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Abstract—The substantial overhead of performing internal net-
work monitoring motivates techniques for inferring spatially local-
ized information about performance using only end-to-end mea-
surements. In this paper, we present a novel methodology for in-
ferring the queuing delay distributions across internal links in the
network based solely on unicast, end-to-end measurements. The
major contributions are: 1) we formulate a measurement proce-
dure for estimation and localization of delay distribution based on
end-to-end packet pairs; 2) we develop a simple way to compute
maximum likelihood estimates (MLEs) using the expectation-max-
imization (EM) algorithm; 3) we develop a new estimation method-
ology based on recently proposed nonparametric, wavelet-based
density estimation method; and 4) we optimize the computational
complexity of the EM algorithm by developing a new fast Fourier
transform implementation. Realistic network simulations are car-
ried out using network-level simulator ns-2 to demonstrate the ac-
curacy of the estimation procedure.

Index Terms—Computer network performance, delay estima-
tion, Internet, tomography.

I. INTRODUCTION

SPATIALLY localized information about network perfor-
mance, such as link loss rates, queuing delays and available

bandwidths, plays an important role in isolation of network
congestion and detection of performance degradation. Routing
algorithms, servicing strategies, security procedures, and perfor-
mance verification can benefit from monitoring techniques that
report such information.Monitoringcanbeperformed internally,
but it is impractical todirectlymeasure trafficcharacteristicsatall
internal devices for a number of reasons [1]. This has prompted
several groups to investigate methods for inferring internal
network behavior based on “external” end-to-end network mea-
surements [1]–[10]. This problem is often referred to asnetwork
tomography; see [11] for an overview of work in this area.

Queuing delays are one of the most critical performance
characteristics. Optimizing communication network routing and
service strategies requires knowledge of the queuing delay at
different points in the network. Measuring end-to-end (source
to receiver) delays using timestamps [8], [12], [13] is relatively
easy and inexpensive in comparison to internal measurements,
although there are, of course, measurement issues that must be
addressed.
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In this paper, we introduce a new methodology for network
tomography, specifically, estimating the probability distribu-
tion of the queuing delay on each link based on end-to-end
unicast packet pair measurements. Our approach employs
unicast, end-to-end measurement of back-to-back packets.
By back-to-back packets, we mean two packets that are sent
simultaneously by the source, possibly destined for different
receivers, but sharing a common set of links in their paths. The
two packets should experience approximately the same on each
shared link in their path.

A. Contribution

Earlier inference methodologies focused on multicast routing.
In multicast routing, packets are delivered from sender to the re-
ceivers in one send operation. Along the path, probe packets are
duplicated as needed as the paths diverge [2], [6]. Although mul-
ticastmethodsshowpromise fornetworkperformance inference,
these techniques are often impractical in real networks. Many
routers do not support multicast traffic, and if they do, they treat
the packets differently from the majority of the traffic, which is
based on unicast routing. Therefore, inferences drawn from mul-
ticast routing may poorly reflect the actual networkperformance,
as observed by most traffic. However, the use of single unicast
packets does not provide correlated measurements as do mul-
ticast packets. This motivates the use of back-to-back (closely
time-spaced) unicast packets, which mimic the behavior of mul-
ticast packets to some degree.

Moreover, in this paper, we describe anonparametricframe-
workfor the inferenceof internaldelaydistributionsbasedonuni-
cast end-to-end measurement. By nonparametric, we mean that
the number of parameters or the degrees of freedom diverges as a
function of the number of delay measurements [14]. Most work
to date in network tomography is based onparametricmodels.
Parametric models assume that the measured traffic data depends
on a finite number of parameters. For example, earlier work in
delay distribution estimation has been based on discretized (or
quantized) delay measurements, with internal delay distributions
modeled as discrete probability mass functions (pmfs) [1], [4],
[5]. In this context, the parametersare simply the probabilities as-
sociated with each pmf. It has been our experience, as well as that
of others [15], [16], that no sufficiently simple parametric model
is capable of portraying the wide variety of internal delay distri-
butions observed in practice, thus motivating the consideration
of nonparametric or continuous models. The complex nature of
network delay distributions is evident in the simulated network
measurements and estimates depicted in Fig. 1.

Our methodology offers several significant advantages over
existing methods.

1) It utilizes unicast measurement so that inferred perfor-
mance reflects the experience of the majority of network
traffic.
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Fig. 1. (a) ns-2 delay measurements using 170 packets on link 9 for network depicted in Fig. 2. Horizontal axis is (discretized) delay time and verticalaxis denotes
the number of occurrences of a particular delay measurement. (b) Discretized pmf with 16 equal-width bins. (c) Discretized pmf with 64 bins. (d) Nonparametric
density estimate proposed in this paper obtained by direct estimation using link delays.

2) The estimation procedure is nonparametric and very flex-
ible in that it is capable of recovering densities from a
broad range of function spaces including bounded varia-
tion (BV) functions and Besov spaces, which include both
smooth and piecewise smooth densities.

