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Abstract

This paper presents greedy gossip with eavesdropping (GGE), a novel randomized gossip algorithm

for distributed computation of the average consensus problem. In gossip algorithms, nodes in the network

randomly communicate with their neighbors and exchange information iteratively. The algorithms are

simple and decentralized, making them attractive for wireless network applications. In general, gossip

algorithms are robust to unreliable wireless conditions and time varying network topologies. In this paper

we introduce GGE and demonstrate that greedy updates lead to rapid convergence. We do not require

nodes to have any location information. Instead, greedy updates are made possible by exploiting the

broadcast nature of wireless communications. During the operation of GGE, when a node decides to

gossip, instead of choosing one of its neighbors at random, it makes a greedy selection, choosing the

node which has the value most different from its own. In order to make this selection, nodes need to

know their neighbors’ values. Therefore, we assume that all transmissions are wireless broadcasts and

nodes keep track of their neighbors’ values by eavesdropping on their communications. We show that

the convergence of GGE is guaranteed for connected network topologies. We also study the rates of

convergence and illustrate, through theoretical bounds and numerical simulations, that GGE consistently

outperforms randomized gossip and performs comparably to geographic gossip on moderate-sized random

geometric graph topologies.
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I. INTRODUCTION AND BACKGROUND 1

Distributed consensus is recognized as a fundamental problem of distributed control and signal pro-

cessing applications (see, e.g., [4]–[10] and references therein). The prototypical example of a consensus

problem is computation of the average consensus: for a network of n nodes, initially each node has a

scalar data value, yi, and the goal is to find a distributed algorithm that asymptotically computes the

average, ȳ = 1
n

∑n
i=1 yi at every node i. Such an algorithm can further be used for computing linear

functions of the data and can be generalized for averaging vectorial data.

One of the algorithms proposed for solving the average consensus problem is distributed averaging

[11]. In distributed averaging, every node in the network broadcasts its information at each iteration so

that neighboring nodes can receive and use this information for their updates. However, with this scheme

the speed of information diffusion across the network is slow for topologies used to model wireless mesh

and sensor networks. The information at each node typically does not change much from iteration to

iteration. Hence, the broadcast medium is not efficiently used. Recently, gossip algorithms have gained

attention for the computation of average consensus [10], [12]. In contrast to distributed averaging, gossip

algorithms allow only two neighboring nodes to communicate and exchange information at each iteration.

Restricting all information exchange to be local in this fashion is attractive from the point of view of

simplicity and robustness (e.g., to changing topology and unreliable network conditions).

In this paper we propose a new randomized gossip algorithm, greedy gossip with eavesdropping

(GGE), for average consensus computation. Unlike previous randomized gossip algorithms, which perform

updates completely at random, GGE takes advantage of the broadcast nature of wireless communications

and implements a greedy neighbor selection procedure. We assume a broadcast transmission model such

that all neighbors within range of a transmitting node receive the message. Thereby, in addition to keeping

track of its own value, each node tracks its neighbors values by eavesdropping on their transmissions. At

each iteration, the activated node uses this information to greedily choose the neighbor with which it will

gossip, selecting the neighbor whose value is most different from its own. Accelerating convergence in

this myopic way does not bias computation and does not rely on geographic location information, which

may change in networks of mobile nodes.

Although GGE is a powerful yet simple variation on gossip-style algorithms, analyzing its convergence

behavior is non-trivial. The main reason is that each GGE update depends explicitly on the values at

each node (via the greedy decision of with which neighbor to gossip). Thus, the standard approach

1Portions of this work were presented in [1], [2], [3].
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to proving convergence to the average consensus solution (i.e., expressing updates in terms of a linear

recursion and then imposing properties on this recursion) cannot be applied to guarantee convergence of

GGE. To prove convergence, we demonstrate that GGE updates correspond to iterations of a distributed

randomized incremental subgradient optimization algorithm. Similarly, analysis of the convergence rate of

GGE requires a different approach than the standard approach of examining the mixing time of a related

Markov chain. We develop a bound relating the rate of convergence of GGE to the rate of standard

randomized gossip. The bound indicates that GGE always converges faster than randomized gossip, a

finding supported by simulation results. We also provide a worst-case bound on the rate of convergence

of GGE. For other gossip algorithms the rate of convergence is generally characterized as a function of

the second largest eigenvalue of a related stochastic matrix. In the case of GGE, our worst-case bound

characterizes the rate of convergence in terms of a constant that is completely determined by the network

topology. We investigate the behavior of this constant empirically for random geometric graph topologies

and derive lower bounds that provide some characterization of its scaling properties.

A. Background and Related Work

Randomized gossip was proposed in [12] as a decentralized asynchronous scheme for solving the

average consensus problem. At the kth iteration of randomized gossip, a node sk is chosen uniformly

at random. It chooses a neighbor, tk, randomly, and this pair of nodes “gossips”: sk and tk exchange

values and perform the update xsk
(k) = xtk

(k) = (xsk
(k − 1) + xtk

(k − 1))/2, and all other nodes

remain unchanged. One can show that under very mild conditions on the way a random neighbor, tk, is

drawn, the values xi(k) converge to ȳ at every node i as k →∞ [11]. Because of the broadcast nature

of wireless transmission, other neighbors overhear the messages exchanged between the active pair of

nodes, but they do not make use of this information in existing randomized gossip algorithms.

The convergence rate of randomized gossip is characterized by relating the algorithm to a Markov

chain [12]. The mixing time of this Markov chain is closely related to the averaging time of the gossip

algorithm, and therefore defines the rate of convergence. For certain types of graph topologies, the mixing

times are small and convergence of the gossip algorithm is fast. For example, in the case of a complete

graph, the algorithm requires O(n) iterations to converge. However topologies such as random geometric

graphs [13] or grids are more realistic for wireless applications. Boyd et al. [12] prove that for random

geometric graphs, randomized gossip requires O(n2/ log n) transmissions to approximate the average
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consensus well2.

