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ABSTRACT

Thesubstantialoverheadof performingglobalInternetmonitoring
motivatestechniquesfor inferring spatially localizedinformation
about performanceusing only host-based,end-to-endmeasure-
ments.In thispaper, wepresentanovel methodologyfor inferring
queuingdelay distributions acrossinternal links in the network
basedsolelyon unicast,end-to-endmeasurements.A key feature
of our new approachis thatit is nonparametric,meaningthatno a
priori limit is placedon thenumberof unknown parametersused
to modelthe delaydistributions. The nonparametricapproachis
requiredin orderto accuratelyestimatethewide variety of inter-
nal delaydistributions.Themethodologyis formulatedaccording
to a recentlyproposednonparametric,wavelet-baseddensityesti-
mationmethodin combinationwith anexpectation-maximization
optimizationalgorithmthatemploysanovel fastFouriertransform
implementation.Weperformnetwork level ns simulationsto ver-
ify theaccuracy of theestimationprocedure.

1. INTRODUCTION

Spatiallylocalizedinformationaboutnetwork performanceplays
animportantrole in isolationof network congestionanddetection
of performancedegradation.Routingalgorithms,servicingstrate-
gies,securityprogramsandperformanceverificationcanbenefit
from monitoringtechniquesthat reportsuchinformation. Moni-
toring canbeperformedinternally, but it is impracticalto directly
measuretraffic characteristicsat all internaldevicesfor a number
of reasons[1]. This haspromptedseveral groupsto investigate
methodsfor inferring internalnetwork behavior basedon “exter-
nal” end-to-endnetwork measurements[1, 2, 3, 4, 5, 6, 7, 8]. This
problemis oftenreferredto asnetwork tomography.

Queuingdelaysareoneof themostcritical performancechar-
acteristics.Optimizing communicationnetwork routing andser-
vice strategies requiresknowledgeof the queueingdelay at dif-
ferentpointsin thenetwork. Measuringend-to-end(sourceto re-
ceiver)delaysusingtimestamps[6, 9, 10] is relatively easyandin-
expensive in comparisonto internalmeasurement,althoughthere
areof coursemeasurementissuesthatmustbeaddressed.It is nat-
ural to considerthefollowing problem:from end-to-endmeasure-
mentscanwe resolve the queueingdelayexperiencedat internal
points in the network? More precisely, the goal of the network
tomographyproblemconsideredin this paperis to estimatethe
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probability distribution of the queueingdelayon eachlink based
on end-to-endpacket pair measurements.

In this paper, we describea nonparametric framework for the
inferenceof internaldelaydistributionsbasedon unicastend-to-
end measurement.By nonparametricwe meanthat no a priori
limit is placedon thenumberof parametersor degreesof freedom
usedto describetheobserveddelaymeasurements.Most work to
datein network tomographyis basedon parametric models. A
nonparametricapproachbasedon cumulantgeneratingfunctions
wasproposedin [11], but this approach,unlike ours,requiresin-
ternal measurements.Parametricmodelsassumethat the mea-
suredtraffic datadependson a finite numberof parameters.For
example,earlierwork in delaydistribution estimation,including
our own, hasbeenbasedon discretized(or quantized)delaymea-
surements,with internal delay distributions modeledas discrete
probability massfunctions(pmfs) [1, 2, 3]. In this context, the
parametersaresimply theprobabilitiesassociatedwith eachpmf.
It hasbeenour experience,however, that no sufficiently simple
parametricmodelis capableof portrayingthewide varietyof in-
ternaldelaydistributionsobservedin practice,thusmotivatingthe
considerationof nonparametricor continuousmodels. We com-
pareparametric,pmf-baseddelaydistribution estimatorswith the
new nonparametricapproachin network simulationexperiments,
andfind that the nonparametricmethodoffers significantlysupe-
rior performance.