3) The use of a multiscale maximum penalized likelihood
estimator (MMPLE) provides a computationally fast
method for balancing the bias-variance tradeoff and has
been shown to be nearly optimal for density estimation
in the above-mentioned function spaces [17], [18].

4) We develop a new fast Fourier transform-based imple-
mentation of the expectation-maximization (EM) algo-
rithm for the network tomography problem that, in combi-
nation with MMPLE, leads to a worst-case overall com-
plexity of , where is the number of
links in the network, and is the number of packet pair
measurements. In general, the complexity is substantially
less than this (see Section III-D for clarification).

We demonstrate the flexibility and accuracy of the nonpara-
metric approach through ns-2 [19] simulation.

B. Related Work

Lo Prestiet al. have outlined a framework for the inference
of internal queuing delay distributions based on multicast end-
to-end measurement [1]. Multicast-based procedures for esti-
mating low order moments such as link delay variances have
also been developed [20]. The multicast framework has the ad-
vantage of scalability (each measurement probe provides some
information about all links in the considered network) and guar-
anteed, structured correlation between the delay measurements
at different receivers. However, multicast is not supported by
all networks, and there is evidence that routers treat multicast
packets differently from the unicast packets that make up the
majority of network traffic [6]. These concerns motivate the de-
velopment of an inference framework based on unicast mea-
surement. However, an important new consideration arises in
the unicast setting. For a fixed measurement overhead, multi-

cast measurement provides much more data than unicast. This
means that if the framework of [1] were adapted to unicast mea-
surement, as suggested in [6], it would need to perform with
significantly less information available.

Lai and Baker [8] have implemented nettimer: a procedure
that estimates link-level bandwidth. Similar in nature to
pathchar [21], it exploits the time-to-live field of packets to
collect informative measurements. Nettimer generates accurate
estimates of bandwidths (particularly when they are small),
although it requires a relatively large number of measurement
packets. Theoretically, it could be used to estimate queuing
delays, but to our knowledge, there has been no experimental
work exploring its performance. The number of measurement
packets needed for estimation may prove prohibitive given the
short duration over which delay distributions are generally
stable. It would seem that network utilization would need to be
low in order to achieve reliable estimates.

Shih and Hero have developed a method for estimation of
the link delay cumulant generating functions (CGFs) [22], [23].
The CGFs have the advantage of being additive over a path of
several links in contrast with the convolutional way in which
link delay pmfs combine to form end-to-end delay pmfs. Based
on the disentangled CGFs, it is straightforward to reconstruct the
delay distributions. This technique has the benefit of imposing
no discretization but does not impose smoothness constraints,
leading to an ill-posed problem when data is limited. The chief
disadvantage of the technique is that in order for all links to
be resolved, internal measurements must be available, or a tool
such as nettimer must be used.

Coates and Nowak have described a sequential Monte Carlo-
based internal delay estimation framework in [4] and [5]. This
framework directly addresses the time-varying nature of net-
work delay behavior. In this approach, a fine-level of quanti-
zation can be imposed, and smoothness is incorporated through
the adoption of a slowly-varying time-dependent Bayesian prior.
However, the parameters associated with the prior introduce a
potentially undesirable parametric nature to the estimation task.
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Anagnostakis and Greenwald have explored the feasibilities
of using existing network infrastructure in making delay mea-
surements [24], [25]. They have also studied the differences in
direct measurements and indirect inference for determining the
internal delays. The direct measurements depend on the Times-
tamping mechanism of the Internet control message protocol
(ICMP) protocol [26]. However, they did not evaluate the in-
accuracy in ICMP timestamping mechanism, and they have as-
sumed both sender and receivers are synchronized.

Recently, several studies have explored other forms of delay
models [15], [16], [27]. The accuracy complexity tradeoff is the
motivation for all these researches. Duffieldet al. [16] have de-
scribed a varying bin size model for estimating the link delay
distribution where the delay bin size is a composition of fixed
bin size models. The idea is that the smaller bins are used to
capture the small delay values. The larger bins are used to pre-
vent explosion of the numbers of parameters and to capture the
delays experienced by slower links. The authors then relate the
varying bin size model to the fixed bin size model where the
analysis takes place. The construction of varying bin size is
chosena priori or based on the measurements.

In a recent paper by Shih and Hero [15], a finite mixture
model is proposed to estimate the link delay probability distribu-
tion functions. They model the delay with continuous Gaussian
mixture components and assume that the components in the link
delay distribution have distinct means and variances.

C. Paper Structure

The remainder of the paper is structured in the following
manner. In Section II, we describe the measurement framework,
modeling assumptions, and implementation requirements. In
Section III, we describe the inference methodology, detailing
the MMPLE procedure and EM algorithm. In Section IV, we
describe the results of ns-2 experiments, which are designed to
explore the performance of the methodology. In Section V, we
make some concluding remarks.

