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Abstract— Greedy gossip with eavesdropping (GGE) is a
randomized gossip algorithm that exploits the broadcast nature
of wireless communications to converge rapidly on grid-like
network topologies without requiring that nodes know their
geographic locations. When a node decides to gossip, rather
than choosing one of its neighbors randomly, it greedily chooses
to gossip with the neighbor whose values are most different
from its own. We assume that all transmissions are wireless
broadcasts so that nodes can keep track of their neighbors’
values by eavesdropping on their communications. We have
previously proved that GGE converges to the average consensus
on connected network topologies. In this paper we study the
rate of convergence of GGE, a non-trivial task due to the
greedy, data-driven nature of the algorithm. We demonstrate
that GGE outperforms standard randomized gossip, and we
characterize the rate of convergence in terms of a topology-
dependent constant analogous to the second-largest eigenvalue
characterization for previous randomized gossip algorithms.
Simulations demonstrate that the convergence rate of GGE
is superior to existing average consensus algorithms such as
geographic gossip.

I. I NTRODUCTION AND BACKGROUND

Distributed consensus or agreement has been identified as
a canonical problem in both the distributed signal processing
and control communities (see, e.g., [1]–[6] and references
therein), tracing back to the seminal work of Tsitsiklis [7].
The prototypical example of a consensus problem is that of
computing theaverage consensus: initially, each node in a
network ofn nodes has a scalar piece of information,yi, and
the goal is to compute the average,ȳ = 1

n

∑n
i=1 yi, at every

node in the network. Consensus can be viewed as a sort of
synchronization or agreement, before the network makes a
concerted action.

In previous work, we proposed a new average consen-
sus algorithm,greedy gossip with eavesdropping(GGE),
that takes advantage of the broadcast nature of wireless
communications to accelerate convergence [8]. Motivated
by applications in wireless sensor-actuator networks and
vehicular networks, we assume the network is composed
of battery-powered nodes, communicating via wireless ra-
dios. We assume a broadcast model where all neighbors
within range of a transmitting node successfully receive
the message. In contrast to previous randomized gossip
algorithms which perform updates completely at random,
each GGE update is performed in a greedy, myopic fashion.

In particular, activated nodes do not choose a neighbor to
gossip with randomly. Rather, each node keeps track of its
own valueand its neighbors’ values, and when it comes time
to gossip, it greedily chooses to gossip with the neighbor that
is most different from itself. Because nodes broadcast their
transmissions, it is easy to track the values of neighboring
nodes by eavesdropping on their transmissions. Moreover,
accelerating gossip in this fashion does not require that nodes
have any information about geographic locations.

Although the basic idea behind GGE is straightforward,
analyzing its convergence behavior is non-trivial. In partic-
ular, each GGE update depends explicitly on the values at
each node (via the greedy decision of with which neighbor
to gossip). Thus, the standard approach to quantifying rates
of convergence (i.e., examining the mixing time of a related
Markov chain) does not apply. In our previous work, [8],
we proved that GGE converges to the average consensus
by demonstrating that GGE can be viewed as a particular
instance of an incremental subgradient algorithm. We then
experimentally characterized the rate of convergence and
communication complexity of GGE via simulation. The
current article extends this line of research by beginning
to develop a theory for the rate of convergence of GGE.
In particular, this paper makes the following contributions:
1) We develop a bound relating the rate of convergence of
GGE to that of standard randomized gossip. Not surprisingly,
the bound suggests that GGE always converges faster than
randomized gossip. More interesting, though, is that this
bound provides insight as to what is the worst case scenario
for GGE. 2) We develop a worst-case bound on the rate
of convergence of GGE. Similar to results for other gossip
algorithms that characterize the rate of convergence as a
function of the second largest eigenvalue of a related stochas-
tic matrix, our bound characterizes the rate of convergence
of GGE in terms of a constant that is strictly topology
dependent. We investigate the behavior of this constant
empirically for random geometric graph topologies, and find
that, in terms of both rate of convergence and communication
complexity, GGE performs at least as well as other fast
gossip algorithms such as geographic gossip.



