
Video-on-demand Equipment Allocation

Frédéric Thouin

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

July 2006

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Masters of Engineering.

c© 2006 Frédéric Thouin

i

Abstract

Network-based video-on-demand (VoD) deployments are today very limited in scope. The

largest deployed libraries are just 0.7% of the global movie and TV-series catalog and peak

utilization of VoD targets are 10-15% of broadcast TV peak viewing numbers. Recognizing

that libraries and usage may grow, service providers are intensely interested in large-scale

content delivery networks that provide content propagation, storage, streaming, and trans-

port. We focus on one of the challenges of VoD network design: resource planning. We

describe a method and design tool for the planning of large-scale VoD systems and address

the resource allocation problem of determining the number and model of VoD servers to

install in a topology such that the deployment cost is minimized. Our general design tool

provides important feedback and insights on VoD network design; we observed that the

available equipment and the topology had a significant impact on the resulting design [1].

ii

Abrégé

Le contenu disponible des services de vidéo à la demande (VoD) en place représente 0.7%

de la totalité des films et séries télévisées et le nombre d’utilisateurs aux heures de pointe

représente 10-15% de l’auditoire d’émissions télévisées. Prenant conscience de l’expansion

imminente de l’utilisation et de la bibliothèque, les fournisseurs de service s’intéressent

aux réseaux de diffusion de contenu (CDN) de grande échelle qui offre la propagation, le

stockage, la lecture en transit et le transport du contenu. Nous développons une méthode

et un outil pour la planification de systèmes de VoD de grande échelle et s’attaquons au

problème d’attribution de ressources suivant: déterminer le nombre et le modèle de serveurs

VoD à installer à chaque localisation pour minimiser le cout de déploiement. Nos résultats

de simulation démontrent que le type d’équipement disponible ainsi que la topologie du

réseau ont une grande influence sur le design final.

iii

Acknowledgments

First and foremost, I would like to thank my supervisor Mark Coates for his help and

guidance throughout my two years as a Masters student. I also like to thank Dominic

Goodwill for his contribution through a Partnered Research Project with Nortel Networks.

The feedback from the industry world he provided was very helpful. I thank Lorne Mason

and Ning Zhao for their help designing the function for the cost of transport. I would like

to thank Anton Vinokurov, the developer of the Topology Design Tool (TDT), who helped

me integrate the various components of my solution into his tool. I would like to thank

my fellow lab-mate Garrick Ing for letting me benefit from his previous experiences as a

Graduate student.

Je tiens à remercier mes parents pour leur support et encouragements durant mes deux

années à la mâıtrise.

