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Abstract—The substantial overhead of performing internal net- In this paper, we introduce a new methodology for network
yvork_monitori_ng motivatestechniquesfo_rinferring spatially local- tomography, specifically, estimating the probability distribu-
ized '”fozmalt'otr;‘,abom performancetus'“g °'|"y etrr\]d-éoiend fme,a' tion of the queuing delay on each link based on end-to-end
surements. In this paper, we present a novel methodology for in- . -
ferring the queuing delay distributions across internal links in the un!caSt packet pair measurements. Our approach employs
network based solely on unicast, end-to-end measurements. Theunicast, end-to-end measurement of back-to-back packets.
major contributions are: 1) we formulate a measurement proce- By back-to-back packets, we mean two packets that are sent
dure for estimation and localization of delay distribution based on simultaneously by the source, possibly destined for different
end-to-end packet pairs; 2) we develop a simple way to compute receivers, but sharing a common set of links in their paths. The

maximum likelihood estimates (MLEs) using the expectation-max- yq packets should experience approximately the same on each
imization (EM) algorithm; 3) we develop a new estimation method- shared link in their path.

ology based on recently proposed nonparametric, wavelet-based
density estimation method; and 4) we optimize the computational o
complexity of the EM algorithm by developing a new fast Fourier A. Contribution
transform implementation. Realistic network simulations are car- Earlier inference methodologies focused on multicast routing.
ried out using network-level simulator ns-2 to demonstrate the ac- 1,y yticast routing, packets are delivered from sender to the re-
curacy of the estimation procedure. . . .
ceivers in one send operation. Along the path, probe packets are
_ Index Terms—Computer network performance, delay estima- duplicated as needed as the paths diverge [2], [6]. Although mul-
tion, Internet, tomography. ticastmethods show promise for network performance inference,
these techniques are often impractical in real networks. Many
|. INTRODUCTION routers do not support multicast traffic, and if they do, they treat
) . , the packets differently from the majority of the traffic, which is
S:AHALLY localized information about network perfor- y,qeq on unicast routing. Therefore, inferences drawn from mul-
ance, such as link loss rates, queuing delays and availaila i routing may poorly reflect the actual network performance,
bandwidths, plays an important role in isolation of networks ohserved by most traffic. However, the use of single unicast
congestion and detection of performance degradation. Routigrkets does not provide correlated measurements as do mul-
algorithms, servicing strategies, security procedures, and peri@ast packets. This motivates the use of back-to-back (closely
mance verification can benefit from monitoring teChniqueS thﬂﬁ]e_spaced) unicast packetsy which mimic the behavior of mul-
reportsuchinformation. Monitoring can be performedinternallyicast packets to some degree.
butitisimpracticalto directly measuretraffic characteristicsatall Moreover, in this paper, we describ@anparametridrame-
internal devices for a number of reasons [1]. This has prompt@@rk for the inference of internal delay distributions based on uni-
several groups to investigate methods for inferring internghst end-to-end measurement. By nonparametric, we mean that
network behavior based on “external” end-to-end network meve number of parameters or the degrees of freedom diverges as a
surements [1]-[{10]. This problem is often referred tmasvork function of the number of delay measurements [14]. Most work
tomographysee [11] for an overview of work in this area.  to date in network tomography is basedpmarametricmodels.
Queuing delays are one of the most critical performan¢arametric models assume thatthe measured traffic data depends
characteristics. Optimizing communication network routing angh a finite number of parameters. For example, earlier work in
service strategies requires knowledge of the queuing delaydatay distribution estimation has been based on discretized (or
different points in the network. Measuring end-to-end (sourcgiantized) delay measurements, with internal delay distributions
to receiver) delays using timestamps [8], [12], [13] is relativeljnodeled as discrete probability mass functions (pmfs) [1], [4],
easy and inexpensive in comparison to internal measuremeth$, In this context, the parameters are simply the probabilities as-
although there are, of course, measurement issues that mustassated with each pmf. Ithas been our experience, as well as that
addressed. of others [15], [16], that no sufficiently simple parametric model
is capable of portraying the wide variety of internal delay distri-
, _ _ , _butions observed in practice, thus motivating the consideration
I_\/Ianuscrlp_t re_celved Oct_ober 3, 2_002; revised April 7,_ 2093. The as_,soc_lat? - . dels. Th molex nature of
editor coordinating the review of this paper and approving it for pubhcanoﬂ nonparametrl_c O.r coptlnu_ous mo e_s e _CO plex nature o
was Dr. Rolf Riedi. network delay distributions is evident in the simulated network
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Fig.1. (a)ns-2delay measurements using 170 packets on link 9 for network depicted in Fig. 2. Horizontal axis is (discretized) delay time andsvéeticaés
the number of occurrences of a particular delay measurement. (b) Discretized pmf with 16 equal-width bins. (c) Discretized pmf with 64 binsrédd)dtionpa
density estimate proposed in this paper obtained by direct estimation using link delays.