A. Background and Related Work

The two most widely studied algorithms for solving the
average consensus problem aredistributed averaging[9] and
randomized gossip[10]. In distributed averaging, every node
broadcasts information to its neighbors at every iteration.
Let xi(k) denote the value at nodei after thekth iteration.
Each nodei initializes its value toxi(0) = yi. At the kth
iteration, after nodei receives valuesxj(k − 1) from each
of its neighbors, it replacesxi(k) with a weighted average
of its own previous value and its neighbors’ values. Under
appropriate conditions on the weights used in the update step,
one can show that the valuesxi(k) at every node converge to
the averagēy ask → ∞ [9]. However, information diffuses
slowly across the network in this scheme, and since the
information at each node typically does not change much
from iteration to iteration, this is not efficient use of the
broadcast medium.

Randomized gossipoperates at the opposite extreme,
where only two neighboring nodes exchange information
at each iteration. At thekth iteration, a nodes is chosen
uniformly at random; it chooses a neighbor,t, randomly;
and this pair of nodes “gossips”:s and t exchange values
and perform the updatexs(k) = xt(k) = (xs(k−1)+xt(k−
1))/2, and all other nodes remain unchanged. Again, one can
show that under very mild conditions on the way a random
neighbor,t, is drawn, the valuesxi(k) converge tōy at every
node [9]. Although other neighbors overhear the messages
exchanged between the active pair of nodes, they do not
make use of this information in existing randomized gossip
algorithms. The fact that nodes only exchange information
with their immediate neighbors is attractive, from the point
of view of simplicity and robustness to changing topologies
and/or network conditions. However it also means that in
typical wireless network topologies (grids or random geo-
metric graphs [11]), information diffuses slowly across the
network. Boyd et al. [10] prove that for random geometric
graphs, randomized gossip requiresO(n2) transmissions to
approximate the average consensus well1.

Slow convergence of randomized gossip motivated Di-
makis et al. to develop geographic gossip. Assuming each
node knows its geographic location and the locations of its
neighbors, information can be exchanged with nodes beyond
immediate neighbors. In [6], they show that these long-range
transmissions improve the rate of convergence fromO(n2) to
roughlyO(n3/2) transmissions. Although geographic gossip
is a significant improvement over randomized gossip in terms
of number of transmissions, it comes at the cost of increased
complexity, since the network must now provide reliable two-
way transmission over many hops. Messages which are lost
in transit potentially result in biasing the average consensus

1Throughout this paper, when we refer to randomized gossip, we specif-
ically mean the natural random walk version of the algorithm, where the
node tk is chosen uniformly from the set of neighbors at each iteration.
For random geometric graph topologies, which are of most interest to us,
Boyd et al. [10] prove that the performance of the natural algorithm scales
identically to that of the optimal choice of transition probabilities, so there
is no loss in generality.

computation.
Since the proposal of geographic gossip, other fast gossip-

ing algorithms have been proposed. Most related is the work
of Li and Dai [12], and Jung et al. [13]. Both approaches
are based on using the geographic locations of nodes to
constructlifted Markov chains that direct the exchange of
information across the network. Benezit et al. have also
proposed averaging along paths as an extension to geographic
gossip that converges inO(n) communication complexity
[14]. All of these approaches rely on geographic information
and thus are not suitable to scenarios where nodes are
mobile or location information is not available. The focus of
the current article is on developing a fast, communication-
efficient algorithm that exploits broadcast communications
rather than geographic location information to gossip quickly.

In a series of recent papers, Aysal et al. proposebroadcast
gossip, a consensus algorithm that also makes use of the
broadcast nature of wireless networks [15], [16]. At each
iteration, a node is chosen uniformly at random to broadcast
its value. The nodes in the broadcast range of this node
calculate a weighted average of their own value and the
broadcasted value, and they update their value with this
weighted average. In broadcast gossip, the value of the
broadcasting node is independently incorporated at each
neighbor. Consequently, broadcast gossip does not preserve
the network average at each iteration. In this manner, broad-
cast gossip achieves a low variance (i.e., rapid convergence),
but introduces bias: the value to which broadcast gossip
converges can be significantly different from the true average
(see [8] for further discussion).

Sundhar Ram et al. have also recently proposed a gen-
eral class of incremental subgradient algorithms for dis-
tributed optimization [17]. The focus of their study is on
understanding the effects of stochastic errors (e.g., due to
quantization) on convergence of consensus-like distributed
optimization algorithms. They determine conditions on the
errors that guarantee convergence of the algorithm, but do
not characterize convergence rates. Nedić and Ozdaglar have
also proposed a distributed form of incremental subgradient
optimization that generalizes the consensus framework [18].
Their problem formulation is much more general than ours,
but for the specific formulation addressed in this paper, we
achieve stronger results. By exploiting the form of our cost
function, we are able to guarantee convergence to an optimal
solution and obtain tight bounds on the rate of convergence
in terms of the network topology.

