, the processed signals
are time-gated to isolate the reflection at the focal point. They
are summed, and the energy of the resulting signal denotes
the pixel at the focal point.

B. DMAS algorithm

The DMAS algorithm [5] is a version of the DAS algorithm,
which performs coupled cross-multiplication on the original
mono-static signals. This artificially increases the number of
input signals.

C. STB Algorithm

The STB algorithms formulated in the time domain [6] and
in the frequency domain [7] assume the same channel model
of (1). In addition, they invert the effect due to the propagation
channels over all frequencies in the band of the tumor signals.

Thus,kbg andkts become complex vectors. The weights of the
filters are the solutions to the wide-band equalization problem.
The received signals are passed through the filters before being
time-gated, summed, and having the energy calculated. The
STB algorithm formulated in the frequency domain avoids
the matrix inversion, which makes it very computationally
efficient; thus, it is implemented in this study.

D. GLRT Algorithm

The GLRT algorithm [9] performs hypothesis testing of the
presence of a tumor at each location, which is represented by
computing the cross-correlation between the received signals
and the signal templates. High correlation marks the presence
of a tumor. The signal template used in this algorithm includes
both the propagation and scattering of the microwave pulse,
which is
(
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where the first term in the parenthesis describes the one-way
propagation in the background, the second term denotes the
forward propagation of a plane wave in the tissue, and the
third summation term denotes the scattering by some tumor
modelled as a dielectric cylinder [14]. HereH(2)

n denotes
the nth-order Hankel function of the second kind and the
coefficientan is given by
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whereω is the angular frequency,a is the tumor radius andkm
is the complex tumor wave number.ǫt andǫm are the relative
permittivities of the healthy tissue and tumor,Jn denotes the
nth-order Bessel function, and(·)′ denotes the derivative with
respect to the argument of the function.

E. RCB Algorithm

After the received signals are time aligned and compensated
as in the DAS algorithm, the standard Capon beamformer
produces a complex steering vector that minimizes the un-
desirable interference and noise contributions in the processed
signals. The RCB algorithm [10] extends the standard Capon
beamformer by permitting certain relaxation on the require-
ment of the steering vector up to some user-defined limit. This
algorithm is developed to address the effects of not completely
known propagation channels and other artifacts such as mis-
matches in antennae characteristics, mutual coupling, etc.

III. E XPERIMENTAL METHODOLOGY

A. Breast Models

In this work, the circular region of the breast tissue in a
magnetic resonance image is extracted and enclosed by a 1.6-
mm thick skin. The circular shape leads to identical skin-breast
artifact seen at all antennas, which can be easily removed with,
e.g., average-subtract algorithm. This allows us to focus on the
results of the imaging algorithms.



TABLE I
T ISSUEPROPERTIES FORDATA SERIES

Series
Debye model parameters

Var (%) min(ǫr,m/ǫr,b) max(ǫr,m/ǫr,b) min(σm/σb) max(σm/σb)
ǫ
∞,b σs,b (S/m) ∆ǫ τ (ps)

1 3.1 0.05 1.6 13 7 10.6 11.1 24.8 25.1

2 13.0 0.4 24.4 13 30 1.4 1.6 1.7 1.8

3 13.0 0.4 24.4 13 70 1.3 1.7 1.7 1.8

4 13.8 0.7 35.6 13 30 1.1 1.2 1.2 1.2

The dielectric properties of tissue are described by the
one-pole Debye model with four parameters: the relative
permittivity for infinite value of frequencyǫ∞, the difference
between the infinite and static relative permittivity∆ǫ, the
static conductivityσs, the relaxation time constantτ [15]. As
presented in Table I, for each series, the values of∆ǫ andτ of
the pixels are assigned to some constants. The values ofǫ∞,
andσs are assigned according to the linear mapping from the
pixel intensities toǫ∞ in the range ofǫ∞,b (1± 0.01Var/2)
and toσs in the range ofσs,b (1± 0.01Var/2), whereǫ∞,b and
σs,b denote the mean values, and Var denotes the percentage
of variation.

