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ABSTRACT

Thepaperpresentsa new methodfor characterizingcommunica-
tion network performancebasedsolely on passive traffic moni-
toring at the network edge. More specifically, we devise a novel
expectation-maximization(EM) algorithmto infer internalpacket
lossrates(at routersinsidethenetwork) usingonly observedend-
to-end(sourceto receiver) lossrates.Themajorcontributionsof
this paperarethree-fold:we formulatea passive monitoringpro-
cedurefor network lossinferencebasedon end-to-endpacket pair
observations,we develop a statisticalmodelingandcomputation
framework for inferring internalnetwork losscharacteristics,and
we evaluatetheperformancewith realisticnetwork simulations.

1. INTRODUCTION

In large-scalenetworks, end-systemscannotrely on the network
itself to cooperatein characterizingits own behavior. This has
promptedseveralgroupsto investigatemethodsfor inferring inter-
nal network behavior basedon end-to-endnetwork measurements
[1, 2]; theso-callednetworktomographyproblem.However, ear-
lier methodsreliedonmulticastprotocols, in whichprobepackets
aresentfrom onesourceto multiplereceiversin asinglesendoper-
ation[3]. Althoughmulticastnetwork tomographyshowspromise,
many networksdonotsupportmulticast,limiting thepracticalutil-
ity of suchschemes.Moreover, routerstreatthemulticastpackets
differentlyfrom unicastpackets(whichaccountfor thevastmajor-
ity of network traffic), andthereforeinferencesdrawn from mul-
ticastmeasurementsmaypoorly reflecttheactualnetwork perfor-
manceobservedby mosttraffic.

In this paper, we describea new methodologyfor network to-
mography(specifically, inferring packet lossratesat internalnet-
work routers)basedon passivemonitoring of unicasttraffic (as
opposedto active probing). This methodologybuilds on our ear-
lier work in unicastnetwork tomography[4], and is alsorelated
to morerecentefforts to apply multicasttomographytechniques
to unicastmeasurementsbasedon active probing [5]. In uni-
castprotocols,eachpacket is sentfrom thesourceto a singlere-
ceiver. Most traffic in the Internetis unicastin nature,soour ap-
proachis broadlyapplicable.Furthermore,in contrastto multicast
techniqueswhich rely on active probing,passive unicastmonitor-
ing avoids the problematicissuesassociatedwith active probing
(e.g., overburdeningthenetwork with probes).Thus,passive uni-
castnetwork tomographyis scalableto very largenetworksandit
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shouldprovide a moreaccuratedescriptionof thenetwork perfor-
mance.Throughouttheremainderof thepaperwework with “suc-
cess”rates(ratesof non-loss)insteadof lossrates.This provides
a moreconvenientmathematicalparameterizationof theproblem,
andtherateof lossis simplyoneminustherateof success.

Thepaperis organizedasfollows. In Section2, we introduce
the basicunicastnetwork tomographyproblemandthe technical
issuesinvolved. In Section3, we formally defineour lossmod-
eling assumptionsandpassive measurementframework. In Sec-
tion 4 we poseunicastnetwork tomographyasa maximumlikeli-
hoodestimationproblem,andwe proposea novel EM algorithm
for computingmaximumlikelihoodestimatesof internalsuccess
(or loss)rates. In Section5, we examinethe performanceof our
methodsthroughsimulation,andconcludingremarksaremadein
Section6.

2. UNICAST TOMOGRAPHY

We considera scenarioin which a numberof receiversarecon-
nectedto a single sourcewith somecommonlinks in the paths
(extensionsto multiple sourcesare possible). In this case,the
network topology (from the perspective of the source)is a tree-
structure.Figure1 depictsanexampletopologywith source(node
0) andsevenreceivers(nodes5 through11). Also shown arefour
internalrouters(nodes1 through4). We assumethatwe areable
to measurenetwork traffic only at theedge;that is, we candeter-
minewhetheror not a packet sentfrom thesourceis successfully
receivedby oneof thereceivers.This typeof confirmationcanbe
obtainedvia TransmissionControlProtocol’s (TCP)acknowledg-
ment system[3], for example. We alsoassumethat the routing
tableis fixed for thedurationof themeasurementprocess,which
ensuresthetree-structuredtopology.