Theremainderof thepaperis structuredin thefollowing man-
ner. In Section2 we describethemeasurementframework, mod-
eling assumptionsandimplementationrequirements.In Section3
we describetheinferencemethodology, detailingthenonparame-
teric estimationprocedureandanexpectation-maximization(EM)
algorithmusedto computetheestimators.In Section4 wedescribe
theresultsof ns experimentsdesignedto exploretheperformance
of themethodology. In Section5, we make someconcludingre-
marksandindicateavenuesof futureresearch.

2. MEASUREMENT FRAMEWORK

Throughoutthis paper, we concentrateon networkscomprisedof
a singlesendertransmittingmeasurementprobesto multiple re-
ceivers.Thereis no difficulty extendingtheapproachto measure-
mentsmadeat multiple sources,althoughcaremustbetakenthat
measurementsaresufficiently separatedfor independenceassump-
tionsto hold. We assumethatthetopologyis fixedthroughoutthe
measurementperiod,but straightforward extensionscanaccount
for changesin topologyover coarsetime scales.

For thenetworksweconsider, standardnetwork routingproto-
colsproducea tree-structuredtopology, with thesource at theroot
andthereceivers at theleaves.A network with six receiversis de-



pictedin Fig. 1. Thenodesbetweenthesourceandreceiversrep-
resentinternalrouters. Connectionsbetweenthe source,routers,
andreceiversarecalled links. Eachlink betweenroutersmay be
a direct connection,or theremay be “hidden” routers(whereno
branchingoccurs)alongthelink thatarenot explicit in our repre-
sentation.We adoptthenotationthat link � connectsnode � to its
parentnode������� .
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Fig. 1. Tree-structurednetwork topologyusedfor ns simulation
experiments.Source(node0) transmitsto 6 receivers (nodes6-
11). Link speedsin Mb/s are shown next to the links. Link �
connectsnode� to its parentnode�	����� , e.g.link 9 connectsnodes
5 and9.

The basicmeasurementand inferenceidea is quite straight-
forward.Supposetwo closelytime-spaced(back-to-back)packets
aresentfrom the sourceto two differentreceivers. The pathsto
thesereceiverstraversea commonsetof links, but at somepoint
the two pathsdiverge (as the tree branches). The two packets
shouldexperienceapproximatelythe samedelayon eachshared
link in their path. This facilitatesthe resolutionof the delayson
eachlink. Wecollectmeasurementsof theend-to-enddelaysfrom
sourceto receivers,andweindex thepacketpairmeasurementsby
���������������

. For the


-th packet pair measurement,let ����� 
 �

and ����� 
 � denotethetwo end-to-enddelaysmeasured.Theorder-
ing


and � is arbitrary; the indicesare randomlyselectedwith

no dependencetheorderin which thepacketsweresentfrom the
source.Sinceweareinterestedin inferringqueuingdelay, ourfirst
stepis to extracttheminimumdelay(propagation+ transmission)
on eachmeasurementpath. This is estimatedasthe smallestde-
lay measurementwe acquireon thepathduring themeasurement
period.

To illustratethebasicideasbehindour inferencemethodology
in its simplestform, supposethat we sendmany packet pairs to
receivers6 and7 in Fig. 1 andmeasurethedelaysexperiencedby
eachpacket. Eachmeasurementconsistsof a pair of delays,one
beingthedelayto receiver 6 andtheotherthedelayto receiver 7.
Fromthesemeasurements,collecteventswhere‘ � ’ delay(a delay
in bin zero) is measuredat receiver 6. Now, assumingthat the
delayis thesamefor bothpacketson thecommonlinks (1 and2
in this case),any “additional” delayobserved to the receiver at 7
canbe attributedto link 7 alone. We canthenbuild a histogram
estimateof the delaypmf for link 7. We describethe complete,
large-scale,EM algorithminferenceprocedurein Section3.

