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Abstract— This paper presents greedy gossip with eavesdrop-
ping (GGE), a new average consensus algorithm for wireless
sensor network applications. Consensus algorithms have recently
received much attention in the sensor network community
because of their simplicity and completely decentralized nature
which makes them robust to changes in the network topology
and unreliable wireless networking environments. In the sensor
network, each node has a measurement value and the aim of
average consensus is computing the average of these node values
in the absence of a central authority. We prove that GGE
converges to the average consensus with probability one. We
also illustrate the performance of the algorithm via simulations
and conclude that GGE provides a significant performance
improvement compared to existing average consensus algorithms
such as randomized gossip and geographic gossip.

I. INTRODUCTION AND BACKGROUND

Efficiently reaching a consensus is a fundamental prob-
lem in decentralized systems such as wireless sensor-actuator
networks. The prototypical example of a consensus problem
is that of computing the average consensus: initially, each
node has a scalar piece of information, yi, and the goal is
to compute the average, ȳ = 1

n

∑n
i=1 yi, at every node in the

network. Consensus can be viewed as a sort of synchronization
or agreement, before the network makes a concerted action.
The average consensus is also useful for distributed decision
making under a Gaussian observation model. Our previous
work examined the use of average consensus algorithms
in distributed signal processing applications such as source
localization [7] and data compression [6].

In this paper we propose a new average consensus algo-
rithm, greedy gossip with eavesdropping, that takes advan-
tage of the broadcast nature of wireless communications to
accelerate convergence. Motivated by wireless sensor-actuator
network applications, we assume the network is composed
of battery-powered nodes, communicating via wireless radios.
Since each wireless transmission consumes valuable energy
resources, our goal is to reach the average consensus in as few
transmissions as possible. We assume a broadcast model where
all nodes within range of a transmitting node (the neighbors)
successfully receive the message.

The two most widely studied algorithms for solving the
average consensus problem are distributed averaging [8] and
randomized gossip [3]. In distributed averaging, every node
broadcasts information to its neighbors at every iteration.
Let xi(k) denote the value at node i after the kth iteration.
Each node i initializes its value to xi(0) = yi. At the kth
iteration, after node i receives values xj(k−1) from each of its

neighbors, it replaces xi(k) with a weighted average of its own
previous value and its neighbors’ values. Under appropriate
conditions on the weights used in the update step, one can
show that the values xi(k) at every node converge to the
average ȳ as k → ∞ [8]. However, information diffuses slowly
across the network in this scheme, and since the information
at each node typically does not change much from iteration to
iteration, this is not efficient use of the broadcast medium.

Randomized gossip operates at the opposite extreme, where
only two neighboring nodes exchange information at each
iteration. At the kth iteration, a node s is chosen uniformly
at random; it chooses a neighbor, t, randomly; and this pair
of nodes “gossips”: s and t exchange values and perform the
update xs(k) = xt(k) = (xs(k − 1) + xt(k − 1))/2, and
all other nodes remain unchanged. Again, one can show that
under very mild conditions on the way a random neighbor, t,
is drawn, the values xi(k) converge to ȳ at every node [8].
Although other neighbors overhear the messages exchanged
between the active pair of nodes, they do not make use of this
information in existing randomized gossip algorithms. The fact
that nodes only exchange information with their immediate
neighbors is attractive, from the point of view of simplicity
and robustness to changing topologies and/or network condi-
tions. However it also means that in typical wireless network
topologies (grids or random geometric graphs), information
diffuses slowly across the network. Boyd et al. prove that for
random geometric graphs, randomized gossip requires O(n2)
transmissions to approximate the average consensus well.

Slow convergence of randomized gossip motivated Di-
makis et al. to develop geographic gossip. Assuming each
node knows its geographic location and the locations of its
neighbors, information can be exchanged with nodes beyond
immediate neighbors. In [4], they show that these long-range
transmissions improve the rate of convergence from O(n2) to
roughly O(n3/2) transmissions. Although geographic gossip
is a significant improvement over randomized gossip in terms
of number of transmissions, it comes at the cost of increased
complexity, since the network must now provide reliable two-
way transmission over many hops. Messages which are lost
in transit potentially result in biasing the average consensus
computation.

