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Abstract – Greedy Gossip with Eavesdropping (GGE) is
a randomized gossip algorithm that computes the average
consensus by exploiting the broadcast nature of wireless
communications. Each node eavesdrops on its immediate
neighbors to track their values so that when it comes time
to gossip, a node can myopically exchange information with
the neighbor that will give the greatest immediate improve-
ment in local squared error. In previous work, we showed
that the improvement achieved using GGE over standard
randomized gossip (i.e., exchanging information equally of-
ten with all neighbors) is proportional to the maximum node
degree. Thus, for network topologies such as random geo-
metric graphs, where node degree grows with the network
size, the improvements of GGE scale with network size, but
for grid-like topologies, where the node degree remains con-
stant, GGE yields limited improvement. This paper presents
an extension to GGE, which we call “multi-hop GGE”, that
improves the rate of convergence for grid-like topologies.
Multi-hop GGE relies on increasing artificially neighbor-
hood size by performing greedy updates with nodes beyond
one hop neighborhoods. We show that multi-hop GGE con-
verges to the average consensus and illustrate via simulation
that multi-hop GGE improves the performance of GGE for
different network topologies.

Keywords: Distributed signal processing, Gossip algo-
rithms, Average consensus, Wireless sensor networks.

1 Introduction and Background
Distributed consensus is a fundamental problem in dis-
tributed control and signal processing (see, e.g., [5, 7–12]
and references therein). The prototypical example of a con-
sensus problem is computation of theaverage consensus:
for a network ofn nodes, initially each node has a scalar
data value,yi, and the goal is to asymptotically compute
the average,̄y = 1

n

∑n

i=1 yi at every nodei. An algorithm
that computes the average consensus can further be used for
computing linear functions of the data and can be general-
ized for averaging vectorial data.

In [13], we proposed a novel randomized gossip algo-
rithm called Greedy Gossip with Eavesdropping(GGE).

GGE exploits the broadcast nature of wireless communica-
tions to provide energy efficient average consensus compu-
tation. In a wireless sensor network setting, we assume all
nodes are battery powered. We also assume that all the trans-
missions are wireless broadcasts, and therefore all nodes
within range of a transmitting node can receive broadcasted
messages. In this manner, we are able to perform greedy
updates in contrast to random updates of previous gossip
algorithms. That is, when a node becomes active, rather
than gossiping with a randomly chosen neighbor, it greed-
ily chooses to gossip with the neighbor that will result in the
greatest decrease in local mean squared error. We have pre-
viously shown that GGE leads to faster rates of convergence
than randomized gossip without the added overhead of ge-
ographic routing or node localization required by other fast
gossiping algorithms. We showed that the extent to which
GGE improves upon randomized gossip is a factor propor-
tional to the maximum node degree. Hence, for topologies
such as random geometric graphs, where node degree in-
creases with network size, the improvements obtained by
using GGE scale as network size grows. However, for grid-
like topologies, where the maximum degree remains con-
stant as network size increases, the improvement of GGE
over randomized gossip is limited to a constant factor.

This paper presents multi-hop greedy gossip with eaves-
dropping, a variant of GGE designed to offer greater perfor-
mance improvements on grid-like topologies. Like, GGE,
all nodes eavesdrop on their immediate neighbors, in order
to track their values. However, ink-hop GGE, when a node
activates, it gossips with a node that is withink hops. This
neighbor is determined by a sequence of greedy decisions
made at each intermediate hop. Thus, multi-hop GGE also
only requires nodes to store information about their immedi-
ate neighbors, and does not require any additional overhead
to construct or maintain routes. We show that greedily gos-
siping over multiple hops in this fashion leads to faster con-
vergence rates on topologies such as grids, and also leads to
improved energy-accuracy tradeoffs over single-hop GGE.
Although multi-hop GGE requires a mechanism to provide
reliable information exchange over multiple wireless hops,



the maximum number of hops is controlled. On moderate
sized networks, we find that we can obtain improved rates
of convergence without requiring nodes to exchange infor-
mation across the entire network in a single iteration.