Thereareseveralassumptionsin the framework thatarewor-
thy of discussion.Firstly, we assumespatialindependenceof de-
lay. Delayonneighboringlinks is generallycorrelatedto agreater
or lesserextent dependingon the amountof sharedtraffic. In
thepresenceof weakcorrelation,our framework is ableto derive

goodestimatesof thedelaydistributions.As thecorrelationgrows
stronger, we seea gradualincreaseof bias in the estimates.We
alsoassumetemporalindependence(successive probesacrossthe
samelink experienceindependentdelays).Temporaldependence
wasobserved in [1] andin our experiments.As in [1], the max-
imum likelihood estimatorwe employ remainsconsistentin the
presenceof temporaldependence,but theconvergencerateslows.
Finally, our framework hingeson an assumptionthat packets in
a pair experiencea commondelayon sharedlinks. In actualIn-
ternetexperimentswe have foundthatany discrepanciesbetween
delaysareveryslightandthuswill notsignificantlyeffect theper-
formanceof ourmethodology[12].

3. DELAY DISTRIBUTION INFERENCE

We commencethedescriptionof our inferenceframework by for-
malizingourmeasurementandmodelingnotation.Weassumethat
thesemeasurementsareindependentandidenticallydistributedac-
cordingto a continuousdelaydensity� �!�#"$� , wherewithout lossof
generalitywe assumethat "&%(' � �)+* (for convenienceof exposi-
tion we take the maximumdelay to be unity). Definea discrete

pmf via � ��, - �/.	0 -�1 ��2#3�40 - 253+4 � � �#"$�768" , 9 � � �����)���!:<;=
, where:

is the smallestpower of two greaterthanor equalto
� � . Let�>� �@? � �A, B ���)��� �>�A, 4DCE��F denotethe probabilitiesof a delay of� �)G���)�����$:H;I

time units, respectively, on link � . We denote
the packet pair measurementsJ=K ? ����� 
 � � ���L� 
 � FLMN�O � . In gen-
eral,only a relatively smallamountof datacanbecollectedover
theperiodwhendelaydistributionscanbeassumedapproximately
stationary. A naturalestimatewould be themaximumlikelihood
estimates(MLEs) of PQK ? �>� F , the collectionof all delaypmfs.
Under the assumptionof spatialindependence,the likelihoodof
eachdelaymeasurement

? �R��� 
 � � ���G� 
 � F , denotedS7��JUT PV� , is pa-
rameterizedby a convolution of the pmfs in the path from the
sourceto receiver. We have developedan EM algorithm [2] to
computeMLEs for the parametricinstanceof this problem(i.e.,
when

:XWY�
).

In this paper, our goal is nonparametricdelaydensityestima-
tion on eachlink. This is accomplishedby choosingthe number
of binsto beequalto or largerthanthenumberof measurements,
andthustheproblemis ill-posedandtheMLE tendsto over-fit to
the probedata. This resultshighly variableestimatesthat do not
accuratelyreflectthedelaydistribution of thetraffic at large. One
way to reducethis irregularity is to maximizea penalizedlikeli-
hood.Wereplacethemaximum(log) likelihoodobjectivefunctionZ �[P\� �^]`_�a S���JUT P\� with anobjective functionof theform:Z �[Pb� ; �>c)db�[Pb� � (1)

where

pen� ? � ��, - F �VKQe �

� ][_Ga � � � �Ufhg � � (2)

where
� � denotesthenumberprobepacketspassingthroughlink �

and gi� denotesthenumberof non-zeroHaarwaveletcoefficients
in thedelaypmf of link � . This wavelet-basedschemeis calleda
MultiscaleMaximumPenalizedLikelihoodEstimator(MMPLE),
and it was proposedin [13] for conventional(non-tomographic)
probability densityestimation. It penalizesthe irregularity and
complexity of the pmf — the larger the value of g � , the more
“bumps”in thepmf. Therearetwo importantfeaturesof theMM-
PLE: (1) the global maximizercanbe computedin jk� : � oper-
ations;(2) the MMPLE is nearlyminimax optimal in the rateof
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Fig. 2. Comparisonbetweentruepmfs(solid) andestimatedpmfs(dashed).Top panelshows truepmf andMMPLE (calculatedusing512
bins); bottompanelshows truepmf andMLE (calculatedusing16 bins). 16 bins is determinedasthebin sizeat which theMLE obtains
thebestfit. (a) Link 5. (b) Link 7. (c) Link 9.

convergenceover a broadclassof functionspaces.In all resultsin
this paperwe employ a translation-invariant versionof theMM-
PLE, in which multiple MMPLEs arecomputedwith

:
different

shiftedversionsof the Haarwavelet basisandthe resultingesti-
matesareaveraged.This producesa slight improvementover the
basicMMPLE and can be efficiently computedin jk� :Q]`_�al: �
operations.