Unlike randomized gossip and geographic gossip, where the
pair of nodes exchanging information at each iteration is drawn
independently and identically from iteration to iteration, in
GGE a node greedily chooses which neighbor to gossip with
at each iteration, based on which update will result in the
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largest decrease in local error. In order to perform the greedy
update, each node must know the values at its neighbors. This
is accomplished by exploiting the broadcast nature of wireless
communication and having each node eavesdrop on its neigh-
bors’ transmissions. We show that making greedy updates in
this fashion corresponds to decentralized asynchronous itera-
tions of an incremental subgradient algorithm for minimizing a
particular objective function. Using convexity properties of the
objective function, we show that GGE converges to the average
consensus almost surely. Moreover, simulation results indicate
that GGE converges significantly faster than geographic gossip
for networks of a few hundred nodes.

Recently proposed in [1], broadcast gossip also makes
use of the broadcast nature of wireless networks. For this
algorithm, at each iteration, a node is chosen uniformly at
random to broadcast its value. The nodes in the broadcast
range of this node calculate a weighted average of their own
value and the broadcasted value, and they update their value
with this weighted average. In GGE, the broadcast nature of
the wireless medium is utilized in order to greedily choose
the neighbor to gossip with. However, in broadcast gossip, the
value of the broadcasting node is independently incorporated
at each neighbor. Consequently, broadcast gossip does not
preserve the network average at each iteration. The simulations
show that GGE performs better than broadcast gossip.

The paper is organized as follows. In Sec. II we state the
formal definition of the algorithm. In Sec. III we prove that
greedy gossip with eavesdropping converges almost surely to
the average consensus. We empirically investigate the rate of
convergence in Sec. IV and find that greedy gossip converges
at a rate superior to existing average consensus algorithms.

II. GREEDY GOSSIP WITH EAVESDROPPING

Network connectivity is represented as a graph, G = (V,E),
with vertices V = {1, . . . , n}, and edge set E ⊂ V × V
such that (i, j) ∈ E if and only if nodes i and j directly
communicate. We assume that communication relationships
are symmetric and that the graph is connected. Let Ni =
{j : (i, j) ∈ E} denote the set of neighbors of node i (not
including i itself). In addition to maintaining the local variable,
xi(k), each node maintains a copy of the current values at its
neighbors, xj(k), for j ∈ Ni. To initialize the algorithm, each
node sets its gossip value to xi(0) = yi, and broadcasts this
value to all of its immediate neighbors.

At the kth iteration, a node sk is chosen uniformly at
random from {1, . . . , n}. This can be accomplished using the
asynchronous time model described in Bertsekas and Tsitsiklis
[2], where each node “ticks” according to a Poisson clock with
rate 1. Unlike the randomized gossip algorithms described in
[3], where sk randomly chooses a neighbor to gossip with, in
GGE, sk gossips with a neighbor that is currently the most
different from its own value. That is, sk identifies a node tk
satisfying

tk ∈ arg max
t∈Nj

{
1
2
(xsk

(k) − xt(k))2
}

.

When sk has multiple neighbors that are all equally (and max-
imally) different from sk, it chooses one of these neighbors
at random. Then sk and tk exchange values and perform the
update

xsk
(k) = xtk

(k) =
1
2
(xsk

(k − 1) + xtk
(k − 1)), (1)

while all other nodes i /∈ {sk, tk} maintain their values at
xi(k) = xi(k − 1). Finally, the two nodes, sk and tk, whose
values have changed broadcast these new values so that their
neighbors have up-to-date information.

The main idea of GGE is to use each node’s knowledge
of its neighbors’ values to greedily perform the update that
will have the greatest impact at each iteration. The key factor
that makes greedy updates possible is the broadcast nature
of wireless communications: because each node overhears its
neighbors transmissions, it only takes one transmission to
inform the entire neighborhood of a change. The following
sections illustrate that performing greedy updates does not
affect the convergence behavior of gossip (the algorithm still
converges to the average consensus), and, in fact, greedy
updates significantly improve the rate of convergence.