Motivated by the slow convergence of randomized gossip, Dimakis et al. introduced geographic gossip

in [10]. Geographic gossip enables information exchange over multiple hops with the assumption that

nodes have the knowledge of their geographic locations and the locations of their neighbors. It has been

shown that long-range information exchange improves the rate of convergence to O(n
√

n/ log n) for

random geometric graphs. However, geographic gossip involves overhead due to localization and geo-

graphic routing. Furthermore, the network needs to provide reliable two-way transmission over many hops.

Otherwise, messages which are lost in transit will result in biasing the average consensus computation.

Recently, other fast gossiping algorithms have also been proposed. Most related is the work of Li

and Dai [14], and Jung et al. [15]. Both approaches are based on directing the exchange of information

across the network by constructing lifted Markov chains using knowledge of the geographic locations of

nodes. As an extension to geographic gossip, Benezit et al. [16] have recently proposed averaging along

paths, an algorithm which converges in O(n) transmissions. All of these approaches rely on geographic

information and thus are not suitable to scenarios where nodes are mobile or location information is

not available. The focus of our work is on providing fast and communication-efficient computation that

exploits broadcast transmissions rather than geo-location information to gossip quickly.

Aysal et al. have proposed broadcast gossip, a consensus algorithm that also makes use of the broadcast

nature of wireless networks [17], [18]. At each iteration, a node is activated uniformly at random to

broadcast its value. All nodes within transmission range of the broadcasting node calculate a weighted

average of their own value and the broadcasted value, and they update their local value with this weighted

average. Broadcast gossip does not preserve the network average at each iteration. It achieves a low

variance (i.e., rapid convergence), but introduces bias: the value to which broadcast gossip converges can

be significantly different from the true average.

Sundhar Ram et al. introduced a general class of incremental subgradient algorithms for distributed

optimization in [19]. In this study, the effects of stochastic errors (e.g., due to quantization) on the

convergence of consensus-like distributed optimization algorithms are investigated. Convergence of their

algorithm is guaranteed under certain conditions on the errors, but the convergence rates are not charac-

terized.

2Throughout this paper, when we refer to randomized gossip we specifically mean the natural random walk version of the

algorithm, where the node tk is chosen uniformly from the set of neighbors of sk at each iteration. For random geometric graph

topologies, which are of most interest to us, Boyd et al. [12] prove that the performance of the natural random walk algorithm

scales order-wise identically to that of the optimal choice of transition probabilities, so there is no loss of generality.
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Nedić and Ozdaglar have also developed a distributed form of incremental subgradient optimization

that generalizes the consensus framework [20]. Our problem formulation is not as general as theirs, but

with the specific formulation addressed in this paper we achieve stronger results. In particular, our cost

function has a specific form and, by exploiting it, we are able to guarantee convergence to an optimal

solution and obtain tight bounds on the rate of convergence as a function of the network topology.

B. Paper Organization

The remainder of this paper is organized as follows. Section II introduces the formal definition of

the algorithm. Section III presents two bounds; the first relates the performance of GGE to randomized

gossip and indicates that GGE always outperforms randomized gossip, and the second is a worst-case

upper bound on the rate of convergence of GGE in terms of a topology-dependent constant. Results

from numerical simulations are presented in Section IV. Motivated by these results we provide a multi-

hop extension to our algorithm in Section V. Section VI summarizes the contributions of the paper and

discusses future work.

II. GREEDY GOSSIP WITH EAVESDROPPING (GGE)

We consider a network of n nodes and represent network connectivity as a graph, G = (V,E), with

vertices V = {1, . . . , n}, and edge set E ⊂ V × V such that (i, j) ∈ E if and only if nodes i and j

directly communicate. We assume that communication relationships are symmetric and that the graph is

connected. Let Ni = {j : (i, j) ∈ E} denote the set of neighbors of node i (not including i itself).

Each node in the network has an initial value yi, and the goal of the gossip algorithm is to use only

local broadcast exchanges to arrive at a state where every node knows the average ȳ = 1
n

∑n
i=1 yi. To

initialize the algorithm, each node sets its gossip value to xi(0) = yi.

At the kth iteration of GGE, a node sk is chosen uniformly at random from {1, . . . , n}. (This can be

accomplished using the asynchronous time model described in [21], where each node “ticks” according

to a Poisson clock with rate 1.) Then, sk identifies a neighboring node tk satisfying

tk ∈ arg max
t∈Nj

{
1
2
(xsk

(k − 1)− xt(k − 1))2
}

, (1)

which is to say, sk identifies a neighbor that currently has the most different value from its own. This

choice is possible because each node i maintains not only its own local variable, xi(k − 1), but also a

copy of the current values at its neighbors, xj(k−1), for j ∈ Ni. When sk has multiple neighbors whose
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values are all equally (and maximally) different from sk’s, it chooses one of these neighbors at random.

Then sk and tk perform the update

xsk
(k) = xtk

(k) =
1
2
(
xsk

(k − 1) + xtk
(k − 1)

)
, (2)

while all other nodes i /∈ {sk, tk} hold their values at xi(k) = xi(k − 1). Finally, the two nodes, sk and

tk, broadcast these new values so that their neighbors have up-to-date information.

Note that one GGE iteration could be accomplished with just two transmissions since sk already knows

the values at its neighbors: one broadcast from sk to tk notifying it of the change and simultaneously

announcing the new value to all of sk’s neighbors, and one broadcast from tk to its neighbors to echo the

new value to them. However, in networks with unreliable transmission or systems where nodes periodically

shut off their radios to conserve energy, sk may miss some transmissions from its neighbors, and thus

may not always have accurate information about their values. In this case, mistakes in calculation at sk in

the two-transmission scheme just described would introduce errors, biassing the consensus computation.

To make our algorithm more robust and address the case where sk does not precisely know the values at

all neighbors, we assume a three-transmission version of our scheme throughout the rest of this paper:

one transmission from sk to tk to initiate gossiping, one from tk to its neighbors to inform them of the

new value, and one from sk to its neighbors to inform them of its new value. We comment further on

this issue in Section IV-C.