1.1 Background and Related Work
Randomized gossip algorithms have gained much atten-

tion in the wireless sensor networks community due to their
simplicity and robustness. At iterationk, a nodesk is ac-
tivated uniformly at random; it selects a neighbor,tk, ran-
domly; and this pair of nodes “gossips”:s andt exchange
values and perform the updatexsk

(k) = xtk
(k) = (xsk

(k−
1)+xtk

(k−1))/2, and all other nodes remain unchanged. It
can be shown that under mild conditions on the way the ran-
dom neighbor,tk, is drawn, the valuesxi(k) converge tōy
at every node [15]. Relying on local information exchanges
makes the algorithm simple and robust to changing topolo-
gies and wireless network conditions. However it causes
slow information diffusion across the network for topolo-
gies such as grids and random geometric graphs [6]. Boyd et
al. [4] show that for random geometric graphs,O(n2) trans-
missions are required for randomized gossip to approximate
the average consensus well1.

Slow convergence of standard randomized gossip moti-
vated the development of new gossip algorithms. One such
algorithm is geographic gossip [5]. Under the assumption
that nodes know their own locations and the locations of
their neighbors, geographic gossip operates with informa-
tion exchange over multiple hops. It has been shown that
long range information exchange enables information to dif-
fuse faster compared to randomized gossip, and for random
geometric graphs, onlyO(n

√

n/ logn) transmissions are
required. In fact, if all nodes along the path average their
values, rather than just the two endpoints, then the total num-
ber of transmissions required to gossip can be decreased to
O(n). However, geographic gossip and path averaging in-
volve localization overhead. Furthermore, the network must
supply geographic routing and reliable two-way transmis-
sion over many hops.

In a series of recent papers, Aysal et al. proposebroadcast
gossip, an algorithm that makes use of the broadcast nature
of wireless networks [1,2]. At each iteration, a node is cho-
sen uniformly at random to broadcast its value. The nodes
in the broadcast range of this node calculate a weighted av-
erage of their own value and the broadcasted value, and they
update their value with this weighted average. In broadcast
gossip, the value of the broadcasting node is independently
incorporated at each neighbor. Broadcast gossip does not
preserve the network average at each iteration. It achieves
a low variance (i.e., rapid convergence), but introduces bias,

1Throughout this paper, when we refer to randomized gossip, we specif-
ically mean the natural random walk version of the algorithm, where the
nodetk is chosen uniformly from the set of neighbors at each iteration. For
random geometric graph topologies, which are of most interest to us, Boyd
et al. [4] prove that the performance of the natural algorithm scales identi-
cally to that of the optimal choice of transition probabilities, so there is no
loss in generality.

the value to which broadcast gossip converges can be signif-
icantly different from the true average (see [13] for further
discussion).

In previous work, we have proposed Greedy Gossip with
Eavesdropping (GGE) which uses the broadcast medium to
accelerate gossip [13]. In GGE, the selection procedure
is done greedily such that the neighbor with most differ-
ent value than the selecting node is chosen for gossip. We
assume that all transmissions are wireless broadcasts and
nodes eavesdrop on their neighbors’ communication to keep
track of their values. Accelerating convergence in this my-
opic way does not introduce bias to the computation and
does not rely on geographic location information. Since
GGE iterations depend on the values at each node, it is a
data-driven algorithm. Therefore, the standard way of prov-
ing convergence of gossip algorithms (i.e., expressing up-
dates in terms of a linear recursion and then imposing prop-
erties on this recursion) does not apply to GGE. Instead, we
demonstrate that GGE updates correspond to iterations of
a distributed randomized incremental subgradient optimiza-
tion algorithm and we prove convergence. Similarly, an-
alyzing rates of convergence of GGE is also a non-trivial
task and the standard method for gossip algorithms (i.e., ex-
amining the mixing time of a related Markov chain) does
not apply to data-driven nature of GGE. In [14], we prove
that GGE always converges faster than standard random-
ized gossip and we develop a worst-case bound on its rate
of convergence. We also show that the performance of GGE
is closely related to the number of neighbors. Specifically,
the maximum node degree in the network characterizes the
improvement of GGE over randomized gossip.

In general, we are interested in topologies that are used
for modeling wireless sensor and mesh networks, such as
random geometric graphs (RGG) and grids. The maximum
node degree in a RGG is in the order oflog n and hence
the improvement of GGE over randomized gossip is by a
factor oflog n (i.e. O(n2/ log n) transmissions are required
for convergence to the average consensus). However, for
grids the maximum number of neighbors is bounded by 4,
therefore the improvement of GGE is only by a linear factor.
Motivated by these results, we propose multi-hop GGE.

1.2 Paper Organization
The rest of the paper is organized as follows. Section 2 gives
a detailed description of multi-hop GGE. In Section 2.3, we
prove that multi-hop GGE converges to average consensus
solution. Section 3 presents results from numerical simula-
tions, and we conclude in Section 4.