Thepenalizedlikelihoodfunctionin (1) cannotbemaximized
analyticallydueto theconvolutionalrelationshipbetweenlink de-
lay pmfsandend-to-endmeasurementsJ . TheEM algorithmis an
iterative proceduredesignedto maximize(1) that takesadvantage
of the jk� : � computationalsimplicity of theMMPLE technique.

Thefirst stepin developingan EM algorithmis to proposea
suitablecomplete data quantitythatsimplifiesthelikelihoodfunc-
tion. Let m � � 
 � denotethe delayon link � for the packets in the


-th pair. Let no� �X? m��$� 
 � F and n �X? np� F . The link delays n
arenot observed,andhencen is calledtheunobserved data. De-
fine the complete data qrK ? J � n F . Note that the completedata
likelihoodmaybefactorizedasfollows S7�AqsT P\� �ut ��JsT nv��wp�AnxT Pb� �
where

t
is the conditionalpmf of J given n (which is a point

massfunction since n determinesJ ), and w is the likelihoodofn . The factorizationshows that S7�AqyT P\�{z|wp�AnxT P\� , since
t ��JUT nv�

doesnot dependon the parametersP . Next note that the likeli-
hood wp�AnxT PV� �I} �A, - � ~U�A� ��A, - �

where ����, -�KI� MN�O �v�R� � 0 N 2 O - is the
numberof packets(out of all the packet pair measurements)that
experienceda delayof 9 on link � ; here ��� denotesthe indicator
function of theevent � . Therefore,we have

Z �[Pb�Vz e ��, - ����, - ]`_�a � �A, - � (3)

If the �h�A, - wereavailable,thenwe coulddirectly apply theMM-
PLE describedabove.

The EM algorithmis an iterative methodthat usesthe com-
plete data likelihood function to maximize the penalizedlog-
likelihoodfunction. Specifically, theEM algorithmalternatesbe-
tweencomputingtheconditionalexpectationof thecompletedata
log likelihoodgiven the observations J andmaximizingthe sum
of thisexpectationandtheimposedcomplexity penalty(

;
pen�[Pb� )

with respectto P . Noticethatthecompletedatalog likelihood(3)
is linearin � . Thus,in theE-Stepwe needonly computetheex-

pectationof � �r? � �A, - F . Thiscanbeefficiently performedusing
a messagepassing(or upward-downward)procedure[14]. Unfor-
tunately, astraightforwardimplementationof themessagepassing
procedure,asproposedin [2, 3], hasa computationalcomplexity
whichis jk��� :�� � , where� is thenumberof links in thetreeand:

is thenumberof bins. This is impracticalin our nonparametric
settingsince

:
isnotfixed,but ratherincreasesin proportionto the

numberof measurements.We usea novel, fastFourier transform
basedimplementationwhich is jk��� : � log

: � , a tremendousre-
ductionin complexity when

:
is large.For moredetailssee[12].

In theM-Step,weapplytheMMPLE algorithmof [13] to thecon-
ditional expectation� . TheEM algorithmtypically convergesin
10 to 15 iterations.

4. SIMULATION EXPERIMENTS

In order to verify the performanceof our estimationmethodol-
ogy, we conductedns simulationexperimentsusingthe network
depictedin Fig. 1. The network wassimulatedfor multiple two
minutemeasurementperiods. This time durationcorrespondsto
500 packet-pairs. Throughoutthe measurementperiod, queue
lengthsin the network were determinedat a fine time scaleby
monitoring the arrivals of every packet at eachqueue. A “true”
pmf for eachlink was formedby calculatingdelaysfrom queue
lengthsandlink capacities,quantizingandforming a histogram.
Whengeneratingthis truepmf, somuchdatais availablethat the
quantizationcanbe very fine (constructingan excellentestimate
of thedelaydensity)withoutaffectingestimationstability.

