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ABSTRACT

The paperpresents nev methodfor characterizingommunica-
tion network performancebasedsolely on passie traffic moni-
toring at the network edge. More specifically we devise a novel
expectation-maximizatio(EM) algorithmto infer internalpaclet
lossrates(at routersinsidethe network) usingonly obsered end-
to-end(sourceto recever) lossrates. The major contritutions of
this paperarethree-fold: we formulatea passie monitoringpro-
cedurefor network lossinferencebasedn end-to-encpaclet pair
obsenrations,we develop a statisticalmodelingand computation
framework for inferring internalnetwork losscharacteristicsand
we evaluatethe performancavith realisticnetwork simulations.

1. INTRODUCTION

In large-scalenetworks, end-systemsannotrely on the network
itself to cooperatein characterizindgts own behaior. This has
promptedseveralgroupsto investigatamethoddor inferringinter-
nal network behaior basedon end-to-enchetwork measurements
[1, 2]; the so-callednetworktomagraphyproblem. However, ear
lier methodgeliedon multicastprotocols, in which probepaclets
aresentfrom onesourceo multiplereceversin asinglesendoper
ation[3]. Althoughmulticastnetwork tomographyshavs promise,
mary networksdo notsupportmulticast limiting thepracticalutil-
ity of suchschemesMoreover, routerstreatthe multicastpaclets
differentlyfrom unicastpaclets(which accounfor thevastmajor
ity of network traffic), andthereforeinferencesdravn from mul-
ticastmeasurementsay poorly reflectthe actualnetwork perfor
manceobseredby mosttraffic.

In this paperwe describea nev methodologyfor network to-
mography(specifically inferring paclet lossratesat internalnet-
work routers)basedon passivemonitoring of unicasttraffic (as
opposedo active probing). This methodologybuilds on our ear
lier work in unicastnetwork tomography{4], andis alsorelated
to more recentefforts to apply multicasttomographytechniques
to unicastmeasurementbasedon active probing [5]. In uni-
castprotocols,eachpaclet is sentfrom the sourceto a singlere-
ceiver. Most traffic in the Internetis unicastin nature,so our ap-
proachis broadlyapplicable Furthermorein contrasto multicast
techniquesvhich rely on active probing,passie unicastmonitor
ing avoids the problematicissuesassociatedvith active probing
(e.g., overturdeningthe network with probes).Thus,passie uni-
castnetwork tomographyis scalableto very large networks andit

This work was supportedby the National ScienceFoundation,grant
no. MIP-9701692 the Army ResearclOffice, grantno. DAAD19-99-1-
0349, the Office of Naval Researchgrantno. N00014-00-1-0390and
TexasInstruments.

shouldprovide a moreaccuratedescriptionof the network perfor
mance.Throughoutheremaindeof thepapemwe work with “suc-
cess"rates(ratesof non-loss)insteadof lossrates. This provides
amorecorvenientmathematicaparameterizationf the problem,
andtherateof lossis simply oneminustherateof success.

The paperis organizedasfollows. In Section2, we introduce
the basicunicastnetwork tomographyproblemandthe technical
issuesinvolved. In Section3, we formally defineour loss mod-
eling assumptiongnd passie measuremerframevork. In Sec-
tion 4 we poseunicastnetwork tomographyasa maximumlik eli-
hoodestimationproblem,andwe proposea novel EM algorithm
for computingmaximumlik elihood estimateof internalsuccess
(or loss)rates. In Section5, we examinethe performanceof our
methodghroughsimulation,andconcludingremarksaremadein
Section6.

