
• We validate recursive KOAD and block-based OCNM
against the block-based Principal Component
Analysis (PCA) anomaly detection method from [6].

• KOAD is run using a Gaussian kernel, PCA with 10
principal components assigned to the normal
subspace, and OCNM using k = 50 and    = 0.95.

• The spikes in Fig. 5(a-c) indicate that all three
algorithms signal an overlapping set of anomalies.

• Fig. 5(c) indicates that the OCNM k-th nearest-
neighbour distance metric exhibits upward trend.
Suggests that 2000-timestep block size is too large.

• Fig. 6 compares OCNM results for various block sizes.
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Thanks to Anukool Lakhina for providing the Abilene dataset.

Data collection:
• 11 core routers,

121 backbone flows.

• 4 main pkt headers collected:
(srcIP, dstIP, srcPort, dstPort).

Data processing:
• Construct header histogram.

• Calculate header entropies
for each backbone flow,
at each timestep.

• Variations in entropies
(distributions) reveal
many anomalies [5].
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• We define an anomaly as a rare and short-lived event.
• Anomaly detection involves extracting relevant information

from high-dimensional and high-rate, noisy data.

• A large network such as an agile all-photonic network
(AAPN) is expected to exhibit non-stationary behaviour.

• Thus adaptive and learning anomaly detection
algorithms are desired in an AAPN.

Our Contribution:
• We demonstrate the applicability of Machine Learning

algorithms to anomaly detection in a large optical network.

• We present two algorithms:
- Kernel-based Online Anomaly Detection (KOAD);
- One-Class Neighbour Machine (OCNM).

• We test the algorithms on a timeseries of entropies of the
IP packet header fields from the Abilene network.

Fig. 3: Abilene weathermap.  
Source: Indiana University.

Fig. 4: Example anomaly.  
Distribution of srcIP exhibits 
sudden and short-lived change.
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1.  Introduction
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5.  Data

Fig. 5: Top three panels show the variation in the KOAD      , 
the PCA magnitude of residual with 10 principal components 
assigned to the normal subspace, and the OCNM k-th nearest 
neighbour Euclidean distance, versus time.  Bottom panel 
compares the anomalies flagged by each algorithm,.
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• Recursive algorithm for online anomaly detection [1], [2].
• Incrementally learns a dictionary of input vectors that

spans region of normality in a chosen feature space.
• An anomaly is flagged immediately upon encountering a

deviation from the norm. 
• The dictionary maintained is dynamic and incorporates

changes in the normal behaviour of the given network.

Initialization:
• Sequence of multivariate measurements: {xt}t=1:T.
• Choose feature space with associated kernel:

where

• Then feature vectors corresponding to normal traffic
measurements should cluster.

The Dictionary:
• Should be possible to describe region of normality in 

feature space using sparse dictionary,

• Feature vector is said to be approximately 

linearly independent on if [3]:
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2.  Kernel-based Online Anomaly Detection 
(KOAD): Introduction

• At timestep t, evaluate        , compare with        ,        
where                .

• If                , infer xt far from normality: Red1 Alarm.

• If                , infer xt close to normality: Green.

• If                , raise Orange Alarm and track the contribution
of  xt in explaining the  l subsequent arrivals.

• At timestep t+l resolve any Orange Alarm from timestep t.
Done by performing a secondary Usefulness Test [2], and
determining how many of the l subsequent arrivals lie close
to xt .  We distinguish between cases where:

- xt is an isolated event and a potential anomaly; or

- xt represents a migration of region of normality.
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3.  KOAD: The Algorithm
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7.  Discussion

• Preliminary results indicate potential of Machine
Learning techniques in quick anomaly detection in
an optical backbone network such as an AAPN.

• Processing needs to be distributed to minimize data
communication costs.

• Complexity must be made independent of time for
online application:
- KOAD complexity is independent of time;
- OCNM complexity is not independent of time.

8.  Conclusions and Future Work
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• Region of normality should correspond to a
Minimum Volume Set (MVS).

• OCNM for estimating Minimum Volume Set proposed in [4].
• Requires choice of sparsity measure, g.

- Example: k-th nearest-neighbour distance.
• Sorts list of g, identifies pre-specified fraction µ of points

that lie inside the Minimum Volume Set.

4.  One-Class Neighbor Machine (OCNM)

AnomalousNormal

Fig. 2: 2-D Isomap of CHIN-LOSA backbone flow, Entropy(srcIP).

Fig. 1: Flow chart of operations performed at any timestep t 
by KOAD algorithm.  For details, see [1].
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Fig. 6: Top three panels show the variation with time of the 
OCNM k-th nearest-neighbour Euclidean distance, using 
block-sizes of 1000, 500 and 400 timesteps.  Bottom panel 
compares the anomalies flagged in each case.