B. Paper Organization

The remainder of this paper is organized as follows. In
Section II we review the formal definition of the algorithm,
as outlined in [8]. In Section III, we derive a bound relating
the performance of GGE to randomized gossip, which sug-
gests that GGE always outperforms randomized gossip. In
Section IV, we present a worst-case upper bound on the rate
of convergence of GGE in terms of a topology-dependent
constant. Results from numerical simulations are presented



in Section V and Section VI summarizes the contributions
of the paper.

II. GREEDY GOSSIP WITHEAVESDROPPING(GGE)

We consider a network ofn nodes, and represent network
connectivity as a graph,G = (V, E), with verticesV =
{1, . . . , n}, and edge setE ⊂ V × V such that(i, j) ∈ E if
and only if nodesi andj directly communicate. We assume
that communication relationships are symmetric and that the
graph is connected. LetNi = {j : (i, j) ∈ E} denote the
set of neighbors of nodei (not includingi itself). Each node
in the network has an initial valueyi, and the goal of the
gossip algorithm is to use only local, broadcast exchanges
to converge towards a state where every node can calculate
the averagēy = 1

n

∑n
i=1 yi. To initialize the algorithm, each

node sets its gossip value toxi(0) = yi, and broadcasts this
value to all of its immediate neighbors.

At thekth iteration of GGE, a nodesk is chosen uniformly
at random from{1, . . . , n}. This can be accomplished using
the asynchronous time model described in [19], where each
node “ticks” according to a Poisson clock with rate 1. In the
randomized gossip algorithms described in [10],sk randomly
chooses a neighbor to gossip with. In the GGE algorithm,sk

gossips with a neighbor that is currently the most different
from its own value. This choice is possible because each
nodei maintains not only its own local variable,xi(k − 1),
but also a copy of the most recent values at its neighbors,
xj(k − 1), for j ∈ Ni. More formally,sk identifies a node
tk satisfying

tk ∈ arg max
t∈Nj

{

1

2
(xsk

(k − 1) − xt(k − 1))2
}

.

When sk has multiple neighbors that are all equally (and
maximally) different fromsk, it chooses one of these neigh-
bors at random. Thensk andtk exchange values and perform
the update

xsk
(k) = xtk

(k) =
1

2

(

xsk
(k − 1) + xtk

(k − 1)
)

, (1)

while all other nodesi /∈ {sk, tk} maintain their values
at xi(k) = xi(k − 1). Finally, the two nodes,sk and tk,
broadcast these new values so that their neighbors have
up-to-date information. This can be accomplished in two
transmissions:sk calculates its new value and broadcasts it,
identifying tk as the exchange partner;tk broadcasts its new
value so all of its neighbours are aware of the update.

GGE updates can also be expressed in the form

x(k) = WGGE(k)x(k − 1)

whereWGGE(k) is a stochastic matrix withWGGE
sk,sk

(k) =
WGGE

sk,tk
(k) = WGGE

tk,sk
(k) = WGGE

tk,tk
(k) = 1

2 , WGGE
i,i (k) = 1

for all i /∈ {sk, tk}, and 0 elsewhere.

A. GGE as an Incremental Subgradient Method

Since we make use of it extensively in deriving bounds
on convergence performance, we now review, from [8], the

interpretation of GGE as a randomized incremental subgra-
dient2 method [20]. First consider a constrained optimization
problem of the form:

min
x∈Rn

n
∑

i=1

fi(x)

subject to x ∈ X,

where eachfi(x) is a convex function, but not necessarily
differentiable, andX is a non-empty convex subset of
R

n. An incremental subgradient algorithm for solving this
optimization is an iterative algorithm of the form:

x(k) = PX [x(k − 1) − αkg(sk, x(k − 1))], (2)

whereαk > 0 is the step-size,g(sk, x(k−1)) is a subgradient
of fsk

at x(k − 1), andPX [·] projects its argument onto the
set X . The algorithm is randomized when the component
updated at each iteration,sk, is drawn uniformly at random
from the set{1, . . . , n}, and is independent ofx(k − 1).
The projection,PX [·], ensures that each new iteratex(k)
is feasible. Under mild conditions on the sequence of step
sizes,αk, and on the regularity of each component function
fi(x), Nedić and Bertsekas have shown that the randomized
incremental subgradient method described above converges
to a neighborhood of the global minimizer [20].