2 Multi-hop GGE
We consider a network ofn nodes and represent network
connectivity as a graph,G = (V, E), with verticesV =
{1, . . . , n}, and edge setE ⊂ V × V such that(i, j) ∈ E if
and only if nodesi andj directly communicate. We assume
that communication relationships are symmetric and that the
graph is connected. LetNi = {j : (i, j) ∈ E} denote the



set of neighbors of nodei (not includingi itself). Each node
in the network has an initial valueyi, and the goal of the
gossip algorithm is to use only local broadcast exchanges to
arrive at a state where every node knows the averageȳ =
1
n

∑n

i=1 yi. To initialize the algorithm, each node sets its
gossip value toxi(0) = yi.

2.1 One-hop GGE
We first describe the one-hop version of GGE. At thekth
iteration of one-hop GGE, a nodesk is chosen uniformly at
random from{1, . . . , n}. (This can be accomplished using
the asynchronous time model described in [3], where each
node “ticks” according to a Poisson clock with rate 1.) Then,
sk identifies a neighboring nodetk satisfying

tk ∈ arg max
t∈Ns

k

{

1

2
(xsk

(k − 1) − xt(k − 1))2
}

, (1)

whereNsk
is the set of neighbors ofsk. Hence,sk identifies

a neighbor that currently has the most different value from
its own. This greedy selection is possible because each node
i maintains not only its own local variable,xi(k−1), but also
a copy of the current values at its neighbors,xj(k − 1), for
j ∈ Ni. Whensk has multiple neighbors whose values are
all equally (and maximally) different fromsk’s, it chooses
one of these neighbors at random. Thensk andtk perform
the update

xsk
(k) = xtk

(k) =
1

2

(

xsk
(k − 1) + xtk

(k − 1)
)

, (2)

while all other nodesi /∈ {sk, tk} hold their values at
xi(k) = xi(k−1). Finally, the two nodes,sk andtk, broad-
cast these new values so that their neighbors have up-to-date
information.

2.2 Multi-hop GGE
In 2-hop GGE, at thekth iteration, a nodesk is chosen

uniformly at random from{1, . . . , n}, as in one-hop GGE.
Then, sk identifies a neighboring nodetk satisfying (1).
However, instead of completing the update,tk checks if any
of its neighborsuk ∈ Ntk

has a value even more different
from sk than its own; i.e.,‖xsk

− xuk
‖ > ‖xsk

− xtk
‖. If

such a neighboruk exists, thentk facilitates a gossip update
betweensk anduk; otherwise,sk andtk gossip.

For p-hop GGE, whentk finds a neighboruk, thenuk

continues the process and checks its neighborhood, and so
on, until the search has extended to at mostp hops away
from sk. Note that this is not equivalent to searching the
entirep hop neighborhood ofsk, since at each hop, only
one option is explored in a greedy, myopic fashion. Nev-
ertheless, we observe that gossiping in this fashion leads to
improvements in number of messages that must be trans-
mitted to achieve high-accuracy estimates of the average at
every node. Of course, searching for the best node to gos-
sip with over the entirep-hop neighborhood might lead to
even faster rates of convergence, but we can motivate the
proposed search over a restricted neighborhood using the

following reasoning. The types of signals for which one-
hop randomized gossip algorithms are slow to average are
those signals that are correlated in some fashion with net-
work structure. For example, if nodes are located inR

2, sup-
pose the initial value of a node located at coordinate(a, b)
is a + b. Thus, nearby nodes have similar values, but distant
nodes have very different values. In such a configuration,
our greedy process of determining which pair of nodes gos-
sips will track along the gradient, and information will be
diffused through the network more quickly than if gossiping
was restricted to be between immediate neighbors. On the
other hand, if node values are initially i.i.d., then our greedy
process of determining which neighbor to gossip with may
not precisely identify the node in thep-hop neighborhood
whose value is most different fromsk, but at the same time,
since all initial values are i.i.d, any node should be able
to average with its immediate neighbors and still obtain a
reasonable estimate of the network average. Moreover, our
greedyp-hop neighbor selection procedure requires at most
p transmissions (fewer if we reach a node in fewer thanp
hops that doesn’t have a neighbor whose value is more dif-
ferent thansk than its own), which is much less costly than
searching the entirep hop neighborhood, in general.