III. CONVERGENCE ANALYSIS

The standard approach to analyzing convergence of dis-
tributed averaging and gossip algorithms essentially involves
expressing each update (or expected update) in terms of a
linear recursion, x(k + 1) = Wx(k), and then imposing
properties on the matrix W which guarantee convergence [3],
[8]. In particular, the standard distributed averaging and gossip
algorithms are such that W is the same at every iteration
and, more importantly, W is independent of x(k). Other
researchers have considered the case where W(k) may change
from iteration to iteration, to model either noisy-transmissions
or time-varying topologies. That work generally assumes that
W(k) matrices are i.i.d. realizations of a random matrix,
and convergence is guaranteed so long as E[W(k)] satisfies
certain properties. Again, a key assumption is that W(k) is
independent of x(k).

GGE updates can also be expressed in the form

x(k + 1) = W(k)x(k)

where W(k) is a stochastic matrix with Wsk,sk
(k) =

Wsk,tk
(k) = Wtk,sk

(k) = Wtk,tk
(k) = 1

2 , Wi,i(k) = 1 for all
i /∈ {sk, tk}, and 0 elsewhere. However, in our setting, W(k)
explicitly depends on x(k) via the choice of tk. Because of
this dependence, standard analysis for gossip and consensus
algorithms cannot be applied to guarantee convergence of the
GGE algorithm. Instead, we prove convergence by viewing
our algorithm as a particular instance of the randomized
incremental subgradient algorithm [5].
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A. Incremental Subgradient Methods

Before continuing with an analysis of GGE, we briefly
review incremental subgradient1 methods. Consider the fol-
lowing constrained optimization problem:

min
x∈Rn

n∑
i=1

fi(x)

subject to x ∈ X,

where we assume that each fi(x) is a convex function, but not
necessarily differentiable, and X is a non-empty convex subset
of R

n. An incremental subgradient algorithm for solving this
optimization is an iterative algorithm of the form

x(k + 1) = PX [x(k) − αkg(sk, x(k))], (2)

where αk > 0 is the step-size, g(sk, x(k)) is a subgradient
of fsk

at x(k), and PX [·] projects its argument onto the set
X . The algorithm is randomized when the component updated
at each iteration, sk, is drawn uniformly at random from the
set {1, . . . , n}, and is independent of x(k). Intuitively, the
algorithm resembles gradient descent, except that instead of
taking a descent step in the direction of the gradient of the cost
function, f(x) =

∑n
i=1 fi(x), at each iteration we focus on a

single component of f(x). The projection, PX [·], ensures that
each new iterate x(k+1) is feasible. Under mild conditions on
the sequence of step sizes, αk, and on the regularity of each
component function fi(x), Nedić and Bertsekas have shown
that the randomized incremental subgradient method described
above converges to a neighborhood of the global minimizer
[5].

B. Convergence of Greedy Gossip with Eavesdropping

GGE is a randomized incremental subgradient algorithm for
the problem

min
x∈Rn

n∑
i=1

max
j∈Ni

{
1
2
(xi − xj)2

}
(3)

subject to
n∑

i=1

xi =
n∑

i=1

yi, (4)

where yi is the initial value at node i. Clearly, the objective
function in (3) has a minimum value of 0 which is attained
when xi = xj for all i, j. Thus, any minimizer is a consensus
solution. Moreover, the constraint

∑n
i=1 xi =

∑n
i=1 yi ensures

that the unique global minimizer is the average consensus.
To see the connection between the GGE update, (1),

and the incremental subgradient update, (2), let us define
g(sk, tk, x(k)) such that

gsk
(sk, tk, x(k)) = xsk

(k) − xtk
(k),

gtk
(sk, tk, x(k)) = xtk

(k) − xsk
(k),

1Subgradients generalize the notion of a gradient for non-smooth functions.
The subgradient of a convex function fi at x is any vector g that satisfies
fi(y) ≥ fi(x)+ gT (y−x). The set of subgradients of fi at x is referred to
as the subdifferential and is denoted by ∂fi(x). If fi is continuous at x, then
∂fi(x) = {∇fi(x)}; i.e., the only subgradient of fi at x is the gradient.
A sufficient and necessary condition for x∗ to be a minimizer of the convex
function fi is that 0 ∈ ∂fi(x