GGE is a randomized incremental subgradient algorithm
for the problem

min
x∈Rn

n
∑

i=1

max
j∈Ni

{

1

2
(xi − xj)

2

}

(3)

subject to
n
∑

i=1

xi =

n
∑

i=1

yi, (4)

whereyi is the initial value at nodei. The objective function
in (3) has a minimum value of 0 which is attained whenxi =
xj for all i, j. Thus, any minimizer is a consensus solution.
Moreover, the constraint

∑n
i=1 xi =

∑n
i=1 yi ensures that

the unique global minimizer is the average consensus.
To connect the GGE update, (1), and the incremental

subgradient update, (2), let us defineg(k) such that

gi(k) =







xsk
(k − 1) − xtk

(k − 1) for i = sk,
−(xsk

(k − 1) − xtk
(k − 1)) for i = tk,

0 otherwise.
(5)

Here subscripts denote components of the vectorg(k). It
is easy to verify thatg(k) is a subgradient of the function
fsk

(x(k − 1)) = maxj∈Nsk
{ 1

2 (xsk
(k − 1) − xj(k − 1))2}.

Employing a constant step sizeαk = 1
2 and this subgradient,

2Subgradients generalize the notion of a gradient for non-smooth func-
tions. The subgradient of a convex functionfi at x is any vectorg that
satisfiesfi(y) ≥ fi(x) + gT (y − x). The set of subgradients offi at
x is referred to as thesubdifferentialand is denoted by∂fi(x). If fi is
continuous atx, then ∂fi(x) = {∇fi(x)}; i.e., the only subgradient of
fi at x is the gradient. A sufficient and necessary condition forx∗ to be
a minimizer of the convex functionfi is that 0 ∈ ∂fi(x∗). See [20] and
references therein.



the update (2) is identical to (1). The recursive update for
GGE thus has the form

x(k) = x(k − 1) − 1

2
g(k), (6)

Note that the projection is unnecessary, because this
choice of subgradient andαk ensure that the constraint
∑n

i=1 xi(k) =
∑n

i=1 yi is satisfied at each iteration. With
this formulation, we can derive a simple recursive relation-
ship relating the squared error at iterationk to that at iteration
k − 1 [8]:

‖x(k) − x̄‖2 = ‖x(k − 1) − 1

2
g(k) − x̄‖2

= ‖x(k − 1) − x̄‖2 − 〈x(k − 1) − x̄, g(k)〉 +
1

4
‖g(k)‖2

= ‖x(k − 1) − x̄‖2 − 1

4
‖g(k)‖2. (7)

We made use of this result to prove the convergence theorem
in [8], and we will make further use of it in Section IV for
deriving rate of convergence results.

III. C ONVERGENCERATE: GGE VS. RANDOMIZED

GOSSIP

When we first proposed the GGE algorithm in [8], we
were only able to characterize the convergence behaviour
by demonstrating that GGE converges almost surely to the
consensus value, as stated in the following theorem.

Theorem 1 (̈Ustebay et al. [8]): Let x(k) denote the se-
quence of iterates produced by GGE. Thenx(k) converges
to x̄ almost surely ask tends to infinity.
In this section and the next, our aim is to provide a more
complete description of convergence behaviour by bounding
the rate of convergence.

The following theorem establishes a general expression
for the bound on the mean-squared error of GGE afterk
iterations. Moreover, it demonstrates that the upper bound
on the MSE of GGE is less than or equal to the upper
bound on the MSE of randomized gossip. Recall from the
discussion in Section II and [10] that the update from the
(k − 1)-th to k-th gossip iteration can be expressed as a
linear recursionx(k) = W (k)x(k−1), whereW (k) depends
on the nodessk and tk that gossip during iterationk. We
denote the application ofk successive randomized gossip
updates byWRG(1 : k) =

∏k
j=1 WRG(j). Likewise, let

WGGE(1 : k) =
∏k

j=1 WGGE(j) denote the successive
application ofk GGE updates. LetW = E[WRG(k)] denote
the expected value of the randomized gossip matrix, and let
λ2(W ) denote the second largest eigenvalue ofW .