Calculating the greedy update in multi-hop gossip re-
quires that each node know the values of its immediate
neighbors. Similar to other randomized gossip algorithms,
we assume that at the outset of gossip computation that each
nodei has already discovered its neighbor set,Ni, but it
does not know its neighbors’ values. Instead, these values
are learned during an initialization phase of multi-hop GGE.
During this initialization phase, whensk does not know the
values of all its neighbors, it choosestk randomly from
the subset of its neighbors whose values are currently un-
know, rather than performing a GGE update. Sincesk and
tk broadcast their new values after averaging, the nodes in
their neighborhoods overhear and acquire information ac-
cordingly. Oncesk has heard from all of its neighbors, the
initialization process is complete for that particular node and
it choosestk greedily for all subsequent iterations.

2.3 Convergence of Multi-hop GGE
Let {x(k)} denote the sequence of iterates produced by

multi-hop GGE, let{sk} denote the (random) sequence of
nodes activated at each iteration, and letmk denote the node
within sk ’s p-hop neighborhood with which it gossips at iter-
ationk. The evolution ofx(k) can be expressed in recursive
form asx(k) = W (k)x(k − 1), whereW (k) is a matrix
with all diagonal entries equal to1 exceptWsk,mk

(k) =
Wmk,sk

(k) = Wsk,sk
(k) = Wmk,mk

(k) = 1/2. It is
clear that the only fixed point of this equation is a vectorx
whose entries are all identical (a consensus vector). More-
over, since at each iteration, the sum of the entries inx(k)
remains constant (i.e.,1T x(k) = 1

T x(0)), the only fixed-
point is the average consensus vector.

Now, let M(k) = ‖x(k) − ȳ‖2 denote the squared error
afterk iterations. Observe that we can write‖x(k)− ȳ‖2 =
‖x(k − 1) − ȳ‖2 − 1

2 (xsk
(k − 1) − xmk

(k − 1))2. Let



∆k = 1
2 (xsk

(k − 1) − xmk
(k − 1))2. Then we have that

M(k) = M(k − 1) − ∆k with probability 1. (Note that
∆k is random, by virtue of the randomness insk at each
iteration.) Conditioning onx(k − 1) and taking the expec-
tation oversk, it is clear thatE[∆k|x(k − 1)] > 0 unless
x(k − 1) = ȳ is the average consensus solution. Thus, un-
less the algorithm has converged, we always make progress
in expectation towards the consensus solution. Moreover,
via repeated application of the recursion forM(k), we have
M(k) = M(0) −

∑k

i=1 ∆i. SinceM(k) ≥ 0, we have
∑k

i=1 ∆i ≤ M(0), which implies that∆k → 0 ask → ∞.
Since the only fixed point of the stochastic recursion is
the average consensus solution, this implies that multi-hop
GGE converges to the average consensus asymptotically as
k → ∞.

3 Numerical Simulations
To observe the effect of performing greedy updates over

multiple hops, we conduct an experimental comparison be-
tween 1-hop, 2-hop, and 3-hop GGE. As a point of com-
parison, we also include curves for randomized gossip [4]
and geographic gossip [5]. We examine the reduction they
achieve in relative error,||x(k)−x̄||

||x(0)−x̄|| , as a function of the num-
ber of transmissions. The number of transmissions is the
cost of interest in wireless sensor network applications since
each transmission consumes valuable battery resources, and
experimental studies have shown that transmitting gener-
ally consumes significantly more energy than performing
local computation or taking measurements from simple sen-
sors. The initial values for our experiments are determined
according to the linearly varying field example discussed
above; each node is assigned coordinates inR

2, and a node
at location(ai, bi) has initial valuexi(0) = ai + bi. We
consider two network topologies: the two-dimensional grid,
and the family of random geometric graphs [6]. In a random
geometric graph, nodes are assigned i.i.d. coordinates (uni-
formly) in the unit square, and two nodes are connected if

they are separated by a distance of no more than
√

2 log n
n

.
Both the grid and random geometric graph are commonly
adopted as models for connectivity in wireless networks.

Figures 1 and 2 show simulation results for the 196-
node grid and 200-node random geometric graph topolo-
gies. Observe that on random geometric graph topologies
(Fig. 1), one-hop GGE performs comparably to geographic
gossip, and multi-hop gossip improves upon this perfor-
mance. However, on a grid topology of comparable size,
(see Fig. 2), the performance of one-step GGE is much
worse than that of geographic gossip. The reason for this
disparity is that in the random geometric graph setup, most
nodes have many more than four neighbors. Thus, in a sin-
gle one-hop GGE iteration is is possible to find a neigh-
bor that is quite different than the activated node, and thus
spread information quickly. On the other hand, in the grid
scenario, each node has at most four neighbors. Thus, all in-
formation exchange is highly local. By expanding the search

radius to carry out 2-hop or 3-hop GGE iterations, we see a
marked improvement.