∗). See [5] and references therein.

and gi(sk, tk, x(k)) = 0 for all i /∈ {sk, tk}. Note that
subscripts denote components of the vector g. One can easily
verify that g(sk, tk, x(k)) is a subgradient of fsk

(x(k)) =
maxj∈Nsk

{ 1
2 (xsk

(k)−xj(k))2}. Use constant step size αk =
1
2 , and substitute the expression for g(sk, tk, x(k)) into (2) to
find that this update is equivalent to the GGE update described
in Section II. (Note: The use of αk = 1

2 in conjunction with
the form of the subgradient g(sk, tk, x(k)) ensures that the
constraint

∑n
i=1 xi(k) =

∑n
i=1 yi is satisfied at each iteration,

so we can drop the projection term in (2).)
Nedić and Bertsekas study the convergence behavior of

randomized incremental subgradient algorithms in [5]. Unfor-
tunately, for a constant step size, their analysis only guarantees
the iterates x(k) will reach a neighborhood of the optimal
solution: with probability 1, mink f(x(k)) ≤ αnC2/2, where
C ≥ ‖g(sk, x(k))‖ is an upper bound on the norm of the
subgradient [5]. We wish to show that x(k) converges to the
average consensus, x̄, the global minimizer of our optimization
problem. By exploiting the specific form of our particular
problem, we are able to prove the following stronger result.

Theorem 1: Let x(k) denote the sequence of iterates pro-
duced by GGE. Then x(k) → x̄ almost surely.

Proof: To begin, we examine the improvement in squared
error after one GGE iteration. Based on the discussion in the
previous section, the recursive update for GGE has the form

x(k + 1) = x(k) − 1
2
g(k), (5)

where, given sk and tk,

gi(k) =

⎧⎨
⎩

xsk
(k) − xtk

(k) for i = sk,
−(xsk

(k) − xtk
(k)) for i = tk,

0 otherwise.
(6)

Expanding x(k + 1) via the expression (5), we have

‖x(k + 1) − x̄‖2 = ‖x(k) − 1
2
g(k) − x̄‖2

= ‖x(k) − x̄‖2 − 〈x(k) − x̄, g(k)〉 +
1
4
‖g(k)‖2.

Based on the definition of g(k) in (6), given sk and tk, we
have

‖g(k)‖2 = 2(xsk
(k) − xtk

(k))2,

and (abusing notation by using x̄ to denote both the average
value and the average consensus vector)

〈x(k) − x̄, g(k)〉 =
n∑

i=1

(xi(k) − x̄) gi(k)

= (xsk
(k) − x̄)(xsk

(k) − xtk
(k))

− (xtk
(k) − x̄)(xsk

(k) − xtk
(k))

= (xsk
(k) − xtk

(k))2.

Therefore, we have ‖x(k+1)−x̄‖2 = ‖x(k)−x̄‖2− 1
4‖g(k)‖2

with probability 1, since the expression holds independent of
the value of sk and tk.
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Recursively applying our update expression, we find that
w.p. 1,

‖x(k + 1) − x̄‖2 = ‖x(k) − x̄‖2 − 1
4
‖g(k)‖2

= ‖x(k − 1) − x̄‖2 − 1
4

k∑
j=k−1

‖g(j)‖2

...

= ‖x(0) − x̄‖2 − 1
4

k∑
j=0

‖g(j)‖2.

Since, ‖x(k + 1) − x̄‖2 ≥ 0, this implies that

k∑
j=0

‖g(j)‖2 ≤ 4‖x(0) − x̄‖2

w.p. 1, and, consequently, the series
∑k

j=0 ‖g(j)‖2 converges
a.s. as k → ∞. Since each term ‖g(j)‖2 ≥ 0, this also implies
that ‖g(k)‖2 → 0 a.s. as k → ∞. However, by definition, g(k)
is the subgradient of a convex function, and g(k) = 0 is both
a sufficient and necessary condition for x(k) to be a global
minimizer. Thus, g(k) → 0 a.s. implies that x(k) → x̄ a.s.,
since x̄ is the unique minimizer of (3)-(4).

