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Abstract — Greedy Gossip with Eavesdropping (GGE) i§&SGE exploits the broadcast nature of wireless communica-
a randomized gossip algorithm that computes the averatiens to provide energy efficient average consensus compu-
consensus by exploiting the broadcast nature of wireletsion. In a wireless sensor network setting, we assume all
communications. Each node eavesdrops on its immediatales are battery powered. We also assume that all the trans-
neighbors to track their values so that when it comes tinmissions are wireless broadcasts, and therefore all nodes
to gossip, a node can myopically exchange information wittithin range of a transmitting node can receive broadcasted
the neighbor that will give the greatest immediate improvenessages. In this manner, we are able to perform greedy
ment in local squared error. In previous work, we showedpdates in contrast to random updates of previous gossip
that the improvement achieved using GGE over standaatforithms. That is, when a node becomes active, rather
randomized gossip (i.e., exchanging information equdly dhan gossiping with a randomly chosen neighbor, it greed-
ten with all neighbors) is proportional to the maximum nod#y chooses to gossip with the neighbor that will result ia th
degree. Thus, for network topologies such as random gegeatest decrease in local mean squared error. We have pre-
metric graphs, where node degree grows with the networlously shown that GGE leads to faster rates of convergence
size, the improvements of GGE scale with network size, thén randomized gossip without the added overhead of ge-
for grid-like topologies, where the node degree remains coographic routing or node localization required by othet fas
stant, GGE yields limited improvement. This paper presergessiping algorithms. We showed that the extent to which
an extension to GGE, which we call “multi-hop GGE”, thalGGE improves upon randomized gossip is a factor propor-
improves the rate of convergence for grid-like topologiesonal to the maximum node degree. Hence, for topologies
Multi-hop GGE relies on increasing artificially neighbor-such as random geometric graphs, where node degree in-
hood size by performing greedy updates with nodes beyamdases with network size, the improvements obtained by
one hop neighborhoods. We show that multi-hop GGE camsing GGE scale as network size grows. However, for grid-
verges to the average consensus and illustrate via sinaulatiike topologies, where the maximum degree remains con-
that multi-hop GGE improves the performance of GGE fatant as network size increases, the improvement of GGE
different network topologies. over randomized gossip is limited to a constant factor.
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, i This paper presents multi-hop greedy gossip with eaves-
rithms, Average consensus, Wireless sensor networks.

dropping, a variant of GGE designed to offer greater perfor-
. mance improvements on grid-like topologies. Like, GGE,
1 Introduction and BaCkground all nodes eavesdrop on their immediate neighbors, in order
Distributed consensus is a fundamental problem in di® track their values. However, ithop GGE, when a node
tributed control and signal processing (see, e.g., [5, F-l&tivates, it gossips with a node that is wittimops. This
and references therein). The prototypical example of a careighbor is determined by a sequence of greedy decisions
sensus problem is computation of theerage consensus made at each intermediate hop. Thus, multi-hop GGE also
for a network ofn. nodes, initially each node has a scalasnly requires nodes to store information about their immedi
data valuey;, and the goal is to asymptotically computate neighbors, and does not require any additional overhead
the averagey = %Z?:l y; at every node. An algorithm to construct or maintain routes. We show that greedily gos-
that computes the average consensus can further be usedifing over multiple hops in this fashion leads to faster-con
computing linear functions of the data and can be generaérgence rates on topologies such as grids, and also leads to
ized for averaging vectorial data. improved energy-accuracy tradeoffs over single-hop GGE.
In [13], we proposed a novel randomized gossip algédthough multi-hop GGE requires a mechanism to provide
rithm called Greedy Gossip with Eavesdroppif@GE). reliable information exchange over multiple wireless hops



the maximum number of hops is controlled. On moderatiee value to which broadcast gossip converges can be signif-
sized networks, we find that we can obtain improved rat&santly different from the true average (see [13] for furthe
of convergence without requiring nodes to exchange infadiscussion).

mation across the entire network in a single iteration. In previous work, we have proposed Greedy Gossip with
Eavesdropping (GGE) which uses the broadcast medium to
1.1 Background and Related Work accelerate gossip [13]. In GGE, the selection procedure

. . . . is done greedily such that the neighbor with most differ-

Randomized gossip algorithms have gained much atten- . . :

Lo . . ent value than the selecting node is chosen for gossip. We

tion in the wireless sensor networks community due to their - .
o . . . assume that all transmissions are wireless broadcasts and

simplicity and robustness. At iteratidh) a nodes;, is ac-

. : . . nodes eavesdrop on their neighbors’ communication to keep
tivated uniformly at random; it selects a neighbfr, ran- ; . . .