Theorem 2:Let the algorithm input,x(0), be given, and
let x̄ denote the corresponding average consensus vector.
After k iterations, the expected mean squared error of GGE
is upper bounded as follows:

E
[

‖WGGE(1 : k)x(0) − x̄‖2
]

≤ ‖x(0) − x̄‖2
k
∏

i=1

(

λ2

(

W
)

− ξi

)

(8)

whereξk = 0 if E[‖WGGE(1 : k − 1)x(0) − x̄‖2] = 0, and
otherwise,

ξk =

n
∑

i=1

(

max
t∈Ni

(

xi(k − 1) − xt(k − 1)
)2
)

2n E[‖WGGE(1 : k − 1)x(0) − x̄‖2]

−

n
∑

i=1

(

1
|Ni|

∑

j∈Ni

(

xi(k − 1) − xj(k − 1)
)2

)

2n E[‖WGGE(1 : k − 1)x(0) − x̄‖2]

≥ 0, (9)

wherex(k) = WGGE(1 : k)x(0).

Remark 1:The analogous expression for randomized gos-
sip is simply [10]:

E[‖WRG(1 : k)x(0) − x̄‖2] ≤ ‖x(0) − x̄‖2λ2(W )k.

(Note that here, the expectation is taken with respect to both
random nodes chosen at each iteration,sk and tk, whereas
in the expressions in the theorem, the only randomness is
in sk.) Sinceξi ≥ 0 for all i = 1, . . . , k, this implies that
the upper bound on GGE is uniformly upper bounded by the
upper bound for randomized gossip, for anyk ≥ 0 and any
inputx(0). The upper bound for random gossip is tight; ifv2

denotes the eigenvector corresponding to the second-largest
eigenvalue ofW , then if x(0) = cv2 for some constantc,
the upper bound holds with equality (in expectation).

Remark 2:The form of the termsξk also provides insight
into which scenarios are less favorable for GGE. In general,
we know that randomized gossip is slow to converge on
random geometric graphs [10], and so we hope thatξk > 0
so that GGE achieves some improvement. Note that the
magnitude ofξk is essentially its numerator, which measures
how much larger (on average) a GGE step fromx(k − 1)
is in comparison to the step taken by randomized gossip
from the same location. There are two scenarios where the
expression forξk in (9) evaluates to 0. The first is when
x(k − 1) = x̄, in which case a consensus has already been
achieved. The second, more interesting case is when the
difference between any two neighbors is constant across
the network; i.e.,(xi − xj)

2 = c for all j ∈ Ni and
all i = 1, . . . , n. In this setting, being greedy does not
provide any gain, since gossiping with any neighbor provides
the same amount of immediate improvement. Within the
class of such “constant difference” vectors,x(k), that satisfy
∑n

i=1 xi(k) =
∑n

i=1 xi(0), the most challenging one is
the one chosen to maximize‖x(k) − x̄‖2. We will revisit
this scenario later in the numerical simulations presentedin
Section V and see that, indeed, this appears to be the worst-
case scenario for GGE.

Proof: [Proof of Theorem 2] We recall the known
convergence rate bounds for randomized gossip [10]:

E[||WRG(1 : k)x(0) − x̄||2] ≤ λ2

(

W
)k ||x(0) − x̄||2 (10)



and the related recursive relationship:

E[||WRG(1 : k)x(0) − x̄||2]
= E[||WRG(1 : k − 1)x(0) − x̄||2]

− 1

2

1

n

n
∑

tk=1

1

|Ntk
|
∑

sk∈Ntk

(

xsk
(k − 1) − xtk

(k − 1)
)2

≤ λ2

(

W
)

E[||WRG(1 : k − 1)x(0) − x̄||2] (11)

We can identify an equivalent relationship derived from
applyingk−1 steps of GGE followed by one step of random
gossip:

E[||WRG(k)WGGE(1 : k − 1)x(0) − x̄||2]
= E[||WGGE(1 : k − 1)x(0) − x̄||2]

− 1

2

1

n

n
∑

tk=1

1

|Ntk
|
∑

sk∈Ntk

(

xsk
(k − 1) − xtk

(k − 1)
)2

≤ λ2

(

W
)

E[||WGGE(1 : k − 1)x(0) − x̄||2]. (12)

With this relationship in hand, we can bound the error of
the GGE algorithm by adding and subtracting the effects of
making thek-th step a randomized gossip update:

E[||WGGE(1 : k)x(0) − x̄)||2]
= E[||WGGE(1 : k − 1)x(0) − x̄)||2]