A. Initialization

Calculating the greedy update in (1) requires nodes to know their neighbors’ values. Similar to other

randomized gossip algorithms, we assume that at the outset of gossip computation each node i has

already discovered its neighbor set, Ni, but it does not know its neighbors’ values. Instead, these values

are learned during an initialization phase. During the initialization phase, the node sk that is activated at

iteration k chooses tk randomly from the subset of its neighbors whose values it does not know, rather

than performing a GGE update. Since sk and tk broadcast their new values after averaging, the nodes

in their neighborhoods overhear and acquire information accordingly. Once sk has heard from all of its

neighbors, the initialization process is complete for that particular node and it chooses tk greedily via

(1) for all subsequent iterations.

Figure 1 illustrates the effects of this initialization scheme relative to an idealized initialization scheme

and a naı̈ve initialization scheme. In the idealized scheme, each node clairvoyantly knows all of its

neighbors’ initial values, and all nodes immediately commence with greedy updates. In the naı̈ve scheme,
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before any node begins gossiping, all nodes broadcast once (without performing an update) to inform

their neighbors of their starting value. The results shown correspond to a network of 200 nodes3. Observe

that the proposed scheme and the naı̈ve scheme attain similar performance, and both involve an overhead

of roughly n = 200 transmissions, which is not substantial relative to the total number of transmission

required. We prefer the proposed initialization scheme to the naı̈ve broadcast approach because it does

not require any scheduling mechanism.
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Fig. 1. A comparison of GGE performance for three different initializations of the algorithm. GGE with broadcast corresponds

to the case where each node broadcasts its value once (without performing any updates) to initialize the values at all neighbors,

before beginning to gossip. GGE with initialization corresponds to the proposed scheme, where, before a node has heard from all

its neighbors, it gossips randomly with one it has not heard from, and after it has heard from all neighbors its performs greedy

updates. Thus, the proposed GGE initialization scheme gives priority to learning neighbors’ values during the initialization phase.

GGE ideal assumes that each node clairvoyantly knows its neighbors’ values at the outset. Note that GGE with broadcast and

GGE with initialization give similar asymptotic performance (accruing overhead of roughly n = 200 transmissions), although

the proposed scheme does not require any scheduling mechanism and during early iterations the proposed scheme actually uses

each transmission to perform an update.

3The topology is generated randomly from the family of random geometric graphs on 200 nodes with the standard connectivity

radius. See Section IV for further details on simulations, and note that the setup used here is the same as that used to generate

Figure 2(a). Although not reported here due to space constraints, we observe similar behavior on other network topologies.
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III. CONVERGENCE ANALYSIS

A. Convergence of GGE

To derive convergence results, we interpret GGE as a randomized incremental subgradient method [22].

Consider the constrained optimization problem,

min
x∈Rn

n∑

i=1

fi(x)

subject to x ∈ X,

where we assume that each fi(x) is a convex function, not necessarily differentiable, and X is a non-

empty convex subset of Rn. An incremental subgradient algorithm for solving this optimization problem

is an iterative algorithm of the form:

x(k) = PX [x(k − 1)− αkg(sk, x(k − 1))], (3)

where αk > 0 is the step-size, g(sk, x(k− 1)) is a subgradient4 of fsk
at x(k− 1), and PX [·] projects its

argument onto the set X . The algorithm is randomized when the component updated at each iteration,

sk, is drawn uniformly at random from the set {1, . . . , n}, and is independent of x(k − 1). Intuitively,

the algorithm resembles gradient descent, except that instead of taking a descent step in the direction of

the gradient of the cost function, f(x) =
∑n

i=1 fi(x), at each iteration we focus on a single component,

fi(x). The projection, PX [·], ensures that each new iterate x(k) is feasible. Under mild conditions on

the sequence of step sizes, αk, and on the regularity of each component function fi(x), Nedić and

Bertsekas have shown that the randomized incremental subgradient method described above converges

to a neighborhood of the global minimizer [22].

GGE is a randomized incremental subgradient algorithm for the problem

min
x∈Rn

n∑

i=1

max
j∈Ni

{
1
2
(xi − xj)2

}
(4)

subject to
n∑

i=1

xi =
n∑

i=1

yi, (5)

4Subgradients generalize the notion of a gradient for non-smooth functions. The subgradient of a convex function fi at x is

any vector g that satisfies fi(y) ≥ fi(x)+ gT (y−x). The set of subgradients of fi at x is referred to as the subdifferential and

is denoted by ∂fi(x). If fi is continuous at x, then ∂fi(x) = {∇fi(x)}; i.e., the only subgradient of fi at x is the gradient.

A sufficient and necessary condition for x∗ to be a minimizer of the convex function fi is that 0 ∈ ∂fi(x
∗). See [22] and

references therein.
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where yi is the initial value at node i. The objective function in (4) has a minimum value of 0 which is

attained when xi = xj for all i, j. Thus, any minimizer is a consensus solution. Moreover, the constraint
∑n

i=1 xi =
∑n

i=1 yi ensures that the unique global minimizer is the average consensus.

To connect the GGE update, (2), and the incremental subgradient update, (3), observe that g(k), the

subgradient of fsk
(x(k − 1)) = maxj∈Nsk

{1
2(xsk

(k − 1)− xj(k − 1))2}, is defined by

gi(k) =





xsk
(k − 1)− xtk

(k − 1) for i = sk,

−(xsk
(k − 1)− xtk

(k − 1)) for i = tk,

0 otherwise.

(6)

Here the subscript i indexes the components of the vector g. Fixing a constant step size αk = 1
2 , the

update (3) is identical to (2). The recursive update for GGE thus has the form

x(k) = x(k − 1)− 1
2
g(k), (7)

Note that the projection is unnecessary since the choice αk = 1
2 ensures that the constraint

∑n
i=1 xi(k) =

∑n
i=1 yi is satisfied at each iteration.

Nedić and Bertsekas study the convergence behavior of randomized incremental subgradient algorithms

in [22]. For a constant step size, their analysis only guarantees the iterates x(k) will reach a neighborhood

of the optimal solution: with probability 1, mink f(x(k)) ≤ αnC2/2, where C ≥ ‖g(sk, x(k))‖ is an

upper bound on the norm of the subgradient [22]. We wish to show that x(k) actually converges to the

average consensus, x̄, the global minimizer of our optimization problem, and not just to a neighborhood

of x̄. By exploiting the specific form of the GGE cost function, we are able to prove the following

stronger result.