The selection of series properties can be explained as
follows. Series 1 represents the case of the highest tumor-
tissue contrast in dielectric properties and the lowest level
of heterogeneity. This corresponds to adipose-dominant breast
models and is the easiest case for the detection problem. Series
2 and 3 are based on the same contrast level, much lower than
that for Series 1, and they differ in the level of heterogeneity.
Series 3 represents a highly heterogeneous case. Series 4,
having the contrast ratio close to 1, is considered to be the
most difficult from the detection point of view and is referred
to as “extremely dense”. Average level of heterogeneity of
30% has been chosen for this series.

In Table I, column min(ǫr,m/ǫr,b), max(ǫr,m/ǫr,b),
min(σm/σb), andmax(σm/σb) represent the minimum and
maximum ratios of the relative permittivity and conductivity
between the tumor and the healthy tissue after the tissue as-
signment. The dielectric properties are evaluated at 6.85 GHz.

B. Finite-Difference Time-Domain Simulations

Fig. 1 shows an example of a breast model and the sim-
ulation scenario. The breast is placed in an oil-like lossless
matching medium characterized by (ǫ′ = 4.5, σ = 0). A
tumour with 3-mm radius, characterized by its Debye param-
eters (ǫ∞ = 6.75, σs = 0.79 S/m, ∆ǫ = 48.35, τ = 10.47
ps), is placed inside the model. There are 36 equally-spaced
current sources placed around the breast at a fixed distance
( 28 mm away from the skin). Each source sequentially
emits a differentiated Gaussian pulse with a 3-dB bandwidth
from 3.1 to 10.6 GHz. In this work, the mono-static scenario
is considered, which gives 36 recorded signals for a breast
model. The minimum wavelength determined by the largest
permittivity at 10.6 GHz is 3.87 mm. We set the spatial
increment to 0.4 mm and the relative Courant number to 0.999
to reduce the dispersion error. The time step is 2 ps. The

maximum wavelength in the heterogeneous tissue at 3.1 GHz
is 50.3 mm. We place 12 perfectly-matched layers at a half
of this wavelength away from the sources to truncate the
computation domain. Prior to the application of the imaging
algorithms, we apply the average-subtract method to remove
the skin-breast artifact. Then, the signals are down-sampled
from 500 GHz to 64 GHz.

C. Data Sets

In order to provide sufficient statistics for the performance
results assessment, we have generated ten different breast
models containing tumor at different locations and applied
them in the simulation procedure described above to obtain the
signals received at each of the antennas. The same procedure
has been applied to exactly the same tissue structures without
tumour inside, which have been used for the assessment
purposes.

For the GLRT algorithm, in addition to the ten realizations
of tissue structure, thirty more realizations of healthy breast
models have been produced to estimate the covariance matri-
ces needed in the algorithm.

The same set of tissue structures with the assigned tumour
locations have been used for each of the four series. The
difference between the series is only in the tumor/tissue
properties contrast and the level of heterogeneity. Besides
the decrease in the number of breast phantoms needed for
the experiments, fixing tissue structures between the series
removes the factor of variability, which is beneficial for the
performance comparison.

IV. RESULTS AND DISCUSSIONS

A. Performance metrics

The performance of the algorithms is evaluated based on
the following metrics.

Correct Detection is a binary measure which shows if the
location emphasized by the algorithm (image maximum) is
attributed to the reflections from tumour rather than from
the clutter. In order to check this, we subtract the image
of the healthy breast model from the image of the breast
model with a tumour inside. If the peak of the resulting
image is within the 10-mm radius circle around the one
detected by the algorithm in the tumorous image, we treat the
detection as correct. Otherwise, we deem that the resulting
image provides a misleading detection and is omitted in the
subsequent analysis. Metrics presented further are only valid
and computed in the cases of the correct detection.



TABLE II
NUMBER OF FALSE TUMOUR DETECTIONS

Series 1 Series 2 Series 3 Series 4

DAS 0 0 0 10

DMAS 0 0 0 10

STB 0 1 1 9

GLRT 0 0 0 2

RCB 0 0 3 6

Signal-to-interference-and-noise ratio (SINR) - This metric
is defined as

SINR= 20 log (Imax,s/Imax,n) , (2)

whereImax,s and Imax,n correspond to the peak amplitudes
of the tumorous and healthy images, respectively. The SINR
is another important metric for the detection purpose. It shows
the capability of the algorithms to discriminate tumorous
breasts from healthy breasts.