It is not surprising that GGE converges almost surely, given
that standard gossip converges and, after a single iteration,
GGE never does worse than standard gossip. More interesting
is the finding that GGE generally converges significantly faster.
The next section examines this point further via simulation.

IV. CONVERGENCE RATE (SIMULATIONS)

In this section we illustrate the convergence behavior of
GGE through simulation. We compare the performance of
GGE with randomized gossip [3], geographic gossip [4], and
broadcast gossip [1]. The network consists of nodes that
are distributed uniformly at random over the unit square.
The transmission radius is set to

√
2 log n/n such that the
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Fig. 1. Relative error versus number of transmissions for a network that has
zero value everywhere except one random node with value 1 (averaged over
100 realizations of the graph).
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Fig. 2. The behavior of averaging time as the number of nodes in the network
increases (for 100 realizations) for a network that has zero value everywhere
except at one random node. Averaging time is the number of transmissions
required to reach a relative error below 0.01.

random geometric graph is connected with high probability.
All the figures show the average over 100 realizations of the
random geometric graph. The first few transmissions during
the operation of GGE are dedicated to broadcasting of initial
node values such that each node collects the initial values of
its neighbors.

Since consensus algorithms try to reach average consensus
with as few radio transmissions as possible and different algo-
rithms require different number of transmissions per iteration,
we compare their performance in terms of number of radio
transmissions instead of number of iterations. For GGE, the
number of transmissions per iteration is three, one for initial
transmission and two more for the broadcasting of the new
values of the two nodes that have gossipped. The number of
transmissions per iteration is two for randomized gossip and
one for broadcast gossip. On the other hand, for geographic
gossip this number depends on the distance between the nodes
that exchange information.

Relative error is defined as ||x(k)−x̄||
||x(0)|| and its behavior for

each algorithm is illustrated in Figure 1 for a network of
200 nodes with all nodes initially having value 0, except one
random node with initial value of 1. For the same network we
also demonstrate the rate of increase in convergence time for
increasing network size. Figure 2 shows the averaging time
versus the number of nodes, where the averaging time is the
first time the relative error decreases below 0.01 (broadcast
gossip is excluded since its relative error does not reach
0.01) in terms of number of transmissions. The simulations
show that GGE converges significantly faster than randomized
and geographic gossip algorithms since it achieves smaller
relative error values with fewer transmissions. In the first few
rounds the performance of broadcast gossip is similar to the
performance of greedy gossip with eavesdropping, however as
time passes the former converges to a false average whereas
GGE converges towards the initial average.

We also consider a network with linearly varying initial
values. Figure 3 shows the relative error behavior for a
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Fig. 3. Relative error versus number of transmissions for a linearly varying
field (averaged over 100 realizations of the graph).
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Fig. 4. The behavior of averaging time as the number of nodes in the network
increases (for 100 realizations) for a linearly varying field. Averaging time is
the number of transmissions required to reach a relative error below 0.01.

network of 200 nodes whereas Figure 4 illustrates the effect of
increasing network size for linearly varying fields. For such
an initialization, GGE performs better than randomized and
broadcast gossip. However, its performance is slightly worse
than that of geographic gossip’s. This is because of the fact
that a linearly varying field is nearly a worst case scenario for
GGE, since all the subgradients yield the same improvement
for this case.

V. DISCUSSION

In this paper we proposed a novel average consensus algo-
rithm for wireless sensor networks. Greedy gossip with eaves-
dropping takes advantage of the broadcast nature of wireless
communications and provides fast and reliable computation
of average consensus. The idea of exploiting the broadcast
nature of wireless communications in gossip algorithms also
forms the core of the broadcast gossip procedure proposed by
Aysal et al. in [1]. The primary difference is that a realization
of broadcast gossip converges to a consensus value, but as
illustrated in Figure 1 this value can indeed be quite biased

away from to the true average since broadcast gossip does not
preserve the network average at each iteration.

Our current proposal of GGE involves uniform random
selection of the node that performs gossip. We can change
this selection procedure to focus on nodes that have a large
differential with one of their neighbors, incorporating a “re-
jection” procedure, where a node chooses not to gossip if the
maximum difference is smaller than a decaying threshold. Our
current research is exploring the convergence behavior of such
algorithms.
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