iv

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Problem Statement . 3

1.3 Thesis Contribution and Organization . 3

1.4 Published Work . 4

2 Literature Review 5

2.1 Architecture and Topology . 6

2.2 Content Allocation . 8

2.2.1 Choice of Content and File Popularity 10

2.3 Content Delivery . 12

2.3.1 Traffic Models . 13

2.3.2 Request Routing . 16

2.4 Optimization Problems . 17

2.4.1 Parameters and constraints . 18

2.4.2 Cost functions . 20

2.4.3 Heuristics . 21

2.5 Concluding remarks . 23

3 Video-on-demand equipment allocation 25

3.1 Problem statement . 25

3.1.1 Mathematical formulation . 27

3.2 Proposed solution . 28

3.2.1 Hit ratio function . 29

3.2.2 Cost function . 32

Contents v

3.2.3 Integer Relaxation Heuristic (IRH) 35

3.3 Interactive Design Tool . 37

3.4 Results . 39

3.5 Conclusion . 42

4 VoD Servers Model Selection 44

4.1 Problem Statement . 45

4.2 Cost function . 45

4.3 Description of Heuristics . 46

4.3.1 Full Search (FS) . 46

4.3.2 Central or Fully Distributed Heuristic (CoFDH) 47

4.3.3 Greedy Search (GS) . 48

4.3.4 Integer Relaxation Heuristic (IRH) 50

4.3.5 Improved Greedy Search (IGS) . 50

4.4 Complexity Analysis . 53

4.4.1 FS . 53

4.4.2 CoFDH . 54

4.4.3 GS . 54

4.4.4 IRH . 54

4.4.5 IGS . 55

4.4.6 Worst-case heuristic comparison . 55

4.5 Simulation Experiments . 56

4.6 VoD in AAPN . 63

4.6.1 AAPN Architecture . 63

4.6.2 Analysis . 64

4.7 Concluding remarks . 65

5 Conclusion 67

5.1 Summary . 67

5.2 Discussion . 69

5.3 Future Work . 71

References 73

vi

List of Figures

2.1 General VoD/CDN network architectures 6

2.2 Architectures for media delivery . 8

2.3 Popularity distribution on video rental data 11

2.4 VoD usage projections by time of day and day of week 14

3.1 VoD network architecture and VoD replica server 26

3.2 High level overview of the proposed solution 28

3.3 Data fitting curves to construct the form of the hit ratio estimate Ĥ 29

3.4 Data fitting curves to construct the form of A in Ĥ = A + B log(X) 30

3.5 Data fitting curves to construct the form of B in Ĥ = A + B log(X) 31

3.6 Histograms of the error Ĥ −H . 33

3.7 Model editor of the design tool . 37

3.8 Replica editor of the design tool . 38

3.9 Total network cost and heuristic cost improvement for Scenario 1 40

3.10 Total network cost for entire network and one location for Scenario 2 . . . 41

4.1 Computation time of the heurisitcs . 57

4.2 Ratio between the cost of the heuristics solution and the optimal solution . 58

4.3 Ratio between the cost of the heuristics solution and CoFDH 59

4.4 CPU time in seconds for all heuristics . 60

4.5 Number of iterations for all heuristics . 60

4.6 Ratio of locations with replicas and average hit ratio at replicas 61

4.7 Fraction of total network demand and average demand at replica locations 62

4.8 Three-layer design of an agile all-photonic network (AAPN) 64

vii

List of Tables

1.1 Amount of annually produced and accumulated unique media content . . . 2

2.1 Categories of cost functions . 21

3.1 Specifications of equipment at each location for Scenario 3 42

4.1 Worst-case complexity for given N , W and Umax. 56

4.2 Values of constant variables used for the simulations. 57

4.3 Range of the variables used for the simulations. 57

4.4 Average number of VoD servers installed at the origin 62

viii

List of Acronyms

CDN Content Delivery (Distribution) Network

VoD Video-on-demand

QoS Quality of Service

QoE Quality of Experience

MAN Metropolitan Area Network

1

Chapter 1

Introduction

Network-based video-on-demand (VoD) deployments are today very limited in scope. The

largest deployed libraries are just 0.7% (5,000 hours) of the global movie and TV-series cat-

alog and peak utilization of VoD targets are 10-15% of broadcast TV peak viewing numbers.

Recognizing that libraries and usage may grow, service providers are intensely interested in

large-scale content delivery networks that provide content propagation, storage, streaming,

and transport. Content delivery networks (CDNs) are designed to distribute content to a

set of clients, as streams or as files [2–7]. We focus primarily on the case of a streaming

CDN, in that the client is assumed to have buffering capability but not caching capability.

Nonetheless, the mathematics and the models we adopt are readily extended to the client-

cached scenario. Through approaches such as replication of content at multiple servers

(known as replicas, proxies or caches), CDNs attempt to minimize latency at the end-user

while reducing bandwidth consumption and load at the origin server. The CDN delivery

of streaming media causes new problems that did not apply to the distribution of HTTP

objects: streaming objects are much larger than web objects and hence create much more

traffic [8]. Furthermore, it is no longer possible to assume infinite storage size at the replica

locations, which makes calculations more complicated [2]. The design of a VoD network

consists of two tasks: (i) making resource planning decisions and (ii) developing in-service

intelligent request routing, resource control policies, and performance monitoring. We focus

on the first challenge, i.e., the allocation of resources during network planning, generally

performed when planning greenfield and incremental deployments. Of particular interest

is VoD delivery across metropolitan area networks (MANs).

1 Introduction 2

1.1 Motivation

In this thesis, we describe a method and design tool for the planning of large-scale VoD

systems. Before describing the method, it is useful to underline the scale of the problem.

Today’s libraries of consumer-accessible media vary widely in size. We compare the total

stock of media content (listed in Table 1.1) against the library sizes as advertised by service

providers. Music services (e.g., Apple iTunes) offer around 10% of existing music. Similarly,

services of movies on DVD by mail (e.g., NetFlix) offer around 10% of movies and TV

series. In contrast, the largest existing network VoD systems (e.g., Comcast) offer only

0.7% (several thousand) of the movies and TV series genres, and only 0.002% of the back

catalog if broadcast TV is considered to be within the scope of VoD libraries.

Table 1.1 Amount of unique stock of media content produced annually, and
the accumulated unique stock. [9].

Type of content Unique stock per year Accumulated unique stock
Movies except TV movies 7350 titles (19TB) 250,000 titles(720 TB)
TV movies & series 3040 series titles (38TB) 62,000 series titles (950TB)
All forms of TV 31M hrs (70,000TB) �100M hrs (�200,000TB)
rf broadcast radio 70M hrs (3,500TB) �200M hrs (�10,000TB)
Professional music recording 90,000 albums (59TB) 1,5M albums (975TB)

The amount of video content produced annually (over 10,000 movie and series titles) and

size of the libraries of other media providers indicate that the amount of content available

to video-on-demand users will probably grow in the future. Even if this growth is only a

few percent, considering the accumulated amount of unique video titles, we expect that

an expansion of the library would make video-on-demand a real alternative to services like

DVD by mail and attract more users. Large-scale VoD systems with high storage and high

bandwidth requirements require a substantial amount of resources to store, distribute and

transport all the content and deliver it to all the clients. At a time where many companies

are considering deploying such large-scale systems, there is a real need for a design tool

used during the network planning.