II. M EASUREMENTFRAMEWORK

Throughout this paper, we concentrate on networks com-
prised of a single source transmitting measurement probes
to multiple receivers. There is no difficulty extending the
approach to measurements made at multiple sources, although
care must be taken that measurements are sufficiently separated
for independence assumptions to hold. We assume that the
topology is fixed throughout the measurement period, but
straightforward extensions can account for changes in topology
over coarse time scales. The assumption of fixed topology
implies every probe packet sent to a specific receiver traverses
the same path, i.e., the routes are unique, there are no route
change during the measurement period nor load-balancing in
the routers.

For the networks we consider, standard network routing pro-
tocols force packets to follow a specific route indicated by the
routing table, and they produce a tree-structured topology, with
the sourceat the root and thereceiversat the leaves. A net-
work with six receivers is depicted in Fig. 2. The nodes be-
tween the source and receivers represent internal devices (e.g.,

Fig. 2. Tree-structured network topology used for ns-2 simulation experi-
ments. Source (node 0) transmits to 6 receivers (nodes 6–11). Link speeds in
megabits per second are shown next to the links. Linki connects nodei to its
parent node, e.g., link 9 connects nodes 5 and 9.

routers, switches, or other buffering elements). For simplicity,
we will refer to all internal nodes as “routers.” Connections be-
tween the source, routers, and receivers are calledlinks. Each
link between routers may be a direct connection, or there may
be “hidden” routers (where no branching occurs) along the link
that are not explicit in our representation. We adopt the notation
that link connects node(below) to its parent node (above). We
consider the situation where measurements can only be made
at the edge of the network and assume that the routing table
(and thus topology) is fixed and known for the duration of the
measurement.

The basic measurement and inference idea is quite straight-
forward. Suppose two closely time-spaced (back-to-back)
packets are sent from the source to two different receivers. The
paths to these receivers traverse a common set of links, but at
some point, the two paths diverge (as the tree branches). The
two packets should experience approximately the same delay
on each shared link in their path. This facilitates the estimation
of the delays occurring on each link.

We collect measurements of the end-to-end delays from
source to receivers, and we index the packet pair measurements
by . For the th packet pair measurement, let

and denote the two end-to-end delays measured.
The ordering 1 and 2 isarbitrary; the indices are randomly
selected with no dependence on the order in which the packets
were sent from the source. This will be important in dealing
with discrepancies between the delays experienced by the two
packets on shared links, which will be discussed in greater
detail in Section II-A. In this paper, we do not consider the
case in which one or both of the packets is dropped (lost). We
simply discard packet pairs in which a loss occurs. However,
it is possible to extend our approach to include losses. Since
we are interested in inferring queuing delay, our first step is to
extract what we perceive as the minimum delay (propagation
+ transmission) on each measurement path. The minimum
delay corresponds to the case in which all queues in the path
are empty (i.e., no queuing delay). This is estimated as the
smallest delay measurement we acquire on the path during the
measurement period. We assume that the true minimum delay
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is observed over the measurement period. If this is not the case,
then queuing delay is systematically underestimated for links
on the affected path.

Our goal is a nonparametric estimate of the delay distributions
on each link. Clearly, it is impossible to completely determine
an infinite dimensional density function from a finite number
of delay measurements, but we require that as the number of
delay measurements increases, so does the accuracy of our esti-
mation procedure. Thus, we adopt the following procedure. The
end-to-end delay measurements are binned,but the number of
bins is chosen to be equal to or greater than the number of delay
measurements. We stress that this is not a parametric step. This
means that there is less than one measurement per bin, on av-
erage, and hence, we do not lump or group delays in an artifi-
cial, prescribed fashion. Thus, we place no prior restriction on
the form of the density estimator; the more measurements one
has, the more one can resolve the structural nuances of the delay
densities.

In practice, we choose the number of bins to be the smallest
power of two greater than or equal to the number of measure-
ments (facilitating certain processing steps to be described
later). We upper bound the maximum delay on any one link by
the maximum end-to-end delay along the path(s) that include
the link. Let denote the maximum path delay on any link
and this upper bound for a particular link, and let be the
smallest power of 2 that is greater than or equal to the number
of measurement packets. The bin width for the link is then
set at . This procedure is conservative in that
the estimated may be substantially larger than the true
maximum queuing delay. It may be preferable to use previous
link-delay estimates or bandwidth estimates from a procedure
such as nettimer [8] to gauge the maximum delay on any link.

At this stage, each end-to-end measurement has been ascribed
a discrete number between 0 and ( ). To illustrate our in-
ference methodology in its simplest form, suppose that we send
many packet pairs to receivers 6 and 7 in Fig. 2 and measure
the delays experienced by each packet. Each measurement con-
sists of a pair of delays: one being the delay to receiver 6 and
the other the delay to receiver 7. From these measurements, col-
lect events where “0” delay (a delay in bin zero) is measured at
receiver 6. Now, assuming that the delay is the same for both
packets on the common links (1 and 2 in this case), any “addi-
tional” delay observed to the receiver at 7 can be attributed to
link 7 alone. We can then build a histogram estimate of the delay
pmf for link 7. This simple idea can be extended and improved
to obtain estimators for the delay distributions on all links which
take advantage ofall the measured data (not just special cases
like the one above). In Section III, we describe the large-scale
inference procedure in detail.