In Fig. 2, we show the resultsof one experiment,compar-
ing thetruepmfsto thenonparametricMMPLE estimatorandthe
MLE estimatorof [2] (theestimationtechniquein [1] alsoreturns
theMLE, althoughit is devisedin a differentsetting).We display
resultsfor the lower bandwidthlinks becausefor our experimen-
tal set-up,queueingdelaywasconcentratedin theselinks. Thereis
substantialmassin thetailsof thesepmfsandwecanevaluatehow
well the pmf estimatesgeneratedby our proposedmethodology
estimatesmatchthe tails. In the higherbandwidthlinks, thereis
muchlessmassin thepmf tails. For theselinks, boththeMLE and
MMPLE estimatesmatchthe truepmf whereprobability massis
concentrated,but thereis insufficient informationto closelymatch
the tails. We calculatedthe MLE for a variety of bin sizes,but



show thebin sizethatachievedthebestfit to thetruepmf (in this
case16 bins). The nonparametricestimatorwascalculatedfrom
512bins.
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Fig. 3.
Z � errorcriterionaveragedover25simulations(meansand

standarddeviation). Solid line is MMPLE, dashedline is MLE (16
bins),dottedline MLE (64 bins).

In Fig. 3, weplot themagnitudeof the
Z � errornormbetween

thetruepmf andtheMMPLE for thelinks in thenetwork, asaver-
agedover 25simulations.Also shown aretheresultsfor theMLE
for medium(64 bins)andlarge (16 bins)bin sizes.The

Z � error
normis simplythesumof theabsolutedifferencebetweentheesti-
matedpmf andthetruepmf over theK bins(MLE estimatesmade
with fewerbinsareappropriatelyconverted).As discussedin [15],
the

Z � errorcriterionis a commonmeasureof theperformanceof
a densityestimate.Theadvantageof sucha measureasopposed
to a mean-squarederror criterion is thatmoreattentionis paid to
the tails of thedistributions. It alsoenjoys several theoreticalad-
vantagesover othermeasures[15].

As is evident from the two figures, the MMPLE technique
generatesestimateswhich aresmooth,closefits to the truepmfs.
In orderto introducesomedegreeof smoothness,MLE estimates
mustbecalculatedusinga largebin size,resultingin an inability
to capturethefiner detailsof a pmf.

Whentheamountof probingthatcanbeperformedis limited,
we believe thatthemostsubstantialsourceof error is theintrinsic
variability in probemeasurements.Anotherpotentialsourceof er-
ror is thediscrepancy betweenthedelaysexperiencedby the two
packets in eachpair on their commonpath. We thereforeexam-
inedtheextentandeffect of thedelaydiscrepancy; with 512bins,
theoverwhelmingmajorityof thediscrepancy wasconcentratedin
0-3 bins, with a maximumvalueof 16 bins. The effect of these
discrepancieson the quality of the estimatesis relatively minor
whensucha smallamountof datais availablefor inference.If we
useour queuemonitoringto constructanartificial setof measure-
ments(therebyproviding idealpacket-pairprobemeasurementsto
our algorithms),theestimateswe obtainarevery similar to those
we reporthere.

5. CONCLUSIONS

We have describeda nonparametric framework for the inference
of internaldelaydistributions basedon unicastend-to-endmea-
surement.Thekey featuresof theframework areits flexibility (the
ability to capturefine detailsandsmoothregions)and the intro-
ductionof a complexity penalizationthatallows smooth,accurate

estimatesto be generatedeven when the amountof datais very
small.ThebasicMMPLE framework developedherecouldbeex-
tendedto themulticastapproachsuggestedin [4] andmayalsobe
applicablein time-varyingcontexts like thoseconsideredin [2, 3].
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