The goal of this work is to estimatethe lossratesassociated
with eachindividual link (betweentwo routers)in the network.
Restrictingourselvesto edge-basedmeasurement,wecanmeasure
thenumbersof packetssentto andreceivedby eachreceiver, pro-
viding us with a simplemeansof estimatingthe ratesof success
alongeachpath(from sourceto receiver). Unfortunately, thereis
no uniquemappingof the pathsuccessratesto the successrates
on individual links (betweenrouters)in the path. To overcome
this difficulty, we proposea methodologybasedon measurements
madeusingback-to-backpacket pairs. Thesemeasurementspro-
vide anopportunityto collectmoreinformative statisticsthatcan
helpto resolve thelinks.

Thebasicideais quite straightforward. Supposetwo closely
time-spaced(back-to-back)packets are sent to two different re-
ceivers. Thepathsto thesereceiverssharea commonsetof links
from thesourcebut laterdiverge. If oneof thepacketsis dropped
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Fig. 1. Tree-structuredgraph representinga single-source,
multiple-receiver network. Node0 is thesource,nodes1-4 inter-
nal routers,andnodes5-11receivers.Besideeachlink weindicate
thecapacityin megabitspersecond.

andtheothersuccessfullyreceived, then(assumingtotal correla-
tion of lossesoncommonlinks) onecaninfer thatthepacket must
have beendroppedon oneof theunsharedlinks. This enablesthe
resolutionof losseson individual links. Collectingmeasurements
from anassortmentof suchback-to-backpacket pairs(sentto dif-
ferentcombinationsof receivers)allows us to resolve the losses
occurringon all links in thenetwork. Thekey to this approachis
the exploitation of the correlationbetweenpacket-pair losseson
commonsubpaths. In practice,however, this correlationis not
perfect,andthereforemoresophisticatedstatisticalmodelingand
inferencestrategiesarenecessary, asdescribednext.

3. LOSS MODELING AND MEASUREMENT

Herewedefinetherelevantparametersin tomographiclossratees-
timation,describethe passive measurementscheme,anddevelop
statisticalmodelsrelating thesemeasurementsto the parameters
of interest.For individual packet transmissions,we assumea sim-
ple Bernoulli lossmodelfor eachlink. Theunconditionalsuccess
probabilityof link 
 (thelink into node
 ) is definedas����� Pr(packet successfullytransmittedfrom ����
�� to 
 ) �
where����
�� denotestheindex of theparentnodeof node
 (thenode
above 
 -th nodein thetree;e.g., referringto Figure1, ��������� � ).
A packet is successfullysentfrom ����
�� to 
 with probability ��� and
is droppedwith probability �"! � � . We modelthe lossprocesses
onseparatelinks asmutuallyindependent.

If two, back-to-backpacketsaresentfrom node ����
�� to node
 , thenwe definetheconditionalsuccessprobabilityas#$�%� Pr(1stpacket ����
��'&(
*) 2ndpacket ����
��+&,
 ) �
where ����
��-&.
 is shorthandnotation denotingthe successful
transmissionof a packet from ����
�� to 
 , and“first” and“second”
refer to the temporalorderof the two packets. That is, giventhat
the secondpacket of the pair is received, then the first packet is
receivedwith probability #$� anddroppedwith probability �/! #$� .
We expectthat # � shouldbe very closeto one(if the interarrival
time betweenthe two is small). In general,the actualvalue of#$� dependson the numberof events(otherarrivals andservices)

betweenthe arrivals of the two packetsunderconsideration.An
arrival event incrementsthequeuelengthby one.A serviceevent
decrementsthe length by one. We also assumethat the service
eventsare independentof the length (e.g. DropTail [6]). De-
notethenumberof interveningeventsby 0 , andlet #'13254� denotethe
specificvalueof # � in this case. Then # 13254� satisfiesthe two key
conditions:(a) # 13674� �8� , and(b) # 13254� 9 � � � for all 0 . These
conditionshold for any finite non-adaptive queue,independentof
thetraffic arrival andserviceprocesses,asshown by thefollowing
theorem.