2) The estimation procedure is nonparametric and very flegast measurement provides much more data than unicast. This
ible in that it is capable of recovering densities from aneans that if the framework of [1] were adapted to unicast mea-
broad range of function spaces including bounded varigdrement, as suggested in [6], it would need to perform with
tion (BV) functions and Besov spaces, which include botignificantly less information available.
smooth and piecewise smooth densities. Lai and Baker [8] have implemented nettimer: a procedure

3) The use of a multiscale maximum penalized likelihoothat estimates link-level bandwidth. Similar in nature to
estimator (MMPLE) provides a computationally faspathchar [21], it exploits the time-to-live field of packets to
method for balancing the bias-variance tradeoff and hasllect informative measurements. Nettimer generates accurate
been shown to be nearly optimal for density estimatiogstimates of bandwidths (particularly when they are small),
in the above-mentioned function spaces [17], [18]. although it requires a relatively large number of measurement

4) We develop a new fast Fourier transform-based implgackets. Theoretically, it could be used to estimate queuing
mentation of the expectation-maximization (EM) algogelays, but to our knowledge, there has been no experimental
rithm for the network tomography problem that, in combigyork exploring its performance. The number of measurement
nation with MMPLE, leads to a worst-case overall compaciets needed for estimation may prove prohibitive given the
plexity of O(MN?log N), where M is the number of ghort guration over which delay distributions are generally
links in the network, andV is the number of packet pair siape. It would seem that network utilization would need to be
measurements. In general, the complexity is substantially(y; in order to achieve reliable estimates.
less than this (see Section I1I-D for clarification). Shih and Hero have developed a method for estimation of

We demonstrate the flexibility and accuracy of the nonparghe link delay cumulant generating functions (CGFs) [22], [23].

metric approach through ns-2 [19] simulation. The CGFs have the advantage of being additive over a path of
several links in contrast with the convolutional way in which
B. Related Work link delay pmfs combine to form end-to-end delay pmfs. Based

Lo Prestiet al. have outlined a framework for the inference®n the disentangled CGFs, itis straightforward to reconstruct the
of internal queuing delay distributions based on multicast end€l2y distributions. This technique has the benefit of imposing
to-end measurement [1]. Multicast-based procedures for e§- discretization but does not impose smoothness constraints,
mating low order moments such as link delay variances hal¢&ding to an ill-posed problem when data is limited. The chief
also been developed [20]. The multicast framework has the &tsadvantage of the technique is that in order for all links to
vantage of scalability (each measurement probe provides sopfegesolved, internal measurements must be available, or a tool
information about all links in the considered network) and gua$tich as nettimer must be used.
anteed, structured correlation between the delay measuremenfgoates and Nowak have described a sequential Monte Carlo-
at different receivers. However, multicast is not supported tased internal delay estimation framework in [4] and [5]. This
all networks, and there is evidence that routers treat multicdgmework directly addresses the time-varying nature of net-
packets differently from the unicast packets that make up t@rk delay behavior. In this approach, a fine-level of quanti-
majority of network traffic [6]. These concerns motivate the dezation can be imposed, and smoothness is incorporated through
velopment of an inference framework based on unicast méhe adoption of a slowly-varying time-dependent Bayesian prior.
surement. However, an important new consideration arisesHowever, the parameters associated with the prior introduce a
the unicast setting. For a fixed measurement overhead, muftdtentially undesirable parametric nature to the estimation task.
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Anagnostakis and Greenwald have explored the feasibilities
of using existing network infrastructure in making delay mea-
surements [24], [25]. They have also studied the differences in
direct measurements and indirect inference for determining the
internal delays. The direct measurements depend on the Times-
tamping mechanism of the Internet control message protocol
(ICMP) protocol [26]. However, they did not evaluate the in-
accuracy in ICMP timestamping mechanism, and they have as-
sumed both sender and receivers are synchronized.

Recently, several studies have explored other forms of delay
models [15], [16], [27]. The accuracy complexity tradeoff is the
motivation for all these researches. Duffieltal. [16] have de-
scribed a varying bin size model for estimating the link delay
distribution where the delay bin size is a composition of fixed
bin size models. The idea is that the smaller bins are used to
capture the small delay values. The larger bins are used to ptig- 2. Tree-structured network topology used for ns-2 simulation experi-
vent explosion of the numbers of parameters and to capture JfES: Source (node 0) transmits to 6 receivers (nodes 6-11). Link speeds in

. . egabits per second are shown next to the links. Linknnects node to its
delays experienced by slower links. The authors then relate ETA%nt node, e.g., link 9 connects nodes 5 and 9.
varying bin size model to the fixed bin size model where the
analysis takes place. The construction of varying bin size §uters switches or other buffering elements). For simplicity,
chosenra priori or based on the measurements. we will refer to all internal nodes as “routers.” Connections be-

In a recent paper by Shih and Hero [15], a finite mixturgveen the source, routers, and receivers are céied Each
modelis proposed to estimate the link delay probability distribyink between routers may be a direct connection, or there may
tion functions. They model the delay with continuous Gaussigg “hidden” routers (Where no branching OCCUFS) a|ong the link
mixture components and assume that the components in the kiRt are not explicit in our representation. We adopt the notation

delay distribution have distinct means and variances. that linki connects node(below) to its parent node (above). We
consider the situation where measurements can only be made
C. Paper Structure at the edge of the network and assume that the routing table

The remainder of the paper is structured in the foIIowin@jand thus topology) is fixed and known for the duration of the
manner. In Section I1, we describe the measurement framewdfi€asurement. _ S _
modeling assumptions, and implementation requirements. InThe basic measurement and mfgrence idea is quite straight-
Section III, we describe the inference methodology, detailifgrward. Suppose two closely time-spaced (back-to-back)
the MMPLE procedure and EM algorithm. In Section IV, wdackets are sent from the source to two different receivers. The
describe the results of ns-2 experiments, which are designed®&hs to these receivers traverse a common set of links, but at

explore the performance of the methodology. In Section V, va9™Me point, the two paths diverge (as the tree branches). The
make some concluding remarks. two packets should experience approximately the same delay

on each shared link in their path. This facilitates the estimation
of the delays occurring on each link.