. : : p - track of their values. Accelerating convergence in this my-
domly; and this pair of nodes "gossipst:andt exchange opic way does not introduce bias to the computation and
values and perform the updatg, (k) = x4, (k) = (x5, (k— b Y P

' oes not rely on geographic location information. Since
-1 . . . L
1)+, (k—1))/2, and all other nodes remain unchanged GE iterations depend on the values at each node, it is a

can be shown that under mild conditions on the way the ran- . .
. . —“data-driven algorithm. Therefore, the standard way of prov
dom neighborty, is drawn, the values;(k) converge ta; . . . . :
ing convergence of gossip algorithms (i.e., expressing up-
makes the algorithm simple and robust to changing topo E?IEZ: Ic:]ntfr:irzsreocfuarsl,lirc])f]?:jE)eecsu:]Sol?g ar:d ttgz]égpﬁ] szgegazrc\)/\?é
gies and wireless network conditions. However it caus g pply ' '
gies such as grids and random geometric graphs [6]. Boy igqr:sgllbg:i?g r;agggrc\iedr?\feregic;?l sel;l?:%ratgﬁzagﬁam;_
al. [4] show that for random geometric grapb¥n?) trans- 9 P 9 ' y:
?ask and the standard method for gossip algorithms (i.e., ex
the average consensus well - o ;
: . ining the mixing time of a related Markov chain) does
Slow convergence of standard randomized gossip moti..
vated_ the Qevelopmenfc of NEW gossip algorithms. One YAt GGE always converges faster than standard random-
algorithm is geographic gossip [5]. Under the assumption . .
) . . d gossip and we develop a worst-case bound on its rate
that nodes know their own locations and the locations éf
tion exchange over multiple hops. It has been shown ﬂistclosely related to the number of neighbors. Specifically,
fuse faster compared to randomized gossip, and for randlomnprovement of GGE over random|zed gossip.
In general, we are interested in topologies that are used
required. In fact, if all nodes along the path average their ; : .
values, rather than just the two endpoints, then thetomknurzndom geometric graphs (RGG) and grids. The maximum
ber of transmissions required to gossip can be decreaseajé) improvement of GGE over randomized gossip is by a
volve localization overhead. Furthermore, the networktm
. . . .for convergence to the average consensus). However, for
supply geographic routing and reliable two-way transmis-
In a series of recent papers. Avsal et al. prodosadcast therefore the improvement of GGE is only by a linear factor.
bapers, y - profiea Motivated by these results, we propose multi-hop GGE.
of W|rel_ess networks [1, 2]. At each |ter§1t|on, anodeis Ch(ﬂ.’.Z Paper Organization
sen uniformly at random to broadcast its value. The nodes
erage of their own value and the broadcasted value, and tRe§etailed description of multi-hop GGE. In Section 2.3, we
update their value with this weighted average. In broadc#pve that multi-hop GGE converges to average consensus
incorporated at each neighbor. Broadcast gossip does @S, and we conclude in Section 4.
preserve the network average at each iteration. It achieves

at every node [15]. Relying on local information exchang%s
0
slow information diffusion across the network for topolo- emonstrate that GGE updates correspond to iterations of
missions are required for randomized gossip to approxim atlgzmg rates of convergence of GGE is also a non-trivial
n%t apply to data-driven nature of GGE. In [14], we prove
i
. . . ) o convergence. We also show that the performance of GGE
their neighbors, geographic gossip operates with informa-
. . . : € maximum node degree in the network characterizes the
long range information exchange enables information to di
geometric graphs, onlY)(n/n/logn) transmissions are for modeling wireless sensor and mesh networks, such as
de degree in a RGG is in the orderlogn and hence
O(n). However, geographic gossip and path averaging 'ctor oflogn (i.e. O(n?/logn) transmissions are required
. grids the maximum number of neighbors is bounded by 4,
sion over many hops.
gossip an algorithm that makes use of the broadcast nature
in the broadcast range of this node calculate a weighted df1e rest of the paper is organized as follows. Section 2 gives
gossip, the value of the broadcasting node is independer@jution. Section 3 presents results from numerical simula
a low variance (i.e., rapid convergence), but introducas,bi 2 Multi-hop GGE