2. UNICAST TOMOGRAPHY

We considera scenarioin which a numberof recevers are con-
nectedto a single sourcewith somecommonlinks in the paths
(extensionsto multiple sourcesare possible). In this case,the
network topology (from the perspectie of the source)is a tree-
structure Figurel depictsanexampletopologywith source(node
0) andsevenreceiers(nodess throughl11). Also shawvn arefour
internalrouters(nodesl through4). We assumehatwe areable
to measurenetwork traffic only atthe edge;thatis, we candeter
mine whetheror not a paclet sentfrom the sourceis successfully
receved by oneof therecevers. This type of confirmationcanbe
obtainedvia TransmissiorControl Protocols (TCP) acknavledg-
mentsystem[3], for example. We also assumethat the routing
tableis fixed for the durationof the measuremengrocesswhich
ensureghetree-structuredopology

The goal of this work is to estimatethe lossratesassociated
with eachindividual link (betweentwo routers)in the network.
Restrictingoursehesto edge-basetheasurementye canmeasure
thenumbersof pacletssentto andrecevedby eachrecever, pro-
viding us with a simplemeansof estimatingthe ratesof success
alongeachpath(from sourceto recever). Unfortunately thereis
no uniquemappingof the path succesgatesto the successates
on individual links (betweenrouters)in the path. To overcome
this difficulty, we proposea methodologybasedn measurements
madeusingback-to-backpaclet pairs. Thesemeasurementgro-
vide an opportunityto collect moreinformative statisticsthatcan
helpto resohe thelinks.

The basicideais quite straightforvard. Supposeawo closely
time-spacedback-to-back)paclets are sentto two differentre-
ceivers. The pathsto thesereceverssharea commonsetof links
from the sourcebut later diverge. If oneof the pacletsis dropped



Fig. 1. Tree-structuredgraph representinga single-source,
multiple-recever network. NodeO is the source hodesl-4 inter
nalroutersandnodess-11recevers. Besideeachlink we indicate
the capacityin megabitspersecond.

andthe othersuccessfullyreceived, then (assumingotal correla-
tion of losseson commonlinks) onecaninfer thatthe paclet must
have beendroppedon oneof theunsharedinks. This enablegshe
resolutionof losseson individual links. Collectingmeasurements
from anassortmenof suchback-to-backpaclet pairs(sentto dif-
ferentcombinationsof recevers) allows us to resole the losses
occurringon all links in the network. The key to this approachs
the exploitation of the correlationbetweenpaclet-pair losseson
commonsubpaths. In practice,however, this correlationis not
perfect,andthereforemore sophisticatedtatisticalmodelingand
inferencestrat@iesarenecessaryasdescribechext.

3. LOSSMODELING AND MEASUREMENT

Herewe definetherelevantparameters tomographidossratees-
timation, describethe passie measuremenéchemeanddevelop
statisticalmodelsrelating thesemeasurementto the parameters
of interest.For individual paclet transmissionsye assumea sim-
ple Bernoullilossmodelfor eachlink. The unconditionalsuccess
probability of link 7 (thelink into nodei) is definedas

a; = Pr(pacletsuccessfullransmittedrom p(z) to 7),

wherep(7) denotesheindex of theparentnodeof nodei (thenode
above i-th nodein thetree;e.g., referringto Figurel, p(1) = 0).
A pacletis successfullysentfrom p(z) to 7 with probabilitya; and
is droppedwith probability 1 — «;. We modelthelossprocesses
on separatdinks asmutuallyindependent.

If two, back-to-baclkpacletsaresentfrom nodep(z) to node
1, thenwe definethe conditionalsuccesprobability as

~v; = Pr(1stpacletp(i) — i | 2ndpaclet p(i) — 7 ),

where p(i) — 1 is shorthandnotation denotingthe successful
transmissiorof a paclet from p(7) to ¢, and“first” and“second”
referto the temporalorderof the two paclets. Thatis, giventhat
the secondpaclet of the pair is receved, thenthe first paclet is
recevvedwith probability~; anddroppedwith probability 1 — ~;.
We expectthat~; shouldbe very closeto one (if theinterarrival
time betweenthe two is small). In general,the actualvalue of
~; dependn the numberof events(otherarrivals andservices)

betweenthe arrivals of the two paclets underconsideration.An

arrival eventincrementghe queuelengthby one. A serviceevent
decrementghe length by one. We also assumethat the service
eventsare independentf the length (e.g. DropTail [6]). De-

notethenumberof interveningeventsby r, andlet 'yi(T) denotethe
specificvalue of v; in this case.Then'yf) satisfiesthe two key

conditions:(a) 'y(o) = 1, and(b) 'yi(r) > aj, forall ». These
conditionshold for ary finite non-adaptie queue jndependenbf

thetraffic arrival andserviceprocessesasshawvn by thefollowing

theorem.