Theorem 1: Let x(k) denote the sequence of iterates produced by GGE. Then x(k) → x̄ almost surely.

Proof: To begin, we examine the improvement in squared error after one GGE iteration. Expanding

x(k + 1) via the expression (7), we have

‖x(k)− x̄‖2 = ‖x(k − 1)− 1
2
g(k)− x̄‖2

= ‖x(k − 1)− x̄‖2 − 〈x(k − 1)− x̄, g(k)〉+
1
4
‖g(k)‖2.

Based on the definition of g(k) in (6), given sk and tk, we have

‖g(k)‖2 = 2(xsk
(k − 1)− xtk

(k − 1))2,
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and,

〈x(k − 1)− x̄, g(k)〉 =
n∑

i=1

(xi(k − 1)− x̄i) gi(k)

= (xsk
(k − 1)− xtk

(k − 1))2.

Therefore, we have

‖x(k)− x̄‖2 = ‖x(k − 1)− x̄‖2 − 1
4
‖g(k)‖2 (8)

with probability 1, since the expression holds independent of the value of sk and tk. Recursively applying

our update expression, we find that w.p. 1,

‖x(k)− x̄‖2 = ‖x(k − 1)− x̄‖2 − 1
4
‖g(k)‖2

= ‖x(k − 2)− x̄‖2 − 1
4

k∑

j=k−1

‖g(j)‖2

...

= ‖x(0)− x̄‖2 − 1
4

k∑

j=1

‖g(j)‖2.

Since ‖x(k)− x̄‖2 ≥ 0, we must have

k∑

j=1

‖g(j)‖2 ≤ 4‖x(0)− x̄‖2

w.p. 1, and, consequently, the series
∑k

j=1 ‖g(j)‖2 converges a.s. as k →∞. Since each term ‖g(j)‖2 ≥ 0,

this also implies that ‖g(k)‖2 → 0 a.s. as k → ∞. However, by definition, g(k) is the subgradient of

a convex function, and g(k) = 0 is both a sufficient and necessary condition for x(k) to be a global

minimizer. Thus, g(k) → 0 a.s. implies that x(k) → x̄ a.s., since x̄ is the unique minimizer of (4)-(5).

B. Convergence Rate: GGE vs. Randomized Gossip

The following theorem establishes a general expression for the bound on the mean-squared error of

GGE after k iterations. Moreover, it demonstrates that the upper bound on the MSE of GGE is less than

or equal to the upper bound on the MSE of randomized gossip.

The GGE updates can also be expressed in the form x(k) = WGGE(k)x(k − 1) where WGGE(k)

is a stochastic matrix with WGGE
sk,sk

(k) = WGGE
sk,tk

(k) = WGGE
tk,sk

(k) = WGGE
tk,tk

(k) = 1
2 , WGGE

i,i (k) = 1

for all i /∈ {sk, tk}, and 0 elsewhere. We denote the application of k successive GGE updates by
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WGGE(1 : k) =
∏k

j=1 WGGE(j). Likewise, let WRG(1 : k) =
∏k

j=1 WRG(j) denote the successive

application of k randomized gossip updates. Let W = E[WRG(k)] denote the expected value of the

randomized gossip matrix, and let λ2(W ) denote the second largest eigenvalue of W .

Theorem 2: Let the algorithm input, x(0), be given, let x̄ denote the corresponding average consensus

vector. After k iterations, the expected mean squared error of GGE is upper bounded as follows:

E
[‖WGGE(1 : k)x(0)− x̄‖2

] ≤ ‖x(0)− x̄‖2
k∏

i=1

(
λ2

(
W

)− ξi

)
(9)

where ξi = 0 if E
[‖WGGE(1 : i− 1)x(0)− x̄‖2

]
= 0, and otherwise,

ξi =

E

[
n∑

s=1

(
max
t∈Ns

(
xs(i− 1)− xt(i− 1)

)2
)
−

n∑
s=1

(
1
|Ns|

∑
t∈Ns

(
xs(i− 1)− xt(i− 1)

)2

)]

2n E [‖WGGE(1 : i− 1)x(0)− x̄‖2]
≥ 0. (10)

Note that x(i− 1) is a random quantity determined by the choice of [s1 s2 ... si−1], and the expectation

in (10) is over these variables.

Remark 1: The analogous expression for randomized gossip is simply [12]

E
[‖WRG(1 : k)x(0)− x̄‖2

] ≤ ‖x(0)− x̄‖2λ2(W )k.

(Note that here, the expectation is taken with respect to both random nodes chosen at each iteration,

[s1 s2 ... sk] and [t1 t2 ... tk], whereas in the expressions in the theorem, the only randomness is in

[s1 s2 ... sk].) Since ξi ≥ 0 for all i = 1, . . . , k, this implies that the upper bound on GGE is uniformly

upper bounded by the upper bound for randomized gossip, for any k ≥ 0 and any input x(0). The

upper bound for random gossip is tight; if v2 denotes the eigenvector corresponding to the second-largest

eigenvalue of W , then if x(0) = cv2 for some constant c, the upper bound holds with equality (in

expectation).

Remark 2: The form of the terms ξi also provides insight into which scenarios are less favorable for

GGE. In general, we know that randomized gossip is slow to converge on random geometric graphs

[12], and so we hope that ξi > 0 so that GGE achieves some improvement. Note that the numerator

of ξi measures how much larger (on average) a GGE step from x(i − 1) is in comparison to the step

taken by randomized gossip from the same location. There are two scenarios where the expression for

ξi in (10) evaluates to 0. The first is when x(i − 1) = x̄, in which case consensus has already been

achieved. The second is when the difference between any two neighbors is constant across the network;

i.e., (xs − xt)2 = c for all t ∈ Ns and all s = 1, . . . , n. In this setting, being greedy does not provide

any gain, since gossiping with any neighbor provides the same amount of immediate improvement.
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Proof of Theorem 2: We recall the known convergence rate bounds for randomized gossip [12],