1Throughout this paper, when we refer to randomized gossspecit- We CO”?'qer a network ot nodes and_represgnt network
ically mean the natural random walk version of the algoritthwhere the connectivity as a graphG = (V, E), with verticesV =
nodet, is chosen uniformly from the set of neighbors at each itenatiFor {1,...,n},and edge sef C V x V suchtha(s, j) € F if
random geometric graph topologies, which are of most |_Btelceus,_ Bqu and onIy if nodes andj directly communicate. We assume
et al. [4] prove that the performance of the natural algaritales identi- .. . . .
cally to that of the optimal choice of transition probalit, so there is no that communication relationships are symmetric and treat th

loss in generality. graph is connected. Le&¥; = {j : (i,j) € £} denote the



set of neighbors of nodg(not including; itself). Each node following reasoning. The types of signals for which one-
in the network has an initial valug;, and the goal of the hop randomized gossip algorithms are slow to average are
gossip algorithm is to use only local broadcast exchangeghose signals that are correlated in some fashion with net-
arrive at a state where every node knows the avegage work structure. For example, if nodes are locateBnsup-
%Z?:l y;. To initialize the algorithm, each node sets itpose the initial value of a node located at coordir{até)

gossip value ta:; (0) = y;. is a + b. Thus, nearby nodes have similar values, but distant
nodes have very different values. In such a configuration,
2.1 One-hop GGE our greedy process of determining which pair of nodes gos-

We first describe the one-hop version of GGE. At fie  sips will track along the gradient, and information will be
iteration of one-hop GGE, a nodg is chosen uniformly at diffused through the network more quickly than if gossiping
random from{1,...,n}. (This can be accomplished usingvas restricted to be between immediate neighbors. On the
the asynchronous time model described in [3], where eagtiher hand, if node values are initially i.i.d., then oureghe
node “ticks” according to a Poisson clock with rate 1.) Thepyocess of determining which neighbor to gossip with may
sy, identifies a neighboring nodg satisfying not precisely identify the node in thehop neighborhood
whose value is most different frosa, but at the same time,
t), € arg max {l(xSk(k — 1) — ok — 1))2}’ 1) since all initigl yalugs are.i.i.d, any node shou!d be a_lble
to average with its immediate neighbors and still obtain a
. ) . -~ reasonable estimate of the network average. Moreover, our
whereN, is the set of neighbors af.. Hence;s). identifies g eeqy),-hop neighbor selection procedure requires at most
a neighbor that currently has the most different value froﬂ‘transmissions (fewer if we reach a node in fewer tpan
its own. This greedy selection is possible because each ngdgs that doesn’t have a neighbor whose value is more dif-
i maintains not only its own local variable;(k—1), butalso  tgrent thans, than its own), which is much less costly than
a copy of the current values at its neighbargik — 1), for - gearching the entire hop neighborhood, in general.
j € N;. Whensy has_ muItlpIe_ neighbors who§e values are Calculating the greedy update in multi-hop gossip re-
all equally (and maximally) different froms;’s, it chooses g ires that each node know the values of its immediate
one of these neighbors at random. Thgrandt,. perform  neighhors. Similar to other randomized gossip algorithms,
the update we assume that at the outset of gossip computation that each
node: has already discovered its neighbor s&f, but it
(25, (k—1) + a4, (k—1)), (2) does not know its neighbors’ values. Instead, these values
are learned during an initialization phase of multi-hop GGE
while all other nodes ¢ {sg,tr} hold their values at During this initialization phase, whes), does not know the
x;(k) = z;(k—1). Finally, the two nodess;, andt;, broad- values of all its neighbors, it chooses randomly from
cast these new values so that their neighbors have up-¢o-dhe subset of its neighbors whose values are currently un-