We collect measurements of the end-to-end delays from

Throughout this paper, we concentrate on networks comspurce to receivers, and we index the packet pair measurements
prised of a single source transmitting measurement prod®sk = 1,...,N. For thekth packet pair measurement, let
to multiple receivers. There is no difficulty extending they; (k) andy.(k) denote the two end-to-end delays measured.
approach to measurements made at multiple sources, altholigb ordering 1 and 2 iarbitrary; the indices are randomly
care must be taken that measurements are sufficiently separatddcted with no dependence on the order in which the packets
for independence assumptions to hold. We assume that #ere sent from the source. This will be important in dealing
topology is fixed throughout the measurement period, bufith discrepancies between the delays experienced by the two
straightforward extensions can account for changes in topolgggckets on shared links, which will be discussed in greater
over coarse time scales. The assumption of fixed topologgtail in Section II-A. In this paper, we do not consider the
implies every probe packet sent to a specific receiver travergase in which one or both of the packets is dropped (lost). We
the same path, i.e., the routes are unique, there are no raiteply discard packet pairs in which a loss occurs. However,
change during the measurement period nor load-balancingititis possible to extend our approach to include losses. Since
the routers. we are interested in inferring queuing delay, our first step is to

For the networks we consider, standard network routing prextract what we perceive as the minimum delay (propagation
tocols force packets to follow a specific route indicated by the transmission) on each measurement path. The minimum
routing table, and they produce a tree-structured topology, willelay corresponds to the case in which all queues in the path
the sourceat the root and theeceiversat the leaves. A net- are empty (i.e., no queuing delay). This is estimated as the
work with six receivers is depicted in Fig. 2. The nodes bemallest delay measurement we acquire on the path during the
tween the source and receivers represent internal devices (empasurement period. We assume that the true minimum delay

Il. MEASUREMENT FRAMEWORK
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is observed over the measurement period. If this is not the caEken, based on the identifiability analysis carried out for the
then queuing delay is systematically underestimated for linksulticast case [1], one can easily show that the true distributions
on the affected path. can be uniquely identified from such end-to-end measurements
Our goal is a nonparametric estimate of the delay distributiofss the number of measurements tends to infinity). The issue
on each link. Clearly, it is impossible to completely determinabout slightly different delays on shared link in practice will
an infinite dimensional density function from a finite numbebe addressed in the following section. It is important to point
of delay measurements, but we require that as the numberoof that unique identification is not possible (in general) using
delay measurements increases, so does the accuracy of our &sige packet delay measurements; there are ambiguous cases
mation procedure. Thus, we adopt the following procedure. THeat cannot be resolved without multiple packet correlations [3].
end-to-end delay measurements are binbetithe number of
bins is chosen to be equal to or greater than the number of defayModel Assumptions
measurements. We stress that this is not a parametric step. Thighere are several assumptions in the framework that are
means that there is less than one measurement per bin, onwaatthy of discussion. First, we assume spatial independence
erage, and hence, we do not lump or group delays in an artitdelay. Delay on neighboring links is generally correlated to
cial, prescribed fashion. Thus, we place no prior restriction @ngreater or lesser extent, depending on the amount of shared
the form of the density estimator; the more measurements apsffic. In the ns-2 [19] experiments discussed in Section IV,
has, the more one can resolve the structural nuances of the delayk correlation of delays is observed. In the presence of weak
densities. correlation, our framework is able to derive good estimates of
In practice, we choose the number of bins to be the smalléisé delay distributions. As the correlation grows stronger, we
power of two greater than or equal to the number of measugee a gradual increase of bias in the estimates. We also assume
ments (facilitating certain processing steps to be describeginporal independence (successive probes across the same link
later). We upper bound the maximum delay on any one link lxperience independent delays). Temporal dependence was
the maximum end-to-end delay along the path(s) that includbserved in [1] and in our experiments; indeed, it is exploited
the link. Letdax denote the maximum path delay on any linkn [5]. As in [1], the maximum likelihood estimator we employ
and this upper bound for a particular link, and Iétbe the remains consistent in the presence of temporal dependence, but
smallest power of 2 that is greater than or equal to the numhhe convergence rate slows. It practical situations, dependencies
of measurement packefé. The bin width for the link is then are usually weak and do not have a dramatic effect on the per-
set atdmax/(K — 1). This procedure is conservative in thaformance of the estimator. Ignoring dependencies can also be
the estimatedi,,. may be substantially larger than the truénterpreted and analyzed as a case of Begaggsido-likelihood
maximum queuing delay. It may be preferable to use previoapproach [28].
link-delay estimates or bandwidth estimates from a procedureFinally, our framework hinges on an assumption that packets
such as nettimer [8] to gauge the maximum delay on any linkn a pair experience a common delay on shared links. If the de-
Atthis stage, each end-to-end measurement has been ascriigsl are identical on shared links, then the difference between
a discrete number between 0 ardd ¢ 1). To illustrate our in- the two delay measurements can be attributed solely to the de-
ference methodology in its simplest form, suppose that we sdagis experienced on unshared links in the two paths. This is the
many packet pairs to receivers 6 and 7 in Fig. 2 and measlisy to uniquely determining the delays on a link-by-link basis.
the delays experienced by each packet. Each measurement etowever, in practice, the two packets may experience slightly
sists of a pair of delays: one being the delay to receiver 6 adifferent delays on shared links due to the fact that one packet
the other the delay to receiver 7. From these measurements, potcedes the other in the common queues and additional packets
lect events where “0” delay (a delay in bin zero) is measuredraty intervene between the two. The nature of this delay differ-
receiver 6. Now, assuming that the delay is the same for bahtial is exposed in Fig. 3, which shows the histogram of the
packets on the common links (1 and 2 in this case), any “addifference between the end-to-end delays of two closely-spaced
tional” delay observed to the receiver at 7 can be attributed packets sent to the same receiver over the Internet. This his-
link 7 alone. We can then build a histogram estimate of the deltggram is constructed from back-to-back packet pair measure-
pmf for link 7. This simple idea can be extended and improvedents using the netdyn tool [13]. Ideally, the delays should be
to obtain estimators for the delay distributions on all links whictdentical, but we see a small discrepancy between the two. The
take advantage dll the measured data (not just special casegcond packet in the pair typically experiences a slightly greater
like the one above). In Section lll, we describe the large-scalelay. However, recall that the ordering of the packets was ar-
inference procedure in detail. bitrary in our recording process. In effect then, the discrepan-
The basic inference idea is simple. Suppose the networkcigs between the delays on shared links adds an approximately
stationary over each measurement period, the delays are idesro mean error to the difference between the two end-to-end
tical on shared links, and the true delay pmfs are strictly positiveeasurements. We clearly see the symmetric zero-mean nature
and canonical (there is some mass in the zero delay bin). Thishe empirical data shown in Fig. 3, and we have observed
implies that the first packet has left the queue before the secaihilar behavior in all our measurements and simulations. This
packet enters. The delay experienced by the second packet tmidlise” produces a smoothing (or blurring) in the inferred delay
not be dependent on the delay of the first one. In addition, sypmfs. Nonetheless, because the errors are roughly zero mean,
pose that the link delays experienced by an individual packee can still use the estimated delay pmfs to obtain approxi-
are independent of one another, as in the multicast scenanmtely unbiased estimates of the expected delay [see Fig. 3(b)]
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Fig. 3. (a) End-to-end delay histogram (packets sent from Rice University to Michigan State University). (b) Difference between delays of tketsiio pac
packet pairs. Measurements were made usingétéyntool.