Theorem 1 Let K denotethesizeof thequeueandk, thenumber
of padketsin thequeudmmediatel\before (nointerveningservices
or arrivals) thefirst padeetin the pair arrives. Theprobability of
ko =3, j=0,...,K isdenotedby p(j). Letr denotethetotal
numberof botharrivals andservicesventsthatoccurbetweerithe
firstand secondbadeets,andlet £, denotethe lengthof the queue
immediatelybefore the secondhadket arrives.

1

K|t < K) = ,
plko <K |l <K) = 1

whee
plko = K, £ < K)

plko < K, 4. < K)’
;H(K)

Cr =

Furthermoe, co = 0 andc¢, < g for all r, which implies
conditions(a) and (b) above, sinceal = 1 —p(K).

The proof of thetheoremis lengthy but is not overly difficult
to establishandthereforewe refertheinterestedeaderto atech-
nical reportcontainingthe proof [7]. Of importancehereis that
the conditionalsuccessatefor closelytime-spaceghacletsis ap-
proximatelyone(total correlation) which thenallows usto isolate
losseson unsharedinks, asmentionedn Section2.

Paclet measurementsanbe collectedby passiely monitor
ing connections. For example,we have developeda methodin
which single paclet and back-to-backpaclet eventsare selected
from TCP traffic flows [7]. The two typesof measurementae
requireareformally describedelow.

Single Packet Measurement: Supposehatn; paclets are sent
to recever i andthat of thesea numberm; areactuallyreceved
(n; — m; aredropped).Thelikelihoodof m; givenn; is binomial
(sinceBernoullilossesareassumedandis givenby

i\ m, -
I(mi|ni,p;) = < )pﬂ(l—:ﬂi)’ :

m;

where p; IT;cpe,4) @i and P(0,i) denotesthe se-
qguence of nodes in the path from the source0 to recever
. For example, in Figure 1, P(0,8) = {1,3,4,8} andso

Hje‘P(o,s) Qj = ar1azaaas.

Back-to-Back Packet Pair Measurement: Supposethat the
sourcesendsalargenumberof back-to-baclpaclet pairsin which
thefirst pacletis destinedor recever: andthesecondor recever
j. We assumehatthetiming betweerpairsof pacletsis consider
ably largerthanthe timing betweertwo pacletsin eachpair. Let
n;,; denotethe numberof pairs for which the secondpaclet is
successfullyecevedatnodeyj, andlet m;,; denotethe numberof
pairs for which both the first and secondpaclets are received at



their destinations Furthermorelet k; ; denotethe nodeat which
the pathsP(0,4) andP(0, j) diverge, sothat P(0, k; ;) is their
commonsubpath.For illustration, referto Figure1 andleti = 8
andj = 11, thenks,11 = 3. With this notation,the likelihood of
m;,; givenn; ; is binomialandis givenby

N5

U(mi;|ni;,pij) = ( )pf?’j (1 =piy)™im9,

mij

where

pii= I w I e

q€P(0,k; ;)  sEP(k; 5,7)

4. MAXIMUM LIKELIHOOD TOMOGRAPHY

Assumethat we have madean assortmenbf single paclet and
back-to-backpaclet measurementésentto differentreceversor
combinationsof recevers) as describedin the previous section.
Collectingall the measurementslefine