Sk

Lsy, (k) = Ty, (k) =

N =

information. know, rather than performing a GGE update. Sisgand
i tr broadcast their new values after averaging, the nodes in
2.2 Multi-hop GGE their neighborhoods overhear and acquire information ac-
In 2-hop GGE, at théth iteration, a node;, is chosen cordingly. Onces;, has heard from all of its neighbors, the
uniformly at random from{1,...,n}, as in one-hop GGE. initialization process is complete for that particular e@hd

Then, s, identifies a neighboring nodg, satisfying (1). it chooseg, greedily for all subsequent iterations.
However, instead of completing the updaigchecks if any .
of its neighborss;, € A;, has a value even more differemz'3 Convergence of Multl-hop GGE
from s, than its own; i.e.]|zs, — zy, || > ||Ts, — 24| If Let {z(k)} denote the sequence of iterates produced by
such a neighbouy, exists, thert,, facilitates a gossip updatemulti-hop GGE, let{s;} denote the (random) sequence of
betweens;, anduy; otherwise sy, andt; gossip. nodes activated at each iteration, andietdenote the node
For p-hop GGE, when, finds a neighbor, thenu,  within s;’s p-hop neighborhood with which it gossips at iter-
continues the process and checks its neighborhood, andaonk. The evolution ofz(k) can be expressed in recursive
on, until the search has extended to at mo$tops away form asz(k) = W(k)x(k — 1), whereW (k) is a matrix
from s,. Note that this is not equivalent to searching theith all diagonal entries equal to exceptWs, ., (k) =
entire p hop neighborhood of;, since at each hop, onlyW,,, s, (k) = Wy, s, (k) = Wi,m, (k) = 1/2. ltis
one option is explored in a greedy, myopic fashion. Newlear that the only fixed point of this equation is a vector
ertheless, we observe that gossiping in this fashion leadsithose entries are all identical (a consensus vector). More-
improvements in number of messages that must be transer, since at each iteration, the sum of the entries(it)
mitted to achieve high-accuracy estimates of the averageemains constant (i.eL”x(k) = 17z(0)), the only fixed-
every node. Of course, searching for the best node to gpsint is the average consensus vector.
sip with over the entirg-hop neighborhood might lead to  Now, let M (k) = ||z(k) — 7||* denote the squared error
even faster rates of convergence, but we can motivate #feerk iterations. Observe that we can write(k) — g||% =
proposed search over a restricted neighborhood using thék — 1) — y||> — 3(zs, (k — 1) — zm, (k — 1))%. Let



Ay = 3z, (k — 1) — 2, (k — 1))% Then we have that radius to carry out 2-hop or 3-hop GGE iterations, we see a
M(k) = M(k — 1) — A with probability 1. (Note that marked improvement.

Ay is random, by virtue of the randomnesssdpn at each  We conjecture that the gain obtained by going from 1-
iteration.) Conditioning on:(k — 1) and taking the expec- hop GGE top-hop GGE is roughly a factor gf. Consider
tation oversy, it is clear thatE[Ay|z(k — 1)] > 0 unless the following heuristic explanation. Aftér — 1 iterations,

z(k — 1) = g is the average consensus solution. Thus, utire square difference between values at nogeand my,

less the algorithm has converged, we always make progresiative to the current squared errdf(k — 1), is on average

in expectation towards the consensus solution. Moreovatleastp?. (Again, think of a regular grid with the linearly
via repeated application of the recursion fdi(k), we have varying field setup, in which case:s, — z,, )? = p? for
M(k) = M(0) — Zle A;. SinceM (k) > 0, we have nodess; andm that arep hops away from each other along
Zle A; < M(0), which implies thatA, — 0 ask — oo. agive.n axis.) The numberof.transmissions requi_red to carry
Since the only fixed point of the stochastic recursion Rut this greedy-hop update is alsp, so the resulting gain
the average consensus solution, this implies that mufi-ht§ & factor of approximately” /p = p . This improvementis

GGE converges to the average consensus asymptoticallp$@ evident when examining how performance scales with
k- 00. network size.