on each link or the locations of modes in the density, for exmum likelihood estimates (MLEs) @f = {p; }: the collection

ample. The errors could also be directly modeled, but our expef-all delay pmfs. However, if a large number of binsis used (i.e.,
imentation suggests that these errors are relatively insignificdigh-resolution delay estimates), then the problem is ill-posed,
in the overall process, due to the greater variability caused agd the MLE tends to overfit to the probe data [see Fig. 1(a)],
the limited number of probes that can be used in practical sifproducing highly variable estimates that do not accurately re-

ations. flect the delay distribution of the traffic at large. High variance
manifests itself in irregular, noisy-looking estimates [35]. One
B. Measurement Requirements way to reduce this irregularity is to maximize a penalized likeli-

The delay inference framework requires knowledge of tH¥0d [See Fig. 1(d)]. We replace the maximum (log) likelihood
(logical) topology of the network and the capability to perfornf?Piective functionl,(p) = log /(y|p) with an objective function
one-way delay measurements. We perform the construction®fhe form
the topology using a modified, lightweight version of traceroute L(p) — per(p) 1)

[29], [30]. Alternatively, it is possible to determine the topology

using the end-to-end unicast measurement and inference pvbere pefp) is a non-negative real-valued functional that
cedure we recently proposed in [31]. Collection of one-wayenalizes the irregularity (azomplexity of p. A small value
delay measurements requires that the receivers cooperate wftlper(p) indicates thatp is a smooth, regular function; a
the source and the precision of the system timing [32]. large value indicates thatis irregular and complex function.

We do not necessarily require that clocks at the source afide maximization of this penalized log-likelihood involves a
receivers be synchronized, but we do require that the dispatitgdeoff between fidelity to the data (lardép)) and smooth-
between clocks remain very nearly constant over the measuness or simplicity (small p&€p)). We will describe a specific
ment period. In this way, we can be sure that subtracting the ehoice of penalty functional in Section IlI-B. Before moving to
timated minimum delay does not induce bias in our estimatestiat, however, we will quickly formulate the basic likelihood
further difficulty lies in clock resolution. Clocks must be preciséunction and motivate the adoption of an EM algorithm for
enough to ensure that time measurement errors are insignificaptimization.
relative to the scale of the time delays of interest. Deployment
of global positioning system (GPS) devices allows these clofk Likelihood Function
difficulties to be avoided, as it provides synchronized measure-Under the assumption of spatial independence, the likelihood
ments to within tenths of microseconds. Alternatively, delayf each delay measurement{k), y2(k)} is parameterized by
measurements can be adjusted using algorithms developed t@nvolution of the pmfs in the path from the source to receiver.
detect and compensate for clock adjustments and rate dischefith our modeling constraint that packets in a pair experience
ancies [32]-[34]. In this paper, we assume that synchronizg same delay on shared links, the likelihood of the two mea-