− 1

2

1

n

n
∑

tk=1

1

|Ntk
|
∑

sk∈Ntk

(

xsk
(k − 1) − xtk

(k − 1)
)2

− 1

2

1

n

n
∑

tk=1

max
sk∈Ntk

(

xsk
(k − 1) − xtk

(k − 1)
)2

+
1

2

1

n

n
∑

tk=1

1

|Ntk
|
∑

sk∈Ntk

(

xsk
(k − 1) − xtk

(k − 1)
)2

≤
[

λ2

(

W
)

− ξk

]

E[||WGGE(1 : k − 1)x(0) − x̄||2].
(13)

Repeated application of this inequality fromi = 1, . . . , k
yields the bound (8).

IV. GGE CONVERGENCERATE: WORST CASE BOUND

The previous section related the performance of GGE to
that of standard randomized gossip. In this section, we seeka
more direct characterization of the GGE rate of convergence
in terms of properties of the underlying communication
topology. The rate of convergence for gossip algorithms is
typically quantified in terms of theǫ-averaging time,

Tave(ǫ) = sup
x(0) 6=0

inf

{

k : Pr
(‖x(k) − x̄‖
‖x(0) − x̄‖ ≥ ǫ

)

≤ ǫ

}

.

Other gossip algorithms such as randomized gossip and
geographic gossip are easily related to a homogeneous
Markov chain. If the probability transition matrix of this
chain isW , thenTave(ǫ) can be shown to scale as a function
of the second largest eigenvalue ofW [10]. In particular,
Tave(ǫ) ≤ 3 log ǫ−1

log λ2(W )−1
. For randomized gossip, the matrix

W depends on the choice of probabilities assigned to each

edge in the network and hence, indirectly depends on the
network topology.

Since the greedy decision made in each iteration of GGE
depends on the gossip values at each node,x(k), our
algorithm cannot be related back to a homogeneous Markov
chain. Consequently, the same machinery cannot be used to
characterize the rate of convergence for GGE. The goal of
this section is to bound the rate of convergence of GGE
through alternative means. To this end, our main result is
the following.

Theorem 3:Let G = (V, E) denote the graph on which
we are gossiping, letx(k) denote the vector of GGE values
after k iterations, and let̄x denote the average vector. Then

E[‖x(k) − x̄‖2] ≤ A(G)k‖x(0) − x̄‖2,

whereA(G) is the graph-dependent constant defined as

A(G) = max
x 6=x̄

1

|V |
∑

v∈V

(

1 − ‖gv(x)‖2

4‖x− x̄‖2

)

,

wheregv(x) refers to a subgradient offv(x), when viewing
GGE as an incremental subgradient algorithm3. Moreover,
the ǫ-averaging time for GGE is bounded above by

Tave(ǫ) ≤ 3 log ǫ−1

log A(G)−1
.

Remark 3:Note that the constantA(G) only depends on
the topology of the graph. This constant plays a role for GGE
similar to that played by the second-largest eigenvalue of W
for regular gossip algorithms.

Proof: [Proof of Theorem 3] The proof of the first part
of Theorem 3 is based on an approach introduced in [21], and
developed in [22] for analyzing data-adaptive algorithms.We
begin by recalling the recursion for the mean squared error
of GGE afterk iterations expressed in (7):

‖x(k) − x̄‖2 = ‖x(k − 1) − x̄‖2 − 1
4‖g(k)‖2

=
(

1 − ‖g(k)‖2

4‖x(k−1)−x̄‖2

)

‖x(k − 1) − x̄‖2,

where g(k) denotes the subgradient at iterationk (when
viewing GGE as a randomized incremental subgradient algo-
rithm), and is a random quantity, depending on which node
s(k) is activated at iterationk. Let M(k) = ‖x(k) − x̄‖2

denote the error afterk iterations, and letN(k) = 1 −
‖g(k)‖2

4‖x(k−1)−x̄‖2 denote the amount of contraction at iteration
k. Using these definitions and some successive conditioning,
we get

E[M(k)] = E[N(k)M(k − 1)]

= E[E[N(k)M(k − 1)|x(k − 1)]]

= E[M(k − 1)E[N(k)|x(k − 1)]]

...

= M(0)E[E[N(1)|x(0)] · · ·E[N(k)|x(k − 1)]].