E
[||WRG(1 : k)x(0)− x̄||2] ≤ λ2

(
W

)k ||x(0)− x̄||2 (11)

and the related recursive relationship,

E
[||WRG(1 : k)x(0)− x̄||2]

= E

[
||WRG(1 : k − 1)x(0)− x̄||2 − 1

2n

n∑

s=1

1
|Ns|

∑

t∈Ns

(
xs(k − 1)− xt(k − 1)

)2

]

≤ λ2

(
W

)
E

[||WRG(1 : k − 1)x(0)− x̄||2] . (12)

We can identify an equivalent relationship derived from applying k − 1 steps of GGE followed by one

step of random gossip:

E
[||WRG(k)WGGE(1 : k − 1)x(0)− x̄||2]

= E

[
||WGGE(1 : k − 1)x(0)− x̄||2 − 1

2n

n∑

s=1

1
|Ns|

∑

t∈Ns

(
xs(k − 1)− xt(k − 1)

)2

]

≤ λ2

(
W

)
E

[||WGGE(1 : k − 1)x(0)− x̄||2] . (13)

With this relationship in hand, we can bound the error of the GGE algorithm by adding and subtracting

the effects of making the k-th step a randomized gossip update:

E
[||WGGE(1 : k)x(0)− x̄)||2]

= E

[
||WGGE(1 : k − 1)x(0)− x̄)||2 − 1

2n

n∑

s=1

1
|Ns|

∑

t∈Ns

(
xs(k − 1)− xt(k − 1)

)2

]

− E
[

1
2n

n∑

s=1

max
t∈Ns

(
xs(k − 1)− xt(k − 1)

)2 +
1
2n

n∑

s=1

1
|Ns|

∑

t∈Ns

(
xs(k − 1)− xt(k − 1)

)2

]

≤ [
λ2

(
W

)− ξk

]
E

[||WGGE(1 : k − 1)x(0)− x̄||2] . (14)

Repeated application of this inequality from i = 1, . . . , k yields the bound (9).

C. GGE Convergence Rate: Worst Case Bounds

The previous subsection related the performance of GGE to that of standard randomized gossip. Next,

we seek a more direct characterization of the GGE rate of convergence in terms of properties of the

underlying communication topology. We then revisit our comparison to randomized gossip. The rate of

convergence for gossip algorithms is typically quantified in terms of the ε-averaging time,

Tave(ε) = sup
x(0)6=0

inf
{

k : Pr
(‖x(k)− x̄‖
‖x(0)− x̄‖ ≥ ε

) ≤ ε

}
.
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Other gossip algorithms such as randomized gossip and geographic gossip are easily related to a homo-

geneous Markov chain, and Tave(ε) can be shown to scale as a function of the second largest eigenvalue

of W . In particular (see Theorem 3 in [12]), Tave(ε) ≤ 3 log ε−1

log λ2(W )−1 . For randomized gossip, the matrix

W depends on the choice of probabilities assigned to each edge in the network and hence depends on

the network topology.

Since, in each iteration of GGE, the greedy decision depends on the gossip values at each node, x(k),

our algorithm cannot be related to a homogeneous Markov chain (tk depends on x(k)). Consequently,

the same machinery cannot be used to characterize the rate of convergence for GGE. The goal of this

section is to bound the rate of convergence of GGE through alternative means. To this end, our main

result is the following.

Theorem 3: Let G = (V, E) denote the graph on which we are gossiping, let x(k) denote the vector

of GGE values after k iterations, and let x̄ denote the average vector. Then

E
[‖x(k)− x̄‖2

] ≤ A(G)k‖x(0)− x̄‖2,

where A(G) is the graph-dependent constant defined as

A(G) = max
x 6=x̄

1
n

n∑

s=1

(
1− ‖gs(x)‖2

4‖x− x̄‖2

)
,

where gs(x) refers to a subgradient of fs(x), when viewing GGE as an incremental subgradient algo-

rithm5. Moreover, the ε-averaging time for GGE is bounded above by

Tave(ε) ≤ 3 log ε−1

log A(G)−1
.

Remark 3: Note that the constant A(G) only depends on the topology of the graph. This constant

plays a role for GGE similar to that played by the second-largest eigenvalue of W for regular gossip

algorithms.

Proof of Theorem 3: The proof of the first part of Theorem 3 is based on an approach introduced in

[23] and developed in [24] for analyzing data-adaptive algorithms. We begin by recalling the recursion

for the mean squared error of GGE after k iterations expressed in (8):

‖x(k)− x̄‖2 = ‖x(k − 1)− x̄‖2 − 1
4
‖g(k)‖2

=
(

1− ‖g(k)‖2

4‖x(k − 1)− x̄‖2

)
‖x(k − 1)− x̄‖2,

5We explicitly note that this constant is a function of the underlying topology by writing A(G). The constant A(G) is

completely determined by the neighborhood structure of the network because the maximization is over all x. For a fixed x, the

subgradients are determined by the neighborhood structure.
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where g(k) denotes the subgradient at iteration k (when viewing GGE as a randomized incremental

subgradient algorithm), and is a random quantity, depending on which node s(k) is activated at iteration

k. Let M(k) = ‖x(k)− x̄‖2 denote the error after k iterations, and let N(k) = 1− ‖g(k)‖2
4‖x(k−1)−x̄‖2 denote

the amount of contraction at iteration k. Using these definitions and some successive conditioning, we

get

E[M(k)] = E[N(k)M(k − 1)]

= E[E[N(k)M(k − 1)|x(k − 1)]]

= E[M(k − 1)E[N(k)|x(k − 1)]]

...

= M(0)E[E[N(1)|x(0)] · · ·E[N(k)|x(k − 1)]].

Note that A(G) is defined in such a way that E [N(k)|x(k − 1)] ≤ A(G) for all k. Therefore, it follows

that

E[‖x(k)− x̄‖2] ≤ A(G)k‖x(0)− x̄‖2.