measurements are available. surements made by thig¢h packet pair is
ll. DELAY DISTRIBUTION INFERENCE L(y(k), y2(K)Ip) =
We commence with the description of our inference frame- ch=k(j)p1=k (y2(k) = 7) P2k (k) = J) 2)

work by formalizing our measurement and modeling notation. J

Letp; = {pio--.,pi k—1} denote the probabilities of a delayThe range of the summation is determined by the ranges of the

of 0,1,..., K —1time units, respectively, on link We denote pmfsp, i, p1,k, @andps 1. The pmfp. ;. is the convolution of the

the packet pair measurementss {y: (k), y2(k)}2_,. pmfs of the links on the shared path of the two packets, e.g.,
In general, only a relatively small amount of data can be cqb. , = p; * p, for a 67 pair in Fig. 2 (with- denoting convo-

lected over the period when delay distributions can be assumetion). The pmfpy ;. (resp.ps i) is the convolution of the pmfs

approximately stationary. A natural estimate would be the maan the links traversed only by the packet that measyrés)
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(resp.y2(k)). The joint likelihood!(y|p) of all measurementsis i) Compute the (unnormalized) Haar scaling coeffi-

equal to a product of the individual likelihoods: cients of the sequencend; ;} as follows. For scales
N £=0,...,logy, V;
I(ylp) = ] Wwr(k), v2(k)|p)- ®) "
Pt} ‘ k=0,...,N;
_ _ o Sij = Zmi,j+k2f7 ol _ 1
The presence of convolved link pmfs in the likelihood of each j=1

measurement (2) results in an objective function that cannot
be maximized analytically. The maximization of the likelihood.. E h
function requires numerical optimization, and an EM algorithrﬁ') orm the

Note that {n; ;} the scaling coefficients at scale= 0.
“multiscale coefficients”

[36] is an attractive strategy for this purpose. Before giving the $-1
details of the algorithm, we briefly review the multiscale max- pf_j = ﬁ
imum penalized likelihood estimate (MMPLE) nonparametric ’ (Si2j + Sizj41)

density estimation procedure employed in our framework. 1 1 )
Note thats{ ; = S;2; T Si2j41- 1herefore, the scaling co-

B. MMPLE Density Estimation efficients at scalé — 1 can be constructed from the scaling
coefficients at scaléalong with the multiscale coefficients

Here, we briefly outline the MMPLE density estimation pro- .
at scale according to

cedure developed in [17] and [18]. To introduce the idea, we
consider a case where the link delays have been directly mea- §=1
sured. Let;(k), k = 1,..., N; denote a set of delay measure- 2 = P

ments for a particular link. We assume that these measure- o oy iiscale coefficients are closely related to the usual
ments are independent and identically distributed according to Haar wavelet coefficients. Specifically, the (unnormalized)
a continuous delay densip(t), where, without loss of gener-

ality, we assume thate [0, 1] (for convenience of exposition,
we take the maximum delay to be unity). Define a discrete pmf Wl =gttt g1

. S (j+1)/K d P K -1 h K N 1,7 1,2) 2,27+1
viap;; = fm/K p(t)dt, j = 0,..., , Where K is (2t~ 1)s’
the smallest power of two greater than or equaMo It fol- Pij ©1°
lows that the number of measurements falling in the interval
[(4/K),((7 + 1)/ K)], which is denotedh; ;, is multinomially
distributed [14], i.e.{m; ;} ~ Multinomial(N;;{p; ;}). The

¢ st =1 €L
isigand sigi = —pij)si; (6)

Haar wavelet coefficient

Note, in particular, that ip} ; = 1/2, thenw; ; = 0.
iii) Compute the test statistic

MMPLE estimator maximizes the following criterion with re- 1 , 1
spect to p; ;}: tij = Siaj |:10g(pq',,j) —log <§>}
. ; ; 1
log Multinomial( Ni; {p: ;}) — per({p;;})  (4) 15l [log@ o) —log @]
where

and “threshold” the multiscale coefficients according to
log(N;) x #; (5) .
( ) ( 4 )_ %7 |f tfj< %logN7