n=200
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3 Numerical Simulations 10 F

To observe the effect of performing greedy updates ov
multiple hops, we conduct an experimental comparisont 19,
tween 1-hop, 2-hop, and 3-hop GGE. As a point of con
parison, we also include curves for randomized gossip |
and geographic gossip [5]. We examine the reduction th
achieve in relative erro%, as a function of the num-
ber of transmissions. The number of transmissions is t
cost of interest in wireless sensor network applicationsesi 107
each transmission consumes valuable battery resouraks,
experimental studies have shown that transmitting gen
ally consumes significantly more energy than performir
local computation or taking measurements from simple se o 05 1 15 2 25
sors. The initial values for our experiments are determin Number of transmissions ©10°
according to the linearly varying field example discussed
above; each node is assigned coordinaté’inand a node Figure 1: A comparison of the performance of randomized
at location(a;, b;) has initial valuez;(0) = a; + b;. We gossip, GGE (1-hop), multi hop GGE (2 and 3-hops) and
consider two network topologies: the two-dimensional grigeographic gossip for linearly-varying field initializati of
and the family of random geometric graphs [6]. In a random0) in RGG topology of 200 nodes. Results are averaged
geometric graph, nodes are assigned i.i.d. coordinatés (Wver 100 runs of the algorithm.
formly) in the unit square, and two nodes are connected if

they are separated by a distance of no more é’ﬁc;f_”, Next, we examine how the communication complexity
Both the grid and random geometric graph are commorﬁ9a|es with respect to the number of nodes in the network.
adopted as models for connectivity in wireless networks. The rate of convergence for gossip algorithms is typically
Figures 1 and 2 show simulation results for the 19@uantified in terms of the-averaging time,
node grid and 200-node random geometric graph topolo- . |z(k) — Z|
gies. Observe that on random geometric graph topologie@zve(ﬁ) = sup inf {k  Pr (m = E) < 6} :
(Fig. 1), one-hop GGE performs comparably to geographic =(0)#0
gossip, and multi-hop gossip improves upon this perfarigure 3 displays how the averaging time scales as a function
mance. However, on a grid topology of comparable sizef the number of nodes, for the grid topology, for 1-hop,
(see Fig. 2), the performance of one-step GGE is mugkhop, and 3-hop GGE. The averaging time has been esti-
worse than that of geographic gossip. The reason for thigted with simulating the gossip algorithms over the same
disparity is that in the random geometric graph setup, magid network for 100 times. Note that the averaging time is
nodes have many more than four neighbors. Thus, in a sgirown in terms of the number of iterations per node. The
gle one-hop GGE iteration is is possible to find a neigistope of the curve for 2-hop gossip is roughly half of that
bor that is quite different than the activated node, and thasone-hop gossip, and the curve for 3-hop gossip has slope
spread information quickly. On the other hand, in the gricbughly 1/3 of that of one-hop gossip, providing further ev-
scenario, each node has at most four neighbors. Thus, allidence to our conjecture that the improvement obtained by
formation exchange is highly local. By expanding the searcisingp-hop gossip is roughly a factor pf
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Figure 2: A comparison of the performance of randomizdedgure 3: The averaging timé&,,.(¢) for ¢ = 0.01 as a
gossip, GGE (1-hop), multi hop GGE (2 and 3-hops) arfdnction of number of nodes in the network. Results are
geographic gossip for linearly-varying field initializati of averaged over 100 runs of the algorithm. The liaés, n
2(0) in grid topology of 196 nodes. Results are averageehd0.8n are shown for reference.

over 100 runs of the algorithm.

that factor. Inp-hop GGE, the size of the set we search over
4 Discussion in each iteration is at mogid,ax, and so similar reason-
ing leads one to the conclusion thahop GGE leads to an

In this paper, we proposed multi-hop greedy gossip Wi}%\j%rovement of at most this factor. Obtaining a more thor-

gavgsdroppmg, an.extenS|o.n of GGE for faster CONVETGENGtah theoretical characterization of the rates of converge
in grid-like topologies. Multi-hop GGE suggests a mecha;

. . o ) f multi-hop GGE is a topic of our future work.
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