The basic inference idea is simple. Suppose the network is
stationary over each measurement period, the delays are iden-
tical on shared links, and the true delay pmfs are strictly positive
and canonical (there is some mass in the zero delay bin). This
implies that the first packet has left the queue before the second
packet enters. The delay experienced by the second packet will
not be dependent on the delay of the first one. In addition, sup-
pose that the link delays experienced by an individual packet
are independent of one another, as in the multicast scenario.

Then, based on the identifiability analysis carried out for the
multicast case [1], one can easily show that the true distributions
can be uniquely identified from such end-to-end measurements
(as the number of measurements tends to infinity). The issue
about slightly different delays on shared link in practice will
be addressed in the following section. It is important to point
out that unique identification is not possible (in general) using
single packet delay measurements; there are ambiguous cases
that cannot be resolved without multiple packet correlations [3].

A. Model Assumptions

There are several assumptions in the framework that are
worthy of discussion. First, we assume spatial independence
of delay. Delay on neighboring links is generally correlated to
a greater or lesser extent, depending on the amount of shared
traffic. In the ns-2 [19] experiments discussed in Section IV,
weak correlation of delays is observed. In the presence of weak
correlation, our framework is able to derive good estimates of
the delay distributions. As the correlation grows stronger, we
see a gradual increase of bias in the estimates. We also assume
temporal independence (successive probes across the same link
experience independent delays). Temporal dependence was
observed in [1] and in our experiments; indeed, it is exploited
in [5]. As in [1], the maximum likelihood estimator we employ
remains consistent in the presence of temporal dependence, but
the convergence rate slows. It practical situations, dependencies
are usually weak and do not have a dramatic effect on the per-
formance of the estimator. Ignoring dependencies can also be
interpreted and analyzed as a case of Besag’spseudo-likelihood
approach [28].

Finally, our framework hinges on an assumption that packets
in a pair experience a common delay on shared links. If the de-
lays are identical on shared links, then the difference between
the two delay measurements can be attributed solely to the de-
lays experienced on unshared links in the two paths. This is the
key to uniquely determining the delays on a link-by-link basis.
However, in practice, the two packets may experience slightly
different delays on shared links due to the fact that one packet
precedes the other in the common queues and additional packets
may intervene between the two. The nature of this delay differ-
ential is exposed in Fig. 3, which shows the histogram of the
difference between the end-to-end delays of two closely-spaced
packets sent to the same receiver over the Internet. This his-
togram is constructed from back-to-back packet pair measure-
ments using the netdyn tool [13]. Ideally, the delays should be
identical, but we see a small discrepancy between the two. The
second packet in the pair typically experiences a slightly greater
delay. However, recall that the ordering of the packets was ar-
bitrary in our recording process. In effect then, the discrepan-
cies between the delays on shared links adds an approximately
zero mean error to the difference between the two end-to-end
measurements. We clearly see the symmetric zero-mean nature
in the empirical data shown in Fig. 3, and we have observed
similar behavior in all our measurements and simulations. This
“noise” produces a smoothing (or blurring) in the inferred delay
pmfs. Nonetheless, because the errors are roughly zero mean,
we can still use the estimated delay pmfs to obtain approxi-
mately unbiased estimates of the expected delay [see Fig. 3(b)]
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Fig. 3. (a) End-to-end delay histogram (packets sent from Rice University to Michigan State University). (b) Difference between delays of the two packets in
packet pairs. Measurements were made using thenetdyntool.

on each link or the locations of modes in the density, for ex-
ample. The errors could also be directly modeled, but our exper-
imentation suggests that these errors are relatively insignificant
in the overall process, due to the greater variability caused by
the limited number of probes that can be used in practical situ-
ations.

B. Measurement Requirements

The delay inference framework requires knowledge of the
(logical) topology of the network and the capability to perform
one-way delay measurements. We perform the construction of
the topology using a modified, lightweight version of traceroute
[29], [30]. Alternatively, it is possible to determine the topology
using the end-to-end unicast measurement and inference pro-
cedure we recently proposed in [31]. Collection of one-way
delay measurements requires that the receivers cooperate with
the source and the precision of the system timing [32].

We do not necessarily require that clocks at the source and
receivers be synchronized, but we do require that the disparity
between clocks remain very nearly constant over the measure-
ment period. In this way, we can be sure that subtracting the es-
timated minimum delay does not induce bias in our estimates. A
further difficulty lies in clock resolution. Clocks must be precise
enough to ensure that time measurement errors are insignificant
relative to the scale of the time delays of interest. Deployment
of global positioning system (GPS) devices allows these clock
difficulties to be avoided, as it provides synchronized measure-
ments to within tenths of microseconds. Alternatively, delay
measurements can be adjusted using algorithms developed to
detect and compensate for clock adjustments and rate discrep-
ancies [32]–[34]. In this paper, we assume that synchronized
measurements are available.