M {mit U {mi;}
N {n:}U{ni;},
wheretheindex ¢ alonerunsover all receversandtheindicesi, j
runover all pairwisecombinationf receversin the network.
Letusalsodenotehecollectionsof theunconditionatindcon-

ditional link successprobabilitiesasa and+y, respectiely. The
joint likelihoodof all measuremenis givenby

[Tt0mi; 1nis,pis)-
i
Themaximumlikelihoodestimate®f a andvy aredefinedas

(aa7) = argI&?;;( I(M|Naa57)

Computingmaximumlik elihoodestimatesor mamginal likeli-
hoodfunctionscanbe a formidabletask. Multidimensionalmaxi-
mizationsor integrationsaretime-consumingnddirectly attempt-
ing ary of theinferencetasksoutlinedin theprevioussectionleads
to extremely computationallydemandingalgorithmsthat are not
scalableto large networks. The basic problemis that the indi-
viduallikelihoodfunctionsi(m; | n;, p;) or l(ma,; | ns,;, ps,;) for
eachtype of measuremeninvolve productsof subsetsof the
and/ora probabilities.Consequenthyit is difficult to separatéhe
effectsof eachindividual succesprobability

We overcomethis difficulty usinga commondevice in com-
putationalstatisticsknovn as unobservediataor variables. To
introducethe notion of unobsered data,let us considerthe lik e-
lihood I(m; | n;, p;) for asinglepaclet measurementAssuming
thatthe pathconsistsof morethanonelink, the effectsof thein-
dividual link succesgrobabilitieson this measuremerare com-
binedthroughthe productp; over the entirepath. However, sup-
poseit were possibleto measurghe numbersof paclets making
it to eachnode.Let usdenotetheseunobsered measurementsy
uji, j € P(0,7), j # i. With thesemeasurements hand,we
canwrite the completedatalikelihoodfunctionas

D(uji |ns,pi) =

H (“p(j),i) af?t (1 — ay) e@i— i,

s
JEP(0,0) 7

where p(j) againdenotesthe parentof nodej. Also, sincewe

areableto measureat the sourceandrecever, in the expression
abore we setug,; = n; andw;,; = m;. Theexamplein Figure2

illustratesthe notion of unobsered data. In a similar fashion,we

introduceunobsered datafor all measurementdncluding paclet

pairs)andpaths,andthesevariablesallow usto factorizethejoint

likelihoodfunctioninto a productof univariatefunctions.Thekey

featureof thecompletedatalik elihoodfunctionis thatit factorizes
into a productof individual binomial likelihood functions, each
involving justasinglesuccesgrobability Thus,thecompletedata
likelihoodfunctionis atrivial multivariatefunction,andtheeffects
of theindividuallink probabilitiesareeasilyseparated.

Fig. 2. Pathfrom sourceto receveri = 8 with unobsered dataat
eachinternalrouter

The Expectation-M aximization Algorithm: TheEM Algorithm

[8] canbe usedfor our problemto computemaximumlik elihood
estimate®f a andy. Beginningwith aninitial startingpointfor a

and~, the algorithmis iterative andalternatebetweertwo steps
until corvergence. The Expectation(E) Stepcomputeshe con-
ditional expectedvalue of the completedatalik elihood given the
obsereddata,undertheprobabilitylaw inducedby thecurrentes-
timatesof « and~y. The E Stepcanbe computedn O(L*N) op-

erationg7], whereN is thetotal numberof receversandL is the
averagenumberof links in eachpath,usingan upward-davnward
probability propagation(or messagepassing)algorithm. In the
M Step,the expectedcompletedatalik elihood function is max-
imized with respectto a and+~. Sincethe completedatalike-
lihood factorizesinto a productof univariatefunctions, eachin-

volving just onesuccesprobability the maximizershave closed-
form, analyticexpressions.The M Stepcanalsobe computedn