Theorem 1 Let : denotethesizeof thequeueand ; 6 thenumber
of packetsin thequeueimmediatelybefore(nointerveningservices
or arrivals) thefirst packet in thepair arrives. Theprobability of; 6 �=<>�'<%�?�@�BACACAC�D: is denotedby E��F<G� . Let 0 denotethe total
numberof botharrivals andserviceseventsthatoccurbetweenthe
first andsecondpackets,andlet H 2 denotethelengthof thequeue
immediatelybefore thesecondpacket arrives.E��I; 6KJ :L)�H 2KJ :M�N� ��PO-Q 2 �
where Q 2 � E��I; 6 �R:?�SH 2 J :M�E��I; 6TJ :?�SH 2KJ :M� A
Furthermore, Q 6 �U� and Q 2WV X 1FYZ4[D\ X 1FYZ4 for all 0 , which implies
conditions(a) and(b) above, since � � �]�/!^E��I:M� .

Theproof of thetheoremis lengthy, but is not overly difficult
to establish,andthereforewe refertheinterestedreaderto a tech-
nical reportcontainingthe proof [7]. Of importancehereis that
theconditionalsuccessratefor closelytime-spacedpacketsis ap-
proximatelyone(totalcorrelation),which thenallowsusto isolate
lossesonunsharedlinks, asmentionedin Section2.

Packet measurementscanbe collectedby passively monitor-
ing connections.For example,we have developeda methodin
which singlepacket andback-to-backpacket eventsareselected
from TCP traffic flows [7]. The two typesof measurementswe
requireareformally describedbelow.

Single Packet Measurement: Supposethat _ � packets aresent
to receiver 
 andthat of thesea number̀ � areactuallyreceived
( _ � !N` � aredropped).Thelikelihoodof ` � given _ � is binomial
(sinceBernoulli lossesareassumed)andis givenbya ��` � )b_ � ��E � �c� d _ �` �Ie E�fZg� ����!%E � ��h>g \ figB�
where E � � j^kBl>m 136on � 4 � k and pq�I�$��
b� denotes the se-
quence of nodes in the path from the source � to receiver
 . For example, in Figure 1, pq�I�$�Drs�t�vus�>�5w$�7x$�7rGy and soj�kBl>m 136on z74 � k � � [ �|{C��}C� z .
Back-to-Back Packet Pair Measurement: Supposethat the
sourcesendsalargenumberof back-to-backpacketpairsin which
thefirst packet is destinedfor receiver 
 andthesecondfor receiver< . Weassumethatthetiming betweenpairsof packetsis consider-
ably larger thanthe timing betweentwo packetsin eachpair. Let_ � n k denotethe numberof pairs for which the secondpacket is
successfullyreceivedatnode< , andlet ` � n k denotethenumberof
pairs for which both the first andsecondpacketsarereceived at



their destinations.Furthermore,let ; � n k denotethenodeat which
the paths pq�I�$�D
�� and pq�I�@�~<G� diverge, so that pq�I�@�7; � n k � is their
commonsubpath.For illustration,refer to Figure1 andlet 
��tr
and <����>� , then ; zon [D[ � w . With this notation,the likelihoodof` � n k given _ � n k is binomialandis givenbya ��` � n k )b_ � n k ��E � n k ��� d _ � n k` � n k e E fZgI� �� n k ����!^E � n k ��h�gI� � \ figI� �s�
where E � n k � �� l�m 136on � gI� � 4 # � �� l>m 1F� g�� � n k 4 � � A

4. MAXIMUM LIKELIHOOD TOMOGRAPHY

Assumethat we have madean assortmentof single packet and
back-to-backpacket measurements(sentto differentreceiversor
combinationsof receivers) as describedin the previous section.
Collectingall themeasurements,define� � uB` � y��WuB` � n k y� � uB_ � yZ�NuB_ � n k yG�
wheretheindex 
 alonerunsover all receiversandtheindices
D��<
runover all pairwisecombinationsof receiversin thenetwork.