III. D ELAY DISTRIBUTION INFERENCE

We commence with the description of our inference frame-
work by formalizing our measurement and modeling notation.
Let denote the probabilities of a delay
of time units, respectively, on link. We denote
the packet pair measurements .

In general, only a relatively small amount of data can be col-
lected over the period when delay distributions can be assumed
approximately stationary. A natural estimate would be the max-

imum likelihood estimates (MLEs) of : the collection
of all delay pmfs. However, if a large number of bins is used (i.e.,
high-resolution delay estimates), then the problem is ill-posed,
and the MLE tends to overfit to the probe data [see Fig. 1(a)],
producing highly variable estimates that do not accurately re-
flect the delay distribution of the traffic at large. High variance
manifests itself in irregular, noisy-looking estimates [35]. One
way to reduce this irregularity is to maximize a penalized likeli-
hood [see Fig. 1(d)]. We replace the maximum (log) likelihood
objective function with an objective function
of the form

pen (1)

where pen is a non-negative real-valued functional that
penalizes the irregularity (orcomplexity) of . A small value
of pen indicates that is a smooth, regular function; a
large value indicates that is irregular and complex function.
The maximization of this penalized log-likelihood involves a
tradeoff between fidelity to the data (large ) and smooth-
ness or simplicity (small pen ). We will describe a specific
choice of penalty functional in Section III-B. Before moving to
that, however, we will quickly formulate the basic likelihood
function and motivate the adoption of an EM algorithm for
optimization.

A. Likelihood Function

Under the assumption of spatial independence, the likelihood
of each delay measurement { } is parameterized by
a convolution of the pmfs in the path from the source to receiver.
With our modeling constraint that packets in a pair experience
the same delay on shared links, the likelihood of the two mea-
surements made by theth packet pair is

(2)

The range of the summation is determined by the ranges of the
pmfs , , and . The pmf is the convolution of the
pmfs of the links on the shared path of the two packets, e.g.,

for a 6–7 pair in Fig. 2 (with denoting convo-
lution). The pmf (resp. ) is the convolution of the pmfs
on the links traversed only by the packet that measures
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(resp. ). The joint likelihood of all measurements is
equal to a product of the individual likelihoods:

(3)

The presence of convolved link pmfs in the likelihood of each
measurement (2) results in an objective function that cannot
be maximized analytically. The maximization of the likelihood
function requires numerical optimization, and an EM algorithm
[36] is an attractive strategy for this purpose. Before giving the
details of the algorithm, we briefly review the multiscale max-
imum penalized likelihood estimate (MMPLE) nonparametric
density estimation procedure employed in our framework.

B. MMPLE Density Estimation

Here, we briefly outline the MMPLE density estimation pro-
cedure developed in [17] and [18]. To introduce the idea, we
consider a case where the link delays have been directly mea-
sured. Let , denote a set of delay measure-
ments for a particular link. We assume that these measure-
ments are independent and identically distributed according to
a continuous delay density , where, without loss of gener-
ality, we assume that (for convenience of exposition,
we take the maximum delay to be unity). Define a discrete pmf
via , , where is
the smallest power of two greater than or equal to. It fol-
lows that the number of measurements falling in the interval

, which is denoted , is multinomially
distributed [14], i.e., Multinomial . The
MMPLE estimator maximizes the following criterion with re-
spect to { }:

Multinomial pen (4)

where

pen (5)

where is the number of nonzero coefficients in the discrete
Haar wavelet transform of the pmf { }. This number reflects
the irregularity and complexity of the pmf—the larger the value
of , the more “bumps” in the pmf. There are two important
features of the MMPLE: 1) The global maximizer can be com-
puted in operations, and 2) the MMPLE is nearly min-
imax optimal in the rate of convergence over a broad class of
function spaces [17], [18].

Computing the MMPLE is very similar to standard wavelet
denoising methods. Finding the optimal solution to (4) involves
computing the Haar wavelet transform of the pmf and thresh-
olding (“keeping” or “killing”) each Haar wavelet coefficient
according to a generalized likelihood ratio test (GLRT). Due
to the multinomial form of the likelihood, the GLRTs involve
binomial statistics (instead of the usual Gaussian statistics in-
volved in standard wavelet denoising problems). The physical
interpretation of each GLRT is simple: If the magnitude of the
wavelet coefficient is sufficiently large, then that coefficient is
left unaltered; otherwise, it is set to zero. In detail, the MMPLE
estimator is computed according to the four steps below.

i) Compute the (unnormalized) Haar scaling coeffi-
cients of the sequence { } as follows. For scales