| =

per({pi;}) =

where#; is the number of nonzero coefficients in the discrete
Haar wavelet transform of the pmp{ ;}. This number reflects ) ) )
the irregularity and complexity of the pmf—the larger the valud/) Constructthe MMPLE estimate by recursively applying (6)
of #;, the more “bumps” in the pmf. There are two important beginning withs;>* ™" = 1 and using the thresholded mul-
features of the MMPLE: 1) The global maximizer can be com- tiscale coefficients{(p{ ;)} in place of the original coeffi-
puted inO(K) operations, and 2) the MMPLE is nearly min- cients. The resulting scale= 0 scaling coefficients are the
imax optimal in the rate of convergence over a broad class of desired elements of the MMPLE estimatg; {}.
function spaces [17], [18]. The near minimax optimality implies that the rate at which the
Computing the MMPLE is very similar to standard wavelegstimator converges to the true continuous density (as a function
denoising methods. Finding the optimal solution to (4) involvesf the number of measuremen¥s) cannot be significantly im-
computing the Haar wavelet transform of the pmf and thresproved upon. More complicated and computationally intensive
olding (“keeping” or “killing”) each Haar wavelet coefficient procedures will not significantly outperform the MMPLE. The
according to a generalized likelihood ratio test (GLRT). Dueptimization is carried out by performing a setdfindependent
to the multinomial form of the likelihood, the GLRTs involvegeneralized likelihood ratio tests. In all results in this paper, we
binomial statistics (instead of the usual Gaussian statistics @mploy atranslation-invariantversion of the MMPLE in which
volved in standard wavelet denoising problems). The physicalltiple MMPLEs are computed witk different shifted ver-
interpretation of each GLRT is simple: If the magnitude of thgions of the Haar wavelet basis and the resulting estimates are
wavelet coefficient is sufficiently large, then that coefficient isveraged. This produces a slight improvement over the basic
left unaltered; otherwise, itis set to zero. In detail, the MMPLEIMPLE and can be efficiently computed i K log K') oper-
estimator is computed according to the four steps below.  ations.
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C. EM Algorithm

The MMPLE methodology can be employed in the tomo-
graphic delay estimation case by simply adopting the penalized
likelihood criterion:

log (ylp) — 3 5 log(N0) x #: @
1

where N; denotes the number probe packets passing through
link 7, and#; denotes the number of nonzero Haar wavelet co-
efficients in the delay pmp; of link . Unfortunately, the penal-
ized likelihood function cannot be maximized analytically due
to the convolutional relationship between link delay pmfs and
end-to-end measurements

The first step in developing an EM algorithm is to propose
a suitablecomplete datajuantity that simplifies the likelihood Fig. 4. Factor graph used in the message-passing algorithm for a measure-
function. Letz;(k) denote the delay on linkfor the packets in ment made by a packet pair sent to nodes 6 and 7 in the network of Fig. 2.
the ith pair. Lets; = {z(k)} ands = {si}. The link delays Mereurement are avslale i nodes & and 7 e miteeonian cuent
z are not observed, and heness called theunobserved data nodesd,, d, andz,.
Define thecomplete datar = {y, z}. Note that the complete

data likelihood may be factorized as follows: respect tg. Notice that ignoring constant terms, the complete
data log likelihood is linear imn:
l(zlp) = f(yl2)g(Ip) J

logl(z i.jlogpi,
where f is the conditional pmf o given z (which is a point og( Zm 4 108 Pisg-
mass function sincedetermineg), andy is the likelihood ofz.
The factorization shows thatz|p) «x g(z|p) sincef(y|z) does

not depend on the parametgrsNext, note that the likelihood ™ = {mi;}.
P P ® E-Step: Lep(™ denote the value of after therth iteration.

Hp7 i Then

") =Epo [mily]

Thus, in the E-Step, we need only compute the expectation of

wherem, ; = Eff:l 1., (r)=; is the number of packets (out of N
all the packet pair measurements) that experienced a delay of =Epo Z Lz m=5tly
on link 7; here,1 4 denotes théndicator functionof the event

A. Therefore, we have N

= Epo [z 0= 9]

(alp) o [T w7y~ b=
i i
=Y Epo [ o=ilyi(k), y2(k
and if them, ; were available, then the MLE o¢f; ; would be ; P [Leiw=in o (8 9a(®)]
simply
o —Zp” B) =il (B),2(0). (@)
Pij =g (8)
> Mmik Thus, the conditional expectationaf can be com-
= puted by determining the conditional probabilities
Similarly, given them;_;, we could directly apply the MMPLE above for each packet pair measurement. Afast mes-
described above (see [17], [18], and [37] for implementation sage-passing algorithm for this calculation is de-
details). scribed in the next section.

The EM algorithm is an iterative method that constructs and M-Step: In the penalized case (7), apply the MMPLE algo-
utilizes acomplete datdikelihood function to maximize the rithm descnbed In Section I1I-B with the conditional
original likelihood function. By suitable modification, it can be expectation (")} in place of {m; ;}. In the case
used to maximize a penalized log-likelihood objective function O_f unpenahzed m%z()m?um likelihood estimation,
like (7), while preserving the advantage of #1éK) computa- simply substitute 2, /} in place of {m; ;} in (8).

tional simplicity of the MMPLE technique. ) .