Letusalsodenotethecollectionsof theunconditionalandcon-
ditional link successprobabilitiesas � and � , respectively. The
joint likelihoodof all measurementsis givenbya � � ) � �D���b�i��� � � a ��` � )�_ � ��E � ���� � n k a ��` � n k )b_ � n k ��E � n k ��A
Themaximumlikelihoodestimatesof � and � aredefinedas�7�������Z��� arg ������ n � a � � ) � �7�����i��A

Computingmaximumlikelihoodestimatesor marginal likeli-
hoodfunctionscanbea formidabletask.Multidimensionalmaxi-
mizationsor integrationsaretime-consuminganddirectlyattempt-
ing any of theinferencetasksoutlinedin theprevioussectionleads
to extremelycomputationallydemandingalgorithmsthat arenot
scalableto large networks. The basicproblemis that the indi-
vidual likelihoodfunctions

a ��` � )b_ � ��E � � or
a ��` � n k )b_ � n k ��E � n k � for

eachtype of measurementinvolve productsof subsetsof the �
and/or � probabilities.Consequently, it is difficult to separatethe
effectsof eachindividual successprobability.

We overcomethis difficulty usinga commondevice in com-
putationalstatisticsknown as unobserveddataor variables. To
introducethe notion of unobserved data,let us considerthe like-
lihood

a ��` � )b_ � ��E � � for a singlepacket measurement.Assuming
that thepathconsistsof morethanonelink, theeffectsof the in-
dividual link successprobabilitieson this measurementarecom-
binedthroughtheproductE � over theentirepath. However, sup-
poseit werepossibleto measurethe numbersof packetsmaking
it to eachnode.Let usdenotetheseunobservedmeasurementsby� k n � , <���pq�I�@�D
�� , <R���
 . With thesemeasurementsin hand,we
canwrite thecompletedatalikelihoodfunctionasa � � k n � )b_ � ��E � ����kBl>m 136on � 4

d ��� 1 k 4~n �� k n �%e �|  �b� gk ����! � k �  �¡5¢ ��£�� g \   �b� g �

where ���F<G� againdenotesthe parentof node < . Also, sincewe
areable to measureat the sourceandreceiver, in the expression
above we set � 6on � �]_ � and � � n � �t` � . Theexamplein Figure2
illustratesthenotionof unobserveddata. In a similar fashion,we
introduceunobserveddatafor all measurements(includingpacket
pairs)andpaths,andthesevariablesallow usto factorizethejoint
likelihoodfunctioninto aproductof univariatefunctions.Thekey
featureof thecompletedatalikelihoodfunctionis thatit factorizes
into a productof individual binomial likelihood functions,each
involving justasinglesuccessprobability. Thus,thecompletedata
likelihoodfunctionis atrivial multivariatefunction,andtheeffects
of theindividual link probabilitiesareeasilyseparated.
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Fig. 2. Pathfrom sourceto receiver 
��°r with unobserveddataat
eachinternalrouter.

The Expectation-Maximization Algorithm: TheEM Algorithm
[8] canbeusedfor our problemto computemaximumlikelihood
estimatesof � and� . Beginningwith aninitial startingpointfor �
and � , thealgorithmis iterative andalternatesbetweentwo steps
until convergence. The Expectation(E) Stepcomputesthe con-
ditional expectedvalueof the completedatalikelihoodgiven the
observeddata,undertheprobabilitylaw inducedby thecurrentes-
timatesof � and � . TheE Stepcanbecomputedin ±²�I³P´CµN� op-
erations[7], where µ is thetotal numberof receiversand ³ is the
averagenumberof links in eachpath,usinganupward-downward
probability propagation(or messagepassing)algorithm. In the
M Step,the expectedcompletedatalikelihood function is max-
imized with respectto � and � . Sincethe completedatalike-
lihood factorizesinto a productof univariatefunctions,eachin-
volving just onesuccessprobability, themaximizershave closed-
form, analyticexpressions.TheM Stepcanalsobecomputedin±²�I³PµW� operations.Eachiterationof theEM Algorithm is there-
fore ±²�I³P´CµN� in complexity. Moreover, it canbe shown that the
original (observeddataonly) likelihoodfunctionis monotonically
increasedateachiterationof thealgorithm,andthealgorithmcon-
vergesto a local maximumof the likelihoodfunction [8]. In our
experimentsin Section6, we declarethat the algorithmhascon-
vergedwhenthe maximumdifferencebetweenthe vectorof un-
conditionalsuccessratesat the ; -th iteration � 1F�C4 is within a cer-
tain toleranceof the previous iterate. Specifically, we adoptthe
following stoppingcriterion:������·¶ � 1F�C4 !�� 1F� \+[ 4 ¶ J �B� \ { A
We have found that the algorithmtypically convergesin a small
numberof iterations(15-50).
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Fig. 3. SimulationResults.Trueandestimatedlink-level successratesof TCPflows from sourceto receiversfor several traffic scenarios:
(a) Heavy losseson links 2 and5, (b) Heavy losseson links 2 and8, and(c) Traffic mixture- mediumlosses.In eachsubfigure,the two
panelsdisplayfor eachlink 1-11(horizontalaxis): (top) anexampleof trueandestimatedsuccessratesand(bottom)meanabsoluteerror
betweenestimatedandtruesuccessratesover 10 trials for eachlink.