Note that { } the scaling coefficients at scale .
ii) Form the “multiscale coefficients”

Note that . Therefore, the scaling co-
efficients at scale can be constructed from the scaling
coefficients at scalealong with the multiscale coefficients
at scale according to

(6)

The multiscale coefficients are closely related to the usual
Haar wavelet coefficients. Specifically, the (unnormalized)
Haar wavelet coefficient

Note, in particular, that if , then .
iii) Compute the test statistic

and “threshold” the multiscale coefficients according to

if
if

iv) Construct the MMPLE estimate by recursively applying (6)
beginning with and using the thresholded mul-
tiscale coefficients { } in place of the original coeffi-
cients. The resulting scale scaling coefficients are the
desired elements of the MMPLE estimator { }.

The near minimax optimality implies that the rate at which the
estimator converges to the true continuous density (as a function
of the number of measurements) cannot be significantly im-
proved upon. More complicated and computationally intensive
procedures will not significantly outperform the MMPLE. The
optimization is carried out by performing a set ofindependent
generalized likelihood ratio tests. In all results in this paper, we
employ atranslation-invariantversion of the MMPLE in which
multiple MMPLEs are computed with different shifted ver-
sions of the Haar wavelet basis and the resulting estimates are
averaged. This produces a slight improvement over the basic
MMPLE and can be efficiently computed in oper-
ations.
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C. EM Algorithm

The MMPLE methodology can be employed in the tomo-
graphic delay estimation case by simply adopting the penalized
likelihood criterion:

(7)

where denotes the number probe packets passing through
link , and denotes the number of nonzero Haar wavelet co-
efficients in the delay pmf of link . Unfortunately, the penal-
ized likelihood function cannot be maximized analytically due
to the convolutional relationship between link delay pmfs and
end-to-end measurements.

The first step in developing an EM algorithm is to propose
a suitablecomplete dataquantity that simplifies the likelihood
function. Let denote the delay on linkfor the packets in
the th pair. Let and . The link delays

are not observed, and hence,is called theunobserved data.
Define thecomplete data . Note that the complete
data likelihood may be factorized as follows:

where is the conditional pmf of given (which is a point
mass function sincedetermines ), and is the likelihood of .
The factorization shows that since does
not depend on the parameters. Next, note that the likelihood

where is the number of packets (out of
all the packet pair measurements) that experienced a delay of
on link ; here, denotes theindicator functionof the event

. Therefore, we have

and if the were available, then the MLE of would be
simply

(8)

Similarly, given the , we could directly apply the MMPLE
described above (see [17], [18], and [37] for implementation
details).

The EM algorithm is an iterative method that constructs and
utilizes acomplete datalikelihood function to maximize the
original likelihood function. By suitable modification, it can be
used to maximize a penalized log-likelihood objective function
like (7), while preserving the advantage of the computa-
tional simplicity of the MMPLE technique.

When a modified EM algorithm is used to maximize a pe-
nalized log-likelihood function, it alternates between computing
the conditional expectation of the complete data log likelihood
given the observations and maximizing the sum of this ex-
pectation and the imposed complexity penalty (pen ) with

Fig. 4. Factor graph used in the message-passing algorithm for a measure-
ment made by a packet pair sent to nodes 6 and 7 in the network of Fig. 2.
Measurements are available at nodes 6 and 7; the nodesp contain current
pmf estimates, and nodec indicates the convolutional relationship between
nodesd , d andz .

respect to . Notice that ignoring constant terms, the complete
data log likelihood is linear in :

Thus, in the E-Step, we need only compute the expectation of
.

E-Step: Let denote the value of after the th iteration.
Then

(9)

Thus, the conditional expectation of can be com-
puted by determining the conditional probabilities
above for each packet pair measurement. A fast mes-
sage-passing algorithm for this calculation is de-
scribed in the next section.

M-Step: In the penalized case (7), apply the MMPLE algo-
rithm described in Section III-B with the conditional
expectation { } in place of { }. In the case
of unpenalized maximum likelihood estimation,
simply substitute { } in place of { } in (8).

D. Fast Fourier Transform-Based EM Algorithm

The expectation step of the EM algorithm poses the major
portion of the computational burden of the optimization task. It
can be performed using a message passing (or upward-down-
ward) procedure [38]. The message passing procedure is based
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Fig. 5. Comparison between true pmfs (solid) and estimated pmfs (dashed). Top panel shows true pmf and MMPLE (calculated using 512 bins); bottom panel
shows true pmf and MLE (calculated using 16 bins). Sixteen bins is determined as the bin size at which the MLE obtains the best fit. (a) Link 5. (b) Link 7. (c)
Link 9.

on a factorization of the likelihood function. According to (9),
our task for each measurement in theth iteration of the EM al-
gorithm is to compute (we have dropped the
measurement index for notational ease). In the 1980s, Pearl
[39] and Spiegelhalter [40] independently developed the mes-
sage passing methodology, which is an exact probability prop-
agation algorithm for inferring the distributions of individual
variables in singly connected graphical models (factor graphs).
The basic idea of the algorithm is that each node in the graph
propagates its information (a measurement or current pmf es-
timate in this case) to every other node. Each node then com-
bines all the messages it receives to compute the distribution of
its variable.