We conjecture that the gain obtained by going from 1-
hop GGE top-hop GGE is roughly a factor ofp. Consider
the following heuristic explanation. Afterk − 1 iterations,
the square difference between values at nodessk andmk,
relative to the current squared error,M(k−1), is on average
at leastp2. (Again, think of a regular grid with the linearly
varying field setup, in which case(xsk

− xmk
)2 = p2 for

nodessk andmk that arep hops away from each other along
a given axis.) The number of transmissions required to carry
out this greedyp-hop update is alsop, so the resulting gain
is a factor of approximatelyp2/p = p . This improvement is
also evident when examining how performance scales with
network size.
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Figure 1: A comparison of the performance of randomized
gossip, GGE (1-hop), multi hop GGE (2 and 3-hops) and
geographic gossip for linearly-varying field initialization of
x(0) in RGG topology of 200 nodes. Results are averaged
over 100 runs of the algorithm.

Next, we examine how the communication complexity
scales with respect to the number of nodes in the network.
The rate of convergence for gossip algorithms is typically
quantified in terms of theǫ-averaging time,

Tave(ǫ) = sup
x(0) 6=0

inf

{

k : Pr
(‖x(k) − x̄‖

‖x(0) − x̄‖
≥ ǫ

)

≤ ǫ

}

.

Figure 3 displays how the averaging time scales as a function
of the number of nodesn, for the grid topology, for 1-hop,
2-hop, and 3-hop GGE. The averaging time has been esti-
mated with simulating the gossip algorithms over the same
grid network for 100 times. Note that the averaging time is
shown in terms of the number of iterations per node. The
slope of the curve for 2-hop gossip is roughly half of that
of one-hop gossip, and the curve for 3-hop gossip has slope
roughly 1/3 of that of one-hop gossip, providing further ev-
idence to our conjecture that the improvement obtained by
usingp-hop gossip is roughly a factor ofp.



Figure 2: A comparison of the performance of randomized
gossip, GGE (1-hop), multi hop GGE (2 and 3-hops) and
geographic gossip for linearly-varying field initialization of
x(0) in grid topology of 196 nodes. Results are averaged
over 100 runs of the algorithm.

4 Discussion
In this paper, we proposed multi-hop greedy gossip with
eavesdropping, an extension of GGE for faster convergence
in grid-like topologies. Multi-hop GGE suggests a mecha-
nism for practical fast gossiping in moderate sized networks
without requiring the overhead entailed in localizing nodes
so as to enable greedy geographic routing. Accelerated rates
of convergence are achieved by having nodes eavesdrop on
their neighbors (exploiting the broadcast nature of wireless
communications), and then making greedy decisions about
who to gossip, rather than selecting a node randomly. In the
p-hop extension to GGE, we allow nodes to exchange infor-
mation over up top hops in each iteration. This serves to
both facilitate faster convergence via longer range informa-
tion spreading, while at the same time forcing a hard con-
straint on this distance. From a practical standpoint, con-
straining the number of hops over which one gossips has the
advantage that reliable information exchange is more easily
facilitated over fewer hops (less queueing, fewer opportuni-
ties for collisions or dropped packets, and thus fewer retrans-
missions). We provide theoretical arguments supporting the
claim that multi-hop GGE converges to the average consen-
sus solution, and we investigate the convergence rate of the
algorithm via simulation.

We conjecture that performingp-hop GGE updates leads
to improvements in rate of convergence by a factor ofp. In
our previous analysis, we found that one-step improves on
the performance of randomized gossip by a factor of at most
dmax, the maximum degree of the network. The basic idea
is that in a single one-hop GGE iteration, we get to search
over a local neighborhood of at mostdmax nodes. Since we
greedily choose which of these nodes to gossip with, rather
than drawing one at random, we obtain a speedup by at most
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Figure 3: The averaging timeTave(ǫ) for ǫ = 0.01 as a
function of number of nodes in the network. Results are
averaged over 100 runs of the algorithm. The lines2.5n, n
and0.8n are shown for reference.

that factor. Inp-hop GGE, the size of the set we search over
in each iteration is at mostpdmax, and so similar reason-
ing leads one to the conclusion thatp-hop GGE leads to an
improvement of at most this factor. Obtaining a more thor-
ough theoretical characterization of the rates of convergence
of multi-hop GGE is a topic of our future work.
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