5. SIMULATION EXPERIMENTS

Using the12-nodenetwork topologyof Figure1, we evaluatethe
performanceof the combinedEM loss inferencealgorithm and
passive measurementframework in thens-2 simulationenviron-
ment[9]. Thetopologyis intendedto reflect(to someextent) the
heterogeneousnatureof many networks– aslowerentrylink from
the source,a fasterinternalbackbone,andthenslower exit links
to the receivers. This chosentopologygivesus the flexibility to
explore theeffectsof having receiversat differentdistancesfrom
thesource(numberof links in path),andto examinetheeffect of
varying fan-outs. We fix the queuesize at eachrouter to be 35
packets,anddrops(losses)occurwhena queueoverflows.

Ourexperimentsinvestigateavarietyof network traffic condi-
tions,comprisedof TCPconnectionsfrom thesourceto receivers
aswell asbackgroundcross-traffic flows. Singlepacketandpacket
pair statisticsare collectedby monitoring the TCP connections.
Within theseconnections,we identify two packetsasa “pair” if
the time-spacingbetweenthem is lessthan 2 msec. Details of
packet pair identificationappearin [7].

In this paper, we report the resultsfrom measurementscol-
lectedovera300secondinterval in threedifferenttraffic scenarios.
Thefirst two scenariosinvestigatecasesin whichtraffic andlosses
areheavieston two links. Thescenariostesttheability of theal-
gorithmto resolve cascadedlosses(links 2 and5, Scenario(a) in
Figure3) or identify isolatedlossy links in the network (links 2
and8, Scenario(b) in Figure3). In thethird scenario,moreevenly
distributed traffic introducesmediumlossesat several links, ex-
ploring performancein more benignconditions(Scenario(c) in
Figure3).

In eachcase,we conductten independentsimulations. Fig-
ure3 displaystheresults.Thetop panelillustratesanexampleof
theestimatedandtruesuccessratefor eachlink, chosenarbitrar-
ily from the ten realizations. We seethat the estimatedsuccess
ratesarein goodagreementwith thetrueTCPsuccessrates.The
bottompanelshows themeanabsoluteerrorfor eachlink over the
10 trials. In all threescenarios,we seethat the worst-casemean
absoluteerroris roughly2%.

6. CONCLUSIONS

In thispaper, weintroduceanew methodologyfor network lossto-
mographybasedon passive monitoringof unicasttraffic. Our ap-
proachtakesadvantageof thecorrelationbetweenthelossesexpe-

riencedbyback-to-backpacketpairs.Weposethenetwork tomog-
raphyproblemasa maximumlikelihoodestimation,anddevelop
an EM algorithmfor computingour estimates.We demonstrate
using extensive ns-2 simulationsthat sufficient datacan be col-
lectedusingpassive samplingto performaccuratelossinference,
even for relatively shortmeasurementperiods.Moreover, we are
ableto accuratelyestimatethelossesexperiencedby existingTCP
flows.
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