When a modified EM algorithm is used to maximize a pd?- Fast Fourier Transform-Based EM Algorithm
nalized log-likelihood function, it alternates between computing The expectation step of the EM algorithm poses the major
the conditional expectation of the complete data log likelihogabrtion of the computational burden of the optimization task. It
given the observationg and maximizing the sum of this ex-can be performed using a message passing (or upward-down-
pectation and the imposed complexity penalgpénp)) with  ward) procedure [38]. The message passing procedure is based
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Fig. 5. Comparison between true pmfs (solid) and estimated pmfs (dashed). Top panel shows true pmf and MMPLE (calculated using 512 bins); bottom panel
shows true pmf and MLE (calculated using 16 bins). Sixteen bins is determined as the bin size at which the MLE obtains the best fit. (a) Link 5. (b) Link 7. (
Link 9.

on a factorization of the likelihood function. According to (9),

our task for each measurement in tttl iteration of the EM al-

gorithm is to computg”) (z; = j|y1,2) (we have dropped the 15

measurement indek for notational ease). In the 1980s, Pearl

[39] and Spiegelhalter [40] independently developed the mes-

sage passing methodology, which is an exact probability prop-

agation algorithm for inferring the distributions of individual

variables in singly connected graphical models (factor graphs). 0.5

The basic idea of the algorithm is that each node in the graph

propagates its information (a measurement or current pmf es- o

timate in this case) to every other node. Each node then com- s 8 7 8

bines all the messages it receives to compute the distribution-gf 6. 1., error criterion averaged over 25 simulations (means and standard

its variable. deviation) for link 5, 7, and 9. Solid line is MMPLE, dashed line is MLE (16
Fig. 4 depicts an example of the type of graphical model thgps). dotted line MLE (64 bins).

arises in the delay inference procedure. This factor graphis used

for evaluation of the pmf estimates in the- 1th iteration of the tiplied together, and the resultant message is passed up. The

EM algorithm. In this factor graph, the nodes labededorre- convolution procedure continues up the shared branch until the

spond to the nodes of the tree that are involved in measuremerdt node is reached. In the downward stage, the initial mes-

to nodes 6 and 7 in the example network. The nq:éréscontain sage from the root contains the information that the delay at the

the delay pmf estimates that were generated in the previous it@et is zero: It is a delay pmf with one in the zero bin and zeros

ation of the algorithm. The nodes labeledepresent theom- elsewhere. Messages are passed down, with convolution exactly

pletedata, that is, the unobserved individual link delays. as before. At the branching node, the message passed down
We will briefly illustrate the operation of message passintp nodec; ¢ is the product of the downward message from

algorithm by considering how it behaves when acting on a meznd the upward message fregy;. At the end of the two stages,

surement made by a packet pair destined for nodes 6 and 7hia each node; multiplies the upward message, the downward

the example network. The message passing algorithm can benissage, and its distribution from the previous EM iteration to

vided into two stages. In the upward stage, starting at the Iea\mlstainpg”“)(zi = jly1(k), y2(k)).

information is passed via messages from node to node until thed straightforward implementation of this message passing

root is reached. In the downward stage, information from thocedure, as first proposed in [4], has a computational com-

root is passed via messages from node to node until the leapkeity of O( LK %) per measurement and iteration of EiMhere

are reached. Individual nodes then combine the upward ahds the maximum path length in the network, afAdis the

downward messages they received to generate marginal pmisnber of bins. Recall thak is the smallest power of two

for their values. greater than or equal t&. For each measurement, the act of
At a leaf node ¢ or d;) in Fig. 4, the upward message ispassing a message within the algorithm involves the evaluation

simply a delay pmf that has a one in the bin of the delay meaf a number of summations, which can be cast as convolutions.

surement being processed and zeros everywhere else. TheTiqese convolutions involve vectors of maximum lendtk,

ward message frorgs is the previous pmf estimate for link 6. where L is the maximum path length in the network. Imple-

At nodec; ¢, this message is convolved with the message fromentation of the convolutions in the Fourier domain reduces the

the leaf nodels, and the result is passed up to the branchingomputational complexity from(LK?) to O(LK log K) per

point d>. A similar process occurs from leaf node 7. At nodeneasurement and iteration of EMhis reduction can be sub-

d», the upward messages from the two lower branches are mathntial whenV (and henceX) is reasonably large.

9
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Fig. 7. Larger tree-structured network topology used for ns-2 simulation experiments. Source (node 0) transmits to 20 receivers (nodes 19p8&)slimk
megabits per second are shown next to the links.
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Fig. 8. Comparison between true pmfs (solid) and estimated pmfs (dashed). Top panel shows true pmf and MMPLE (calculated using 512 bins); middle panel
shows true pmf and MLE (calculated using 64 bins); bottom panel shows true pmf and MLE (calculated using 512 bins). 512 bins is determined asdhe bin size
which the MLE obtains the best fit. (a) Link 1. (b) Link 20. (c) Link 31.

IV. SIMULATION EXPERIMENTS 3.5
In order to verify the performance of our estimation method- St
25

ology, we conducted ns-2 [19] simulation experiments using the
network depicted in Fig. 2. Interior links in the network have 2
higher capacity (5—-10 Mb/s) and propagation delay (50 ms) than

the edge links (0.5-2 Mb/sec and 10 ms). Queues are first-in 1
first-out (FIFO) (droptail) with space for 35 packets. Node 0 !
generates a 19.2-Kbit/s probing stream comprised of user data 0.5 MMPLE
protocol (UDP) packet-pair probes (60 bytes each). Packet-pair 0

sending times are generated according to a Poisson process; the 19 21 23 25 27 29 31 33 35 &7

mean time-spacing is 50 ms. The probe-streamrequires less tHBnQ L, error criterion averaged over 20 simulations (means and standard

1% of any link’s capacity. Background traffic is composed of @eviation) for some terminating links. Solid line is MMPLE, dash-dot line is

mixture of long-lived data-source TCP (FTP) connections, eXLE (512 bins), and dotted line is MLE (256 bins).