Next, we prove the second part of the claim: the bound on ε-averaging time. To do this, we will use the

bound we have just derived to develop an upper bound on Pr(‖x(k)− x̄‖ ≥ ε‖x(0)− x̄‖), the probability

that after k iterations we are still more than a factor of ε away from the initial error. Applying Markov’s

inequality and the bound we just derived for E[‖x(k)− x̄‖2], we have

Pr (‖x(k)− x̄‖ ≥ ε‖x(0)− x̄‖) = Pr
(‖x(k)− x̄‖2 ≥ ε2‖x(0)− x̄‖2

)

≤ E[‖x(k)− x̄‖2]
ε2‖x(0)− x̄‖2

≤ ε−2A(G)k.

To get an upper bound on Tave(ε), first note that Pr (‖x(k)− x̄‖ ≥ ε‖x(0)− x̄‖) ≤ ε provided that

k ≥ 3 log ε−1

log A(G)−1 . Since in the first part of our proposition, the bound on E[‖x(k) − x̄‖2] is based on a

worst-case one-step analysis, it is an upper bound on the mean squared error at iteration k, effectively

a lower bound on the rate of convergence. Therefore, we have an upper bound on the ε-averaging time

for GGE; that is Tave(ε) ≤ 3 log ε−1

log A(G)−1 .

Theorem 3 provides a direct link between the rate of convergence of GGE and the underlying network

topology through the constant, A(G). This motivates further study of how A(G) behaves for different

classes and sizes of network topologies. Next, we derive a lower-bound on A(G) as a function of the
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maximum degree of the network, dmax = maxi |Ni|. Then we apply this result to characterize A(G) for

two-dimensional grid and random geometric graph topologies.

Theorem 4: Let G be a graph with n nodes and maximum degree dmax. As above, let W denote the

expected update for one step of randomized gossip on G. There exists a vector x ∈ Rn with corresponding

average consensus vector x̄ such that

E‖WGGEx− x̄‖2

‖x− x̄‖2
≥ (1− dmax(1− λ2

(
W

)
)), (15)

and this implies a lower-bound for A(G),

A(G) ≥ 1− dmax(1− λ2

(
W

)
). (16)

The proof appears below. We can use this result to relate the upper bounds on averaging time for GGE

and standard randomized gossip. Let UGGE(G, ε) = 3 log ε−1

log A(G)−1 denote the upper bound on the averaging

time of GGE obtained in Theorem 3, and let URG(G, ε) = 3 log ε−1

log λ2(W )−1 denote the corresponding upper

bound on the averaging time of randomized gossip [12]. Using two inequalities for the logarithm —

namely, a < − log(1− a) for a ∈ (0, 1), and log λ ≤ λ− 1 for λ > 0 — we obtain

UGGE(G, ε) ≥ 3 log ε−1

dmax(1− λ2(W ))
≥ URG(G, ε)/dmax. (17)

In words, the upper bound on the averaging time of GGE is at most a factor of dmax better than the upper

bound for randomized gossip. Of course, this only links the upper bounds of the two algorithms and does

not directly relate their actual performance. However, simulation results presented in the next section

indicate that this relationship indeed captures the improvements seen for GGE over randomized gossip.

Moreover, recall that the bounds on the expected improvement after a single gossip iteration are tight

for both GGE and randomized gossip. The bound for GGE in Theorem 3 becomes an equality for k = 1

when x(0) is taken to be the x that solves the optimization problem defining A(G). Similarly, the bound

for randomized gossip becomes an equality when x(0) is taken to be the eigenvector corresponding to

the second largest eigenvalue of W .

We are interested in understanding the performance of GGE for applications primarily in wireless

networks. Random geometric graphs, first introduced in [13], are commonly used to model connectivity

in wireless networks for the purpose of analyzing scaling behaviour of algorithms. A random geometric

graph on n nodes is obtained by uniformly assigning each node i.i.d. coordinates in the unit square and

then connecting nodes whose distance is less than connectivity radius r(n). In this paper we adopt the

common scaling r(n) =
√

2 log n
n , which guarantees the network is connected with high probability [13].
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For a random geometric graph with n nodes, it is known [12] that, for r(n) as given above, every node

has 2π log(n)(1− o(1)) neighbors with high probability. Thus, with dmax = 2π log(n)(1− o(1)), we see

that GGE gives essentially a factor of log n improvement in averaging time over randomized gossip. For

a two-dimensional grid dmax = 4, and GGE gives only a constant improvement in averaging time. These

results are illustrated via simulation in the next section.

Proof of Theorem 4: Our starting point is (10) from Theorem 2. Since we are focusing on the effect

of applying a single gossip iteration, we drop the time index i in (10) to simplify the notation:

ξ =

E

[
n∑

s=1

(
max
t∈Ns

(
xs − xt

)2
)
−

n∑
s=1

(
1
|Ns|

∑
t∈Ns

(
xs − xt

)2

)]

2n E [‖x− x̄‖2]
≥ 0, (18)

Using the fact that the maximum of a set of non-negative values is always less than or equal to the sum

of those values, we can write

E
[
max
t∈Ns

(xs − xt)2
]

≤ |Ns|
|Ns| E

[ ∑

t∈Ns

(xs − xt)2
]

(19)

≤ dmax

|Ns| E
[ ∑

t∈Ns

(xs − xt)2
]

. (20)

Therefore we can upper bound ξ by

ξ ≤
(dmax − 1) E

[
n∑

s=1

(
1
|Ns|

∑
t∈Ns

(
xs − xt

)2

)]

2n E[‖x− x̄‖2]
. (21)

Next, take x to be the eigenvector corresponding to the second largest eigenvalue of W and equate

WRG(1 : k − 1)x(0) = x in (12) to get

E

[
− 1

2n

n∑

s=1

1
|Ns|

∑

t∈Ns

(xs − xt)2
]

≤ −(1− λ2(W ))E[‖x− x̄‖2]. (22)

Applying this inequality in (21) gives

ξ ≤ (dmax − 1)(1− λ2(W )). (23)

Observe that the one-step bound obtained by taking k = 1 in (9) is tight. In particular, for our choice

of x as the eigenvector corresponding to the second largest eigenvalue of W , we have equality in (9):

E
[‖WGGEx− x̄‖2

]
= ‖x− x̄‖2

(
λ2

(
W

)− ξ
)
. (24)

Inserting (23) into (24) leads to the first claim in the proposition. Then, combining this bound with the

first inequality in Theorem 3 for the case k = 1 and x(0) = x yields the desired lower bound on A(G).