Fig. 4 depicts an example of the type of graphical model that
arises in the delay inference procedure. This factor graph is used
for evaluation of the pmf estimates in the th iteration of the
EM algorithm. In this factor graph, the nodes labeledcorre-
spond to the nodes of the tree that are involved in measurement
to nodes 6 and 7 in the example network. The nodescontain
the delay pmf estimates that were generated in the previous iter-
ation of the algorithm. The nodes labeledrepresent thecom-
pletedata, that is, the unobserved individual link delays.

We will briefly illustrate the operation of message passing
algorithm by considering how it behaves when acting on a mea-
surement made by a packet pair destined for nodes 6 and 7 in
the example network. The message passing algorithm can be di-
vided into two stages. In the upward stage, starting at the leaves,
information is passed via messages from node to node until the
root is reached. In the downward stage, information from the
root is passed via messages from node to node until the leaves
are reached. Individual nodes then combine the upward and
downward messages they received to generate marginal pmfs
for their values.

At a leaf node ( or ) in Fig. 4, the upward message is
simply a delay pmf that has a one in the bin of the delay mea-
surement being processed and zeros everywhere else. The up-
ward message from is the previous pmf estimate for link 6.
At node , this message is convolved with the message from
the leaf node , and the result is passed up to the branching
point . A similar process occurs from leaf node 7. At node

, the upward messages from the two lower branches are mul-

Fig. 6. L error criterion averaged over 25 simulations (means and standard
deviation) for link 5, 7, and 9. Solid line is MMPLE, dashed line is MLE (16
bins), dotted line MLE (64 bins).

tiplied together, and the resultant message is passed up. The
convolution procedure continues up the shared branch until the
root node is reached. In the downward stage, the initial mes-
sage from the root contains the information that the delay at the
root is zero: It is a delay pmf with one in the zero bin and zeros
elsewhere. Messages are passed down, with convolution exactly
as before. At the branching node, the message passed down
to node is the product of the downward message from
and the upward message from . At the end of the two stages,
the each node multiplies the upward message, the downward
message, and its distribution from the previous EM iteration to
obtain .

A straightforward implementation of this message passing
procedure, as first proposed in [4], has a computational com-
plexity of per measurement and iteration of EM, where

is the maximum path length in the network, andis the
number of bins. Recall that is the smallest power of two
greater than or equal to . For each measurement, the act of
passing a message within the algorithm involves the evaluation
of a number of summations, which can be cast as convolutions.
These convolutions involve vectors of maximum length ,
where is the maximum path length in the network. Imple-
mentation of the convolutions in the Fourier domain reduces the
computational complexity from to per
measurement and iteration of EM. This reduction can be sub-
stantial when (and hence ) is reasonably large.
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Fig. 7. Larger tree-structured network topology used for ns-2 simulation experiments. Source (node 0) transmits to 20 receivers (nodes 19–38). Linkspeeds in
megabits per second are shown next to the links.

Fig. 8. Comparison between true pmfs (solid) and estimated pmfs (dashed). Top panel shows true pmf and MMPLE (calculated using 512 bins); middle panel
shows true pmf and MLE (calculated using 64 bins); bottom panel shows true pmf and MLE (calculated using 512 bins). 512 bins is determined as the bin sizeat
which the MLE obtains the best fit. (a) Link 1. (b) Link 20. (c) Link 31.

IV. SIMULATION EXPERIMENTS

In order to verify the performance of our estimation method-
ology, we conducted ns-2 [19] simulation experiments using the
network depicted in Fig. 2. Interior links in the network have
higher capacity (5–10 Mb/s) and propagation delay (50 ms) than
the edge links (0.5–2 Mb/sec and 10 ms). Queues are first-in
first-out (FIFO) (droptail) with space for 35 packets. Node 0
generates a 19.2-Kbit/s probing stream comprised of user data
protocol (UDP) packet-pair probes (60 bytes each). Packet-pair
sending times are generated according to a Poisson process; the
mean time-spacing is 50 ms. The probe-stream requires less than
1% of any link’s capacity. Background traffic is composed of a
mixture of long-lived data-source TCP (FTP) connections, ex-
ponential on-off sources using UDP, and multiple short-duration
TCP connections. Averaged over the simulations, link utiliza-
tion ranges between 10 and 60%, and loss rates ranged from 0
to 2%; typical values for certain real networks.