O(LN) operations Eachiterationof the EM Algorithm is there-
fore O(L*N) in compleity. Moreover, it canbe shavn thatthe
original (obsereddataonly) likelihoodfunctionis monotonically
increasedteachiterationof thealgorithm,andthealgorithmcon-
vergesto a local maximumof the likelihoodfunction[8]. In our

experimentsin Section6, we declarethat the algorithmhascon-
verged whenthe maximumdifferencebetweenthe vector of un-

conditionalsuccessatesat the k-th iterationa®) is within a cer

tain toleranceof the previous iterate. Specifically we adoptthe
following stoppingcriterion:

m}éixHa(k) —a* V<103

We have found that the algorithmtypically cornvergesin a small
numberof iterations(15-50).
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Fig. 3. SimulationResults.True andestimatedink-level successatesof TCP flows from sourceto receversfor severaltraffic scenarios:
(a) Heavy lossesonlinks 2 and5, (b) Heary losseson links 2 and8, and(c) Traffic mixture - mediumlosses.In eachsubfigure the two
panelsdisplayfor eachlink 1-11 (horizontalaxis): (top) anexampleof true andestimatedsuccessatesand(bottom)meanabsoluteerror

betweerestimatedandtrue successatesover 10 trials for eachlink.

5. SIMULATION EXPERIMENTS

Usingthe 12-nodenetwork topologyof Figure1, we evaluatethe
performanceof the combinedEM loss inferencealgorithm and
passie measuremerftamewvork in thens- 2 simulationenviron-
ment[9]. Thetopologyis intendedto reflect(to someextent) the
heterogeneousatureof mary networks—aslower entrylink from
the source,a fasterinternalbackbone andthenslower exit links
to the receivers. This chosentopology gives us the flexibility to
explore the effectsof having receversat differentdistancesrom
the source(numberof links in path),andto examinethe effect of
varying fan-outs. We fix the queuesize at eachrouterto be 35
paclets,anddrops(losses)pccurwhena queueoverflows.

Ourexperimentdnvestigatea variety of network traffic condi-
tions, comprisedof TCP connectiongrom the sourceto recevers
aswell asbackgrounaross-trafic flows. Singlepacletandpaclet
pair statisticsare collectedby monitoring the TCP connections.
Within theseconnectionswe identify two pacletsasa “pair” if
the time-spacingbetweenthem s lessthan 2 msec. Details of
paclet pairidentificationappeain [7].

In this paper we reportthe resultsfrom measurementsol-
lectedovera300secondntenal in threedifferenttraffic scenarios.
Thefirst two scenariosnvestigatecasesn whichtraffic andlosses
areheavieston two links. The scenariogestthe ability of the al-
gorithmto resole cascadedbssed(links 2 and5, Scenarioa) in
Figure 3) or identify isolatedlossy links in the network (links 2
and8, Scenarigqb) in Figure3). In thethird scenariomoreevenly
distributed traffic introducesmediumlossesat several links, ex-
ploring performancein more benignconditions(Scenario(c) in
Figure3).

In eachcase,we conductten independensimulations. Fig-
ure 3 displaystheresults. The top panelillustratesan exampleof
the estimatedandtrue successatefor eachlink, chosemarbitrar
ily from the ten realizations. We seethat the estimatedsuccess
ratesarein goodagreementvith thetrue TCP successates. The
bottompanelshavs the meanabsoluteerrorfor eachlink overthe
10trials. In all threescenariosyve seethat the worst-casenean
absolutesrroris roughly 2%.

6. CONCLUSIONS

In thispaperwe introducea nev methodologyfor network lossto-
mographybasedon passve monitoringof unicasttraffic. Our ap-
proachtakesadvantageof the correlationbetweerthelossesexpe-

riencedby back-to-baclpaclet pairs. We posethe network tomog-
raphyproblemasa maximumlik elihood estimation,anddevelop
an EM algorithmfor computingour estimates.We demonstrate
using extensve ns-2 simulationsthat suficient datacan be col-
lectedusing passie samplingto performaccuratdossinference,
even for relatively shortmeasuremerperiods. Moreover, we are
ableto accuratelyestimatethelossesxperiencedy existing TCP
flows.
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