
Fig. 5: (a) Variation in total number of packets in 
network; (b) growth in D for various values of    , with

Fig. 7: Example anomaly at t = 538.  Not easily seen in 
(a) timeseries of packets, but (b) obvious by observing 
inner product of xt from each dictionary member.

• Algorithm is recursive, there is no need to relearn
from scratch when new data arrive.

• Storage requirement and complexity bounded by 
O(m2), i.e. independent of time.

• Performance comparable to accepted offline, 
block-based PCA method in [1].

• Work in progress includes controlling dictionary by 
enabling dropping of obsolete or anomalous 
elements; confirming anomaly in case of orange
alarm if relevant xt exhibits continually low inner 
product value to subsequent input vectors.

• Future work involves letting the data determine the 
thresholds and    .1ν 2ν

Fig. 2: Traffic statistics collected (in distributed manner) at
edge nodes, every pre-determined measurement interval.
Stats sent to central monitoring unit (CMU) which runs
online anomaly detection algorithm, raises alarms.

• Collect following packet header information at edge 
nodes: {src edge node, dst edge node, srcIP, dstIP}.

• Flow defined as {src edge node, dst edge node} pair.

• xt is Flow Vector, defined as vector giving number of 
packets (or bytes) in each flow, normalized, at time t.

What is an anomaly?

Fig. 1: Fairly stable behavior over time of (a) total number
of packets in network, but (b) drastic change in distribution
of source IP within a particular flow at t = 2016.  Data from
NYC core router in Abilene backbone network.

• Network anomalies span wide variety of classes/types.  
Need online and intelligent, anomaly detection method.

• We propose an online, learning algorithm, based on 
the Kernel Recursive Least-Squares (KRLS) algorithm.

• We test on data from Abilene backbone network, and 
compare with offline, block-based algorithm based on 
Principal Component Analysis (PCA) [1].

Introduction

Fig. 8: Progression in time of inner product of xt with 
(a) a normal dictionary member, and (b) an 
anomalous flow vector that was admitted to 
dictionary.
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Conclusions and Future Work

The Architecture

•Initialize at t = 1, by entering x1 into dictionary.

•Iterate for t = 2,3,…

Step 1: New data arrive.  Evaluate    , the degree of linear 
dependence of            on the dictionary at time t [2]:

(1)

Step 2: Compare    with thresholds    and    , where
- If                , new input vector is very far away, conclude 
anomaly.  Raise red alarm,  no change to dictionary.
- If                        , new input vector not sufficiently explained 
by dictionary.  Add xt to dictionary, raise orange alarm.
- If                , new input vector falls within normal subspace.  
No alarm, no change to dictionary.

Fig. 4: Outline of online anomaly detection algorithm.

The Detection Algorithm
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Fig. 3: Simplified depiction of space spanned by 2 sample
dictionary elements, D{1} and D{2}.      is distance metric,

and      are thresholds where                . Anomaly
declared when              , D expanded when                        . 

Objective: Build a dictionary of flow vectors                      ,

such that mapping onto feature space,                 , forms an

approximately linearly independent basis.      represents

mapping from input space to feature space [2].

The Key Idea
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