Localization error (El) - Shows the distance between the
true tumour locationc and the one estimated by the algorithm
ĉ:

El = ‖c− ĉ‖, (3)

Peak-to-sidelobe ratio (PSLR) - This metric is defined as

PSLR= 20 log (Imax,s/Isl) , (4)

where Isl is the most significant sidelobe amplitude of a
tumorous image. The contrast in the dielectric properties
between tumorous and healthy tissue is correlated with the
contrast of the breast images. The imaging algorithms cannot
completely isolate the reflection due to the synthetic focal
point. This leads to the presence of sidelobes in the images.
PSLR is a metric to evaluate how well the imaging algorithms
can preserve the dielectric contrast.

B. Discussion

The imaging algorithms descibed above have been applied
to each of the data sets to obtain the described performance
metrics. Fig. 2 - 4 summarize the results by organizing them
into groups for each series. Only cases with correct detection
have been taken into account to compute the average value
and standard deviation of the metrics. When the algorithms
cannot detect the tumour correctly in all ten cases, this fact is
labelled as ’FAILED’ on the figures.

Table II contains the number of incorrectly detected tumours
for each series. Analyzing the table, it can be seen that most
of the algorithms have troubles under the conditions of low
contrast. The only reliable algorithm in such a scenario is the
GLRT, which provides model of high complexity capable to
describe the effects of scattering from the tumour. In conjunc-
tion with Fig. 2, one may notice that the simple algorithms
such as DAS and DMAS are rather stable and successful
under the high and medium tissue/tumor dielectric contrast
levels. However, they fail under the extremely dense scenario.

The STB algorithm, incorporating the effects of dispersion,
exhibits marginal improvement over DAS and DMAS when
the complexity of the model increases. The adaptive RCB
algorithm demonstrates a gradual decrease in performance
while the contrast decreases and heterogeneity grows. It is
still capable to detect tumour in four cases out of ten in the
extremely dense scenario. This is explained by its adaptive
nature to the input data. By comparing Fig. 2 b) and c), it
is seen that the increase in heterogeneity from 30% to 70%
decreases SINR by 2 to 10 dB.

Fig. 3 gives the notion of tumour localization accuracy. It
is observed that, for the easiest scenario, almost all of the
algorithms localize the tumor up to the image resolution (1-
mm grid). DAS/DMAS show equal results and outperform all
other algorithms. The STB algorithm gives lower performance
due to the point scatterer assumption, which favours locations
in the deeper areas of the breast. Heterogeneity does not play
important role for localization (compare Fig. 2, b) and c)).

The ability of the algorithms to isolate the tumour response
by suppressing the clutter can be estimated from Fig. 4. First,
we may emphasize the best performance of the RCB algorithm
for the easiest scenario, which illustrates the adaptive capabil-
ity of the algorithm. The good performance of the DMAS
algorithm can be explained by the signals cross-multiplication
between channels, which, in this case, acts as an effective
clutter suppression mechanism. Similar to the SINR metric,
the PSLR decreases by several decibels when the heterogeneity
increases.

From the presented results, it is seen that the performance
of the algorithms differs with respect to different metrics. This
suggests that certain algorithms should be selected to address
specific tasks. As the GLRT algorithm provides reliable detec-
tion in the sense of a good SINR in all series, it is considered
for further extension and improvement.
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Fig. 2. Signal-to-interference-and-noise ratio for a) Series 1 b) Series 2 c)
Series 3 and d) Series 4. Note that the scales in the four plotsare not the
same.
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Fig. 3. Localization errors El for a) Series 1 b) Series 2 c) Series 3 and d)
Series 4. Note that the scales in the four plots are not the same.
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d) Series 4. Note that the scales in the four plots are not the same.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we have studied the performance of five
microwave breast imaging algorithms on the signals generated
from the breast models with a reduced dielectric contrast
and tissue heterogeneity. The GLRT algorithm is capable
of detecting tumours, in the sense of a good SINR in
comparison to DAS, DMAS, STB algorithms, and adaptive
RCB algorithm. In this paper, we have assumed the average
dielectric properties of the tissue and tumor as exactly known.
In the future, we consider investigating how the parameters
mismatch would affect the GLRT algorithm and extending it to
handle multi-static signals for microwave breast imaging.The
GLRT algorithm is also capable of handling signals from 3-D
models. The challenge in these scenarios is to create multiple
healthy breast models, which are needed to estimate the clutter
covariance matrix.
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