3We explicitly note that this constant is a function of the underlying
topology by writing A(G), and A(G) is completely determined by the
neighbourhood structure of the network because the maximization is over all
x, and for a fixedx, the subgradients are determined by the neighbourhood
structure.



Note thatA(G) is defined in such a way thatE[N(k)|x(k−
1)] ≤ A(G) for all k. Therefore, it follows that

E[‖x(k) − x̄‖2] ≤ A(G)k‖x(0) − x̄‖2.

Next, we prove the second part of the claim: the bound on
ǫ-averaging time. To do this, we will use the bound we have
just derived to develop an upper bound onPr(‖x(k)− x̄‖ ≥
ǫ‖x(0) − x̄‖), the probability that afterk iterations we are
still more than a factor ofǫ away from the initial error. By
applying Markov’s inequality and the bound we just derived
for E[‖x(k) − x̄‖2], we have

Pr(‖x(k) − x̄‖ ≥ ǫ‖x(0) − x̄‖)
= Pr

(

‖x(k) − x̄‖2 ≥ ǫ2‖x(0) − x̄‖2
)

(14)

≤ E[‖x(k) − x̄‖2]

ǫ2‖x(0) − x̄‖2
(15)

≤ ǫ−2A(G)k. (16)

To get an upper bound onTave(ǫ), first note thatPr(‖x(k)−
x̄‖ ≥ ǫ‖x(0) − x̄‖) ≤ ǫ provided thatk ≥ 3 log ǫ−1

log A(G)−1 . Since
in the first part of our proposition, the bound onE[‖x(k) −
x̄‖2] is based on a worst-case one-step analysis, it is an upper
bound on the mean squared error at iteration k, effectively a
lower bound on the rate of convergence. Therefore, we only
have an upper bound on theǫ-averaging time for GGE; that
is Tave(ǫ) ≤ 3 log ǫ−1

log A(G)−1 .
Theorem 3 provides a direct link between the rate of

convergence of GGE and the underlying network topology
through the constant,A(G). This motivates further study of
how A(G) scales for different classes of network topologies
(e.g., random geometric graphs). Theoretically characterizing
how A(G) scales is a topic of ongoing research. The follow-
ing section provides numerical simulations to support the
results presented above. Comparisons are provided to other
randomized gossip algorithms, and the scaling behavior of
A(G) is investigated via simulation.

V. NUMERICAL SIMULATIONS

In this section we report the results of simulations con-
ducted to compare the performance of GGE with randomized
gossip [10] and geographic gossip [6] for a variety of
state value initializations. We also compare the empirically
achieved convergence rates to the bound established in
Section IV and investigate how this bound behaves as the
number of nodes in the network grows.

In our experiments, we focus on a random geometric
graph, constructed by distributing nodes uniformly at ran-
dom over the unit square. The transmission radius is set
to
√

2 log n/n such that the random geometric graph is
connected with high probability. This topology is a good
model for many wireless networks, including sensor net-
works and (snapshots of) vehicular networks, which we
consider to be two of the most promising application domains
for gossip algorithms [11]. In other simulation experiments
with different topologies, we observed similar comparative
behaviour, so we do not report the results here.

We first compare the convergence rates of the three
algorithms by examining the reduction they achieve in rel-
ative error as a function of the number of transmissions
(communication complexity). Relative error is defined as
||x(k)−x̄||
||x(0)−x̄|| . Since the number of transmissions per iteration
is different for each algorithm, this is a fairer comparison
than examining convergence rate relative to the number
of iterations. Randomized gossip and GGE require two
transmissions per iteration; geographic gossip has a variable
number of transmissions, which depends on the number of
hops between the gossiping nodes.

All figures show averages over 100 realizations of the
random geometric graph. We examine performance for four
different initializationsx(0) in order to explore the impact
of the initial values on performance. The first two of these
cases are a Gaussian bumps field, and a linearly-varying field.
For these two cases, the initial valuex(0) is determined
by sampling these fields at the locations of the nodes. The
remaining two initializations consist of the “spike” signal,
constructed by setting the value of one random node to 1 and
all other node values to 0; and a random initialization where
each value is drawn from a Gaussian distributionN (0, 1) of
zero mean and unit variance. The first three of these signals
were also used to examine the performance of geographic
gossip in [6].