March 19, 2009 DRAFT



17

IV. NUMERICAL SIMULATIONS

In this section we report the results of simulations conducted to compare the performance of GGE with

randomized gossip [12] and geographic gossip [10] for a variety of initial conditions. We also compare

the empirically achieved convergence rates to the bound established in Section III-C and investigate how

this bound behaves as the number of nodes in the network grows.

A. Comparison of Convergence Rates

We first compare the convergence rates of GGE with randomized gossip and geographic gossip by

examining the reduction they achieve in relative error, ||x(k)−x̄||
||x(0)−x̄|| , as a function of the number of transmis-

sions (communication complexity). Since the number of transmissions per iteration is different for each

algorithm, this is a fairer comparison than examining convergence rate relative to the number of iterations.

Randomized gossip requires two wireless transmissions per iteration, GGE requires three transmissions

(see the discussion in Section II), and geographic gossip has a variable number of transmissions per

iteration, depending on the number of hops between the gossiping nodes. We simulate networks with

random geometric graph topologies, and all figures show averages over 100 realizations of the random

geometric graph. We examine performance for four different initial conditions, x(0), in order to explore

the impact of the initial values on performance. The first two of these cases are a Gaussian bumps

field, and a linearly-varying field. For these two cases, the initial value x(0) is determined by sampling

these fields at the locations of the nodes. The remaining two initializations consist of the “spike” signal,

constructed by setting the value of one random node to 1 and all other node values to 0, and a random

initialization where each value is i.i.d. drawn from a Gaussian distribution N (0, 1) of zero mean and

unit variance. The first three of these signals were also used to examine the performance of geographic

gossip in [10].

Figs. 2(a)-(d) show that GGE converges to the average at a much faster rate (both initially and

asymptotically) than randomized gossip for all initial conditions. The initial rate of convergence of GGE

is faster than geographic gossip for all but the linearly-varying field, and for the simulated network size

(n = 200), the asymptotic rates of reduction in relative error are similar for the two algorithms. Out of

these candidate initializations, the linearly-varying field is the worst case. This is not surprising since

the convergence analysis conducted in Section III suggests that constant differences between neighbors

causes GGE to provide minimal gain.

We also compare the performances of the three gossip algorithms for the grid topology. Figure 3 shows

that in grid-structured networks the performance of GGE is close to the performance of randomized gossip
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(a) Gaussian bumps convergence rate comparison
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(b) Linearly-varying field convergence rate comparison
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(c) Spike convergence rate comparison
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(d) Uniform random field convergence rate comparison

Fig. 2. A comparison of the performance of randomized gossip, GGE, and geographic gossip for four initializations of x(0).

Results are averaged over 100 realizations of the random geometric graph and 100 runs of the algorithm per graph.

(constant improvement). Clearly geographic gossip has the best performance in this case. As discussed

in Section III-C, the small number of neighbors in the grid topology restricts the improvement that GGE

can achieve relative to randomized gossip.

For random geometric graph topologies, the expected node degree, E[|Ns|], scales as log n in contrast

to constant average node degree in the case of grid topology. Therefore, GGE is able to provide better

performance results compared to randomized gossip for graph topologies where average node degree

increases with the number of nodes. To improve GGE performance for topologies with low expected

node degree values, we propose an extension to the algorithm. Details of this extension, which we call

Multi-hop GGE, are provided in Section V.
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(a) Gaussian bumps convergence rate comparison (b) Linearly-varying field convergence rate comparison

Fig. 3. A comparison of the performance of randomized gossip, GGE, and geographic gossip for two initializations of x(0)

in grid topology. Results are averaged over 100 runs of the algorithm.

B. Comparison with the Theoretical Upper Bound

We now compare the empirical average relative error for the random geometric graph with the bound

developed in Theorem 3. There is no closed-form solution for A(G), so we solve the optimization

problem identified in Theorem 3 numerically, using an incremental subgradient algorithm. Since the cost

function can be expressed as a function of (x(k) − x̄)/||x(k) − x̄||, we can focus on maximizing over

x satisfying x̄ = 0 and ||x(k)||2 = 1. In this simplified setting, one can reformulate the optimization as

the minimization of a convex function over a non-convex set of constraints. We approximate the solution

to this minimization using a projected incremental subgradient method. To avoid the problem of local

minima (since the constraint set is non-convex) we rerun the optimization algorithm from multiple initial

conditions. Figure 4 shows the relative error achieved by GGE as a function of the number of iterations

for different initial conditions of x(0), averaged over 100 realizations of the algorithm. Also plotted is

the bound identified in Theorem 3, substituting in A(G) calculated numerically. For all but the linearly-

varying field, GGE achieves a much more rapid initial decrease in error than indicated by the bound.

After approximately 1000 iterations, the bound provides a good indication of the rate of decrease in error.

We again observe that the linearly-varying field is close to a worst-case scenario for GGE.

Next, we examine how the communication complexity scales with respect to the number of nodes

in the network. Figs. 5(a) and 5(b) display how A(G) and the averaging time scale as a function of

the number of nodes n, for random geometric graph and grid topologies, respectively. To obtain the
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Fig. 4. A comparison of the theoretical bound on relative error and the experimental performance of GGE for four initializations.

Results are for 100 realizations of the random geometric graph, averaged over 100 runs of the algorithm.

random geometric graph curve, we generate 50 random graphs for each value of n, and numerically

evaluate A(G) for each using the procedure detailed above. The top panel shows how the values of

A(G) change as the number of nodes increases. The bottom panel shows the ε-averaging time, Tave(ε),

evaluated via simulation, for ε = 0.01 versus the number of nodes. Note that Figs. 5(a) and 5(b) show

the averaging time in terms of the number of iterations per node. The errorbars depict the minimum,

mean and maximum values obtained for the 50 simulated graphs for each n. For reference, the dotted

lines depict 1.5n/ log n for the random geometric graph and 2.5n for the grid topology.