ponential on-off sources using UDP, and multiple short-duration

TCP connections. Averaged over the simulations, link utilizaxf every packet at each queue. A “true” pmf for each link was

tion ranges between 10 and 60%, and loss rates ranged frofiet@ned by calculating delays from queue lengths and link ca-

to 2%; typical values for certain real networks. pacities, quantizing and forming a histogram. When generating
The network was simulated for multiple 2-min measurdhis true pmf, so much data is available that the quantization

ment periods; from within each measurement period, 25can be very fine (constructing an excellent estimate of the delay

(inference period) was isolated for analysis. This time duratiatensity) without affecting estimation stability.

corresponds to 500 packet-pairs (assuming no probes are lost)n Fig. 5, we show the results of one experiment, comparing

Throughout the inference period, queue lengths in the netwdhe true pmfs to the nonparametric MMPLE estimator and the

were determined at a fine time scale by monitoring the arrivalLE estimator of [4] using a 16-bin discretized pmf (16 bins
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Fig. 10. CDF estimates obtained from direct measurement (solid) to the tomographic one (dotted). (a) Link 1. (b) Link 20. (c) Link 31.

was found to give the best performance among unpenalized estotal measurements remains unchanged while the number
timators; see discussion below). We display results for the lowafr receivers increases, the number of measurements obtained
bandwidth links because for our experimental set-up, queuifay each link reduces. In Figs. 8 and 9, we show the results
delay was concentrated in these links. We display the resultsamid performance of the algorithm. Fig. 10 compares the delay
representative links that provide a meaningful indication of pecumulative distribution function (cdf) obtained by estimation
formance. There is substantial mass in the tails of these pnifased on direct measurement with the delay cdf estimated
and we can evaluate how well the pmf estimates generatedusjng the MMPLE technique and the probe measurements for
our proposed methodology estimates match the tails; netwerkepresentative link in the network.
performance hinges critically on the tail probabilities of queues When the amount of probing that can be performed is lim-
[41], [42]. In the higher bandwidth links, there is much less ma#ied, we believe that the most substantial source of error is the
in the pmf tails Fig. 8(a). For these links, both the MLE anihtrinsic variability in probe measurements. Another potential
MMPLE estimates match the true pmf, where probability massurce of error is the discrepancy between the delays experi-
is concentrated, but there is insufficient information to closegnced by the two packets in each pair on their common path.
match the tails. We calculated the MLE for a variety of bin sizé&/e therefore examined the extent and effect of the delay dis-
but show the bin size that achieved the best fit to the true pmf @repancy; with 512 bins, the overwhelming majority of the dis-
this case 16 hins). The nonparametric estimator was calculaggepancy was concentrated in 0-3 bins, with a maximum value
from K = 512 bins. of 16 bins. The effect of these discrepancies on the quality of
In Fig. 6, we plot the magnitude of the; error norm be- the estimates is relatively minor when such a small amount of
tween the true pmf and the MMPLE for the links in the networkjata is available for inference. If we directly measure the delays
as averaged over 25 simulations. The results for the MLE fekperienced by probes on each link (which can be done in our
medium (64 bins) and large (16 bins) bin sizes are also showsimulation), the estimates we obtain are very similar to those
The L, error norm is simply the sum of the absolute differencebtained by our tomographic procedure.
between the estimated pmf and the true pmf overfHans. As
discussed in [14] and [43], the, error criterion is a common
measure of the performance of a density estimate. The advan-_, . . .
In this paper, we introduce a new nonparametric methodology
tage of such as a measure, as opposed to a mean-squared Frror

criterion, is that more attention is paid to the tails of the distrio" hetwork delay tomography based on unicast end-to-end

butions. It also enjoys several theoretical advantages over ot asurement. Our approgch takes advantage of the correla_tlon
measures [43]. etween the delay experienced by back-to-back packet pairs.

As is evident from the two figures, the MMPLE techniquéNe pose the network tgmography problem as a maximL_Jm
generates estimates that are smooth, close fits to the true pmf&§Ralized likelihood estimation and develop a fast Fourier

order to introduce some degree of smoothness, MLE estimaf@sform-based EM algorithm for computing our estimates.

o 5 .
must be calculated using a large bin size, resulting in an inabilitj?® complexity is reduced t0 (M N*-logN'), whereM is the

to capture the finer details of a pmf. number of links in the tree, andl is the number of probes.

In order to illustrate the performance of the algorithm in One of the key features of the framework are its flexibility
a larger network, we also simulate a 20-receiver scenario, ¢2e ability to capture fine details and smooth regions) and the
shown in Fig. 7. The packet probing rate from the source, gdroduction of a complexity penalization that allows smooth,
well as the composition of background traffic, remains th@ccurate estimates to be generated even when the amount of data
same as in the first scenario. The link loss rates range fragvery small. The basic MMPLE framework developed here
0 to 2%, and the link utilization varies between 0 and 609%pould be extended to the multicast approach suggested in [6]
averaged over 20 simulations. We use the same infereret®l may also be applicable in time-varying contexts like those
window of 25 s. If we assume there is no packet loss, theonsidered in [4] and [5]. We demonstrate the accuracy of the
there are a total of 500 packet pairs. However, as the numiestimation procedure using network-level simulator ns-2.

V. CONCLUSIONS
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