The network was simulated for multiple 2-min measure-
ment periods; from within each measurement period, 25 s
(inference period) was isolated for analysis. This time duration
corresponds to 500 packet-pairs (assuming no probes are lost).
Throughout the inference period, queue lengths in the network
were determined at a fine time scale by monitoring the arrivals

Fig. 9. L error criterion averaged over 20 simulations (means and standard
deviation) for some terminating links. Solid line is MMPLE, dash-dot line is
MLE (512 bins), and dotted line is MLE (256 bins).

of every packet at each queue. A “true” pmf for each link was
formed by calculating delays from queue lengths and link ca-
pacities, quantizing and forming a histogram. When generating
this true pmf, so much data is available that the quantization
can be very fine (constructing an excellent estimate of the delay
density) without affecting estimation stability.

In Fig. 5, we show the results of one experiment, comparing
the true pmfs to the nonparametric MMPLE estimator and the
MLE estimator of [4] using a 16-bin discretized pmf (16 bins
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Fig. 10. CDF estimates obtained from direct measurement (solid) to the tomographic one (dotted). (a) Link 1. (b) Link 20. (c) Link 31.

was found to give the best performance among unpenalized es-
timators; see discussion below). We display results for the lower
bandwidth links because for our experimental set-up, queuing
delay was concentrated in these links. We display the results of
representative links that provide a meaningful indication of per-
formance. There is substantial mass in the tails of these pmfs,
and we can evaluate how well the pmf estimates generated by
our proposed methodology estimates match the tails; network
performance hinges critically on the tail probabilities of queues
[41], [42]. In the higher bandwidth links, there is much less mass
in the pmf tails Fig. 8(a). For these links, both the MLE and
MMPLE estimates match the true pmf, where probability mass
is concentrated, but there is insufficient information to closely
match the tails. We calculated the MLE for a variety of bin sizes
but show the bin size that achieved the best fit to the true pmf (in
this case 16 bins). The nonparametric estimator was calculated
from bins.

In Fig. 6, we plot the magnitude of the error norm be-
tween the true pmf and the MMPLE for the links in the network,
as averaged over 25 simulations. The results for the MLE for
medium (64 bins) and large (16 bins) bin sizes are also shown.
The error norm is simply the sum of the absolute difference
between the estimated pmf and the true pmf over thebins. As
discussed in [14] and [43], the error criterion is a common
measure of the performance of a density estimate. The advan-
tage of such as a measure, as opposed to a mean-squared error
criterion, is that more attention is paid to the tails of the distri-
butions. It also enjoys several theoretical advantages over other
measures [43].

As is evident from the two figures, the MMPLE technique
generates estimates that are smooth, close fits to the true pmfs. In
order to introduce some degree of smoothness, MLE estimates
must be calculated using a large bin size, resulting in an inability
to capture the finer details of a pmf.

In order to illustrate the performance of the algorithm in
a larger network, we also simulate a 20-receiver scenario, as
shown in Fig. 7. The packet probing rate from the source, as
well as the composition of background traffic, remains the
same as in the first scenario. The link loss rates range from
0 to 2%, and the link utilization varies between 0 and 60%,
averaged over 20 simulations. We use the same inference
window of 25 s. If we assume there is no packet loss, then
there are a total of 500 packet pairs. However, as the number

of total measurements remains unchanged while the number
of receivers increases, the number of measurements obtained
for each link reduces. In Figs. 8 and 9, we show the results
and performance of the algorithm. Fig. 10 compares the delay
cumulative distribution function (cdf) obtained by estimation
based on direct measurement with the delay cdf estimated
using the MMPLE technique and the probe measurements for
a representative link in the network.

When the amount of probing that can be performed is lim-
ited, we believe that the most substantial source of error is the
intrinsic variability in probe measurements. Another potential
source of error is the discrepancy between the delays experi-
enced by the two packets in each pair on their common path.
We therefore examined the extent and effect of the delay dis-
crepancy; with 512 bins, the overwhelming majority of the dis-
crepancy was concentrated in 0–3 bins, with a maximum value
of 16 bins. The effect of these discrepancies on the quality of
the estimates is relatively minor when such a small amount of
data is available for inference. If we directly measure the delays
experienced by probes on each link (which can be done in our
simulation), the estimates we obtain are very similar to those
obtained by our tomographic procedure.

V. CONCLUSIONS

In this paper, we introduce a new nonparametric methodology
for network delay tomography based on unicast end-to-end
measurement. Our approach takes advantage of the correlation
between the delay experienced by back-to-back packet pairs.
We pose the network tomography problem as a maximum
penalized likelihood estimation and develop a fast Fourier
transform-based EM algorithm for computing our estimates.
The complexity is reduced to , where is the
number of links in the tree, and is the number of probes.

One of the key features of the framework are its flexibility
(the ability to capture fine details and smooth regions) and the
introduction of a complexity penalization that allows smooth,
accurate estimates to be generated even when the amount of data
is very small. The basic MMPLE framework developed here
could be extended to the multicast approach suggested in [6]
and may also be applicable in time-varying contexts like those
considered in [4] and [5]. We demonstrate the accuracy of the
estimation procedure using network-level simulator ns-2.
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