C. Stale Information

In wireless networks, links can be unreliable, and for GGE, it is possible for nodes to miss some

updates from their neighbors. Consequently, nodes will have stale information about their neighbors’

values and therefore the greedy selection in GGE may be affected. Here we investigate the effect of stale

information on the performance of GGE through a simulation study.

We consider random graph topologies with 200 nodes. The initial measurements x(0) correspond

to sampling the Gaussian bumps field, similar to Figure 2(a). As described in Section II, at the kth

GGE iteration, two nodes sk and tk perform averaging. To provide up-to-date information to their

neighbors, sk and tk broadcast their new values. We simulate the case when nodes randomly miss

the broadcasted messages. We assume that the gossiping nodes sk and tk communicate reliably, but

sometimes eavesdropping nodes miss an update from their neighbor. Specifically, each eavesdropping

node independently misses the transmission from its neighbor with probability p. Figure 6 illustrates the
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Fig. 5. The scaling behavior of A(G) and the averaging time Tave(ε) for ε = 0.01 as a function of the number of nodes n

in the network. The top panels show A(G) evaluated numerically, and the bottom panels compare Tave(0.01) computed via

simulation and via the corresponding bound from Theorem 3. (a) 50 random geometric graphs are simulated for each value of

n. The error bars depict the minimum, mean, and maximum values obtained over these 50 realizations. The curve 1.5n/ log n

is also shown for reference. (b) For the grid topology, error bars are not used since there is only one realization of the grid for

a given network size. The curve 2.5n is also shown for reference.

performance degradation in GGE. Curves are shown for four different values of p between 0 and 0.5, and

standard randomized gossip is also shown for comparison. We conclude that GGE provides significantly

better performance than randomized gossip even when 50 percent of the broadcast messages are missed.

V. MULTI-HOP GREEDY GOSSIP WITH EAVESDROPPING

As Figs. 2 and 3 indicate, the improvement of GGE over randomized gossip is less for the grid topology

compared to the RGG topology. The decrease in improvement is due to the fact that the node degree in

a two-dimensional grid is bounded at 4 and does not increase with the network size. Here we propose

an extension to our algorithm that improves the performance of GGE such that it can be employed for

topologies with low average node degree. Essentially, this extension allows nodes to perform greedy

gossip updates with nodes beyond their immediate one-hop neighborhood.

In one-hop GGE, at the kth iteration, sk determines which neighbor, tk, has a value most different

from its own. In two-hop GGE, instead of completing the update, tk checks if any of its neighbors

uk ∈ Ntk
has a value even more different from sk than its own; i.e., ‖xsk

− xuk
‖ > ‖xsk

− xtk
‖. If so,

nodes sk and uk gossip; otherwise sk and tk gossip. Multi-hop gossip generalizes this idea to even larger

neighborhoods. For example, uk can search its neighborhood, and so on.
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Fig. 6. A comparision of the performance of randomized gossip with GGE in the case of stale information due to independent

link failures with probability p. Results are for 100 realizations of the 200-node random geometric graph, averaged over 100

runs of the algorithm.

To observe the effect of performing greedy updates over multiple hops, we conduct an experimental

comparison between 1-hop, 2-hop, and 3-hop GGE. As a point of comparison, we also include curves for

randomized gossip and geographic gossip. Figure 7 illustrates the results for grid and random geometric

graph topologies. In the grid, 3-hop GGE achieves an asymptotic rate of reduction in relative error that is

comparable to geographic gossip. In the random geometric graph topology, the asymptotic performance

of 1-hop GGE is already similar to that of geographic gossip (for a network of 200 nodes) and the multi-

hop versions lead to significant improvements while still limiting all gossip exchanges to be between

nodes separated by at most three hops.

VI. CONCLUSION

In this paper we propose a new average consensus algorithm for wireless sensor networks. Greedy

gossip with eavesdropping (GGE) makes use of the broadcast nature of wireless communications and

provides fast and reliable computation of average consensus. We provide (i) a proof that GGE converges

to the average consensus; (ii) a bound on the mean-squared error after k iterations of GGE; (iii) a

bound on the ε-averaging time of GGE; and (iv) theoretical bounds suggesting that GGE converges faster

than randomized gossip, and (v) a characterization of the improvement in convergence rate achieved by

GGE over randomized gossip as a function of the maximum degree. Simulation experiments compare

the performance of GGE, randomized gossip [12], and geographic gossip [10] and demonstrate that the

theoretical bound on mean-squared error provides a good characterization of the algorithm performance.
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(a) Linearly-varying field convergence rate comparison
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(b) Gaussian bumps convergence rate comparison

Fig. 7. A comparison of the performance of randomized gossip, GGE (1-hop), multi hop GGE (2 and 3-hops) and geographic

gossip for linearly-varying field initialization of x(0) in grid topology and Gaussian bumps initialization of x(0) in RGG

topology. Results are averaged over 100 runs of the algorithm.

The simulation experiments also investigate the scaling behavior of the communication complexity of

GGE.

GGE retains the robustness and simplicity of randomized gossip; it does not require nodes to acquire

location information and it does not introduce the overhead of geographic routing. There is an additional

memory overhead (nodes store their neighbors’ values), but this storage requirement is small. Nodes

do need to learn their neighbors’ values, and we propose an initialization process that introduces a

minor performance penalty with negligible added complexity. Since nodes eavesdrop on their neighbors’

broadcasts, they must remain in “Receive” mode throughout the entire operation of the GGE algorithm.

In randomized gossip, nodes can enter “Idle” mode and only switch to “Receive” mode when they

detect that a neighbor is requesting a data exchange. In a wireless sensor network implementation,

this difference could lead to concerns that GGE would consume more energy than randomized gossip.

However, empirical studies have shown that energy consumption in “Idle” and “Receive” modes is very

similar for most existing wireless sensor network architectures [25].

Our future work will investigate the benefits of GGE in networks of mobile nodes. When nodes are

mobile, other fast consensus approaches which exploit knowledge of geographic location are no longer

applicable. However, because GGE is purely local and adaptive, we believe it is a promising candidate for

accelerating gossip algorithms in time-varying networks. We also plan to investigate further connections

between consensus algorithms and incremental subgradient optimization algorithms, towards computing
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more general functions than the average.
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