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Introduction

Network data are
voluminous
high-dimensional
high-rate

What is a network anomaly?
rare event
short-lived

ML-based network anomaly detection methods 
more general than

model-based
signature-based



Our Methodology

Show applicability of ML 
approaches to network 
anomaly detection

Two example algorithms:
One-Class Neighbor Machine 
(OCNM) [Muñoz 06]
Kernel-based Online Anomaly 
Detection (KOAD) [Ahmed 07]

Two example datasets:
Transports Quebec
Abilene
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One-Class Neighbor Machine 
(OCNM)

Region of normality should 
correspond to a Minimum 
Volume Set (MVS)

OCNM for estimating MVS
proposed in [Muñoz 06], 

Requires choice of sparsity
measure, g.  Example: k-th
nearest-neighbour distance

Sorts list of g, identifies 
fraction µ inside MVS

Normal

2-D Isomap of CHIN-LOSA 
backbone flow, srcIP

Anomalous



Kernel-based Online Anomaly 
Detection (KOAD): Introduction

Sequence of multivariate measurements: {xt}t=1:T

Choose feature space with associated kernel:

where

Then feature vectors corresponding to normal traffic 
measurements should cluster

( ) ( ) ( ), ,i j i jk ϕ ϕ=x x x x

( ): n Hϕ ϕ ∞∈ → ∈x x



Should be possible to describe region of normality

in feature space using sparse dictionary,

Feature vector is said to be approximately

linearly independent on if [Engel 04]:

(1)

Kernel-based Online Anomaly 
Detection (KOAD): Dictionary
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At timestep t with arriving input vector xt :
Evaluate        according to (1),
compare with        and        where

If , infer xt far from normality: Red1

If , raise Orange, resolve l timesteps
later, after “usefulness” test

If , infer xt close to normality: Green

Delete obsolete elements, use exponential forgetting
For details of KOAD see [Ahmed 07]

Kernel-based Online Anomaly 
Detection (KOAD): Algorithm
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Dataset 1: Transports Quebec

Cameras monitored



Sample Images (normal)

Camera 1 Camera 2 Camera 3

Camera 4 Camera 5 Camera 6



Sample Images (anomalous)

Camera 4 Camera 5 Camera 6

Camera 1 Camera 2 Camera 3



Feature Extraction: Discrete 
Wavelet Transform

At each timestep, at each camera, get 6-D wavelet feature vector
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Transports Quebec Results

Camera 1 Camera 6
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Transports Quebec ROC

KOAD: Gaussian 
kernel, with varying 
standard deviation for 
the kernel function 

OCNM: identify 5%-
50% of outliers
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Dataset 2: Abilene

Abilene Weathermap

Data collection
11 core routers, 121 backbone flows

4 main pkt header fields collected:
(srcIP, dstIP, srcPort, dstPort)

Data processing
Construct histogram of headers

Calculate header entropies for each 
backbone flow, at each timestep

Variations in entropies (distributions) 
reveal many anomalies [Lakhina 2005]
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Abilene Results
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Conclusions and Future Work

Preliminary results indicate potential of ML approaches

Parameters set using supervised learning

Computations must be distributed

Online: complexity must be independent of time
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