Figs. 1(a)-(d) show that GGE converges towards the aver-
age at a much faster rate (both initially and asymptotically)
than randomized gossip for all initializations. The initial
convergence of GGE is faster than geographic gossip for
all but the linearly-varying field, but asymptotically the
algorithms achieve a similar rate of reduction in relative
error. Out of these candidate initializations, the linearly-
varying field is the worst case, as was anticipated from
the convergence analysis conducted in Section III. For this
initialization, the performance of GGE is very similar to that
of geographic gossip.

We now compare the empirical average relative error for
the geometric graph with the bound developed in Theorem
3. In doing so, we focus on one specific realization of the
200-node random geometric graph. There is no closed-form
solution for A(G), so we solve the optimization problem
identified in Theorem 3 numerically, using an incremental
subgradient algorithm. Since the cost function can be ex-
pressed as a function of(x(k)− x̄)/||x(k)− x̄||, without loss
of generality, we can focus on the setting wherex̄ = 0 and
||x(k)||2 = 1. In this simplified setting, one can reformulate
the optimization as the minimization of a convex function
over a non-convex set of constraints. We approximate the
solution to this minimization using a projected incremental
subgradient method. To avoid the problem of local minima
(since the constraint set is non-convex) we rerun the opti-
mization algorithm from multiple initial conditions.

Fig. 2 plots, for each of the four initializations ofx(0),
the relative error achieved by GGE as a function of the
number of iterations, averaged over 100 realizations of the
algorithm. Also plotted is the bound identified by Theorem
3, after substitution of the numerically-evaluatedA(G). For
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(a) Gaussian bumps convergence rate comparison
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(b) Linearly-varying field convergence rate comparison
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(c) Spike convergence rate comparison
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(d) Uniform random field convergence rate comparison

Fig. 1. A comparison of the performance of randomized gossip, GGE, and geographic gossip for four initializationsx(0). Relative error versus number
of transmissions for (a) the Gaussian bump field, (b) the linearly-varying field; (c) the spike distribution; and (d) the uniform random distribution. Results
are averaged over 100 realizations of the random geometric graph and 100 runs of the algorithm per graph.

all but the linearly-varying field, GGE achieves a much more
rapid initial decrease in error than indicated by the bound.
After approximately 1000 iterations, the bound provides a
good indication of the rate of decrease in error. We again
observe that the linearly-varying field is close to a worst-
case scenario for GGE, and it is only after approximately
one-thousand iterations that the experimental performance
for this initialization begins to significantly diverge from the
bound.

Finally, we examine how the communication complexity
scales with respect to the number of nodes in the network.
Figure 3 displays howA(G) and the theoretical bound
on the averaging time change as the number of nodesn
is increased. To obtain these data-points, we generated 50
random geometric graphs for each value ofn, and evaluated
numerically theA(G) value for each of these, using the
procedure detailed above. The top panel shows how the
values ofA(G) change as the number of nodes increases.

The bottom panel plots theǫ-averaging time,Tave(ǫ) for
ǫ = 0.01 versus the number of nodes. Note that the averaging
time is plotted in terms of the number of iterations per node.
For comparison purposes, the dotted line depicts7

√
n. This

provides some experimental support for a conclusion that the
averaging time isO(n3/2), which implies a communication
complexity similar to geographic gossip. The errorbars depict
the minimum, mean and maximum values obtained for the
50 simulated graphs for eachn.

VI. SUMMARY

In this paper we analyzed the convergence behaviour of
greedy gossip with eavesdropping (GGE), an algorithm we
proposed in [8]. GGE takes advantage of the broadcast
nature of wireless communications and provides fast and
reliable computation of average consensus. The theoretical
contributions of this paper are (i) a bound on the mean-
squared error afterk iterations of the GGE algorithm; (ii) a
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Fig. 2. A comparison of the theoretical bound on relative error and the
experimental performance of GGE for four initializations.Results are for
one realization of the random geometric graph, averaged over 100 runs of
the algorithm.

bound on theǫ-averaging time of GGE; and (iii) a proof that
GGE always converges faster than randomized gossip and a
characterization of how the convergence rate differs.

Simulation experiments compare the performance of GGE,
randomized gossip [10], and geographic gossip [6] and
demonstrate that the theoretical bound on mean-squared
error provides a good characterization of the algorithm
performance. The simulation experiments also investigated
the scaling behaviour of the communication complexity of
GGE, and provided some evidence that it isO(n3/2), similar
to geographic gossip. A theoretical characterization of the
scaling of this communication complexity is the focus of
our current research.
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