Resources allocation is an important and complicated task that consists of determining

the location and number of resources to deploy such that cost is minimized whilst certain

conditions are respected. This operation is important because it is often very difficult or

impossible to adjust the chosen solution based on observations made after the deployment.

1 Introduction 3

The main challenge is to build accurate models for all the factors involved: the available

infrastructure, the network topology, the peak/average usage of the system, the popularity

of each title, bandwidth and storage requirements, etc.

1.2 Thesis Problem Statement

In the case of a video-on-demand network deployment, the resources to consider are the

equipment required at the origin and proxy video servers and the equipment required for

the actual transport between each location (switching). We assume an existing topology

with a high bandwidth capacity and focus on the equipment required at each location to

store and stream the content. A video server consists of storage devices to cache the desired

content and streaming devices to deliver the videos to the users. For this thesis, we define

and tackle the VoD equipment allocation problem that consists of determining the number

of streaming and storage devices at each location in the topology such that the deployment

cost is minimized.

1.3 Thesis Contribution and Organization

In Chapter 2, we review the different aspects related to the delivery of multimedia objects:

architecture and topology, caching scheme and file popularity model, delivery mechanism

and traffic modeling. Also, we present a summary of the solutions proposed in the litera-

ture: problem statements, parameters and constraints considered for the cost function and

heuristics proposed to solve the replica placement problem.

In Chapter 3, we address a simplified VoD equipment allocation problem, which focuses

on identifying the optimal number of VoD servers at a set of locations with fixed and pre-

determined streaming and storage capacity per VoD server, such that the deployment cost

of the VoD system is minimized. Our main contributions to solving this problem are the

following. We design a parametric function for estimating the worst-case hit ratio for

given system parameters (cache size, library size and file arrival rate). We determine an

appropriate functional form and train parameters using discrete-time simulations based

on an extension of the file access model proposed in [10]. Such a parametric function is

essential for the interactive design tool we develop (see Section 3.2.1). We propose a cost

function based on the hit ratio, the distributed demand and the number of VoD servers

1 Introduction 4

at each location. This differs from previous work that only takes into account transport

and storage costs without explicitly considering the cost and type of equipment installed

(see Section 3.2.2). We develop the Integer Relaxation Heuristic to generate a solution

to the problem. The heuristic relaxes the integer constraint on the number of devices in

order to identify an optimal non-integer solution, and then finds a near-optimal integer

solution by searching in the neighborhood of the non-integer solution (see Section 3.2.3).

We develop an interactive design tool that implements our cost function, hit ratio function

and heuristic. This tool allows a user to modify system parameters easily and generate new

design solutions quickly.

In Chapter 4, we extend the work of Chapter 3 by addressing the problem of determin-

ing not only the number, but also the model of the VoD servers at each potential replica

location. Instead of fixing the streaming and storage capacity per VoD server at each

site, we require the pre-specification of a set of available VoD servers and select the model

at each location that minimizes total network cost. This new problem being of greater

complexity, we adapt the Integer Relaxation Heuristic and present another algorithm: the

Improved Greedy Search. Finally, we briefly analyze the feasibility and implications of a

VoD deployment over an agile all-photonic network (AAPN) [11]

In Chapter 5, we summarize our work and discuss in more detail the results presented

in the previous chapters and conclude with proposed future work.

1.4 Published Work

Some parts of this thesis have been published or have been accepted for publication. Parts

of the literature review presented in Chapter 2 has been published as a technical report

and a summarize version of Chapter 3 on our solution to the VoD equipment allocation

problem has been accepted for presentation at the Symposium on Network Computing and

Applications (IEEE NCA).

• F. Thouin and M.J. Coates, A review on content delivery network, Technical report,

McGill University, Montreal, Canada. June 2005.

• F. Thouin, M.J. Coates and D. Goodwill, Video-on-demand Equipment Allocation, to

appear in Proc. IEEE Network Computing and Applications (IEEE NCA), Boston,

MA. July 2006.

5

Chapter 2

Literature Review

Services with low system cost, like near video-on-demand (nVoD), have been available for

many years in hotels and offered by cable providers as pay-per-view television. In nVoD, at

fixed scheduled times, a video is broadcast on a single channel shared by all the users who

wish to see it. This solution is simple and cost-effective, but it is not flexible and does not

allow the user to interact with the system [12, 13]. True or Interactive video-on-demand

(iVoD) dedicates a single channel to each user and allows the video to be started at any

time with VCR-like controls (pause, rewind, fast-forward, etc.) [14]. While being very

user-friendly, this type of service has high bandwidth requirements and high deployment

cost.

There is currently on-going research into optical core networks (e.g. agile all-photonic

networks (AAPN) [11]) that should be able to support applications, like iVoD, that require

substantial bandwidth. We address the challenge of minimizing the deployment cost of

a network offering iVoD. As a first step, it is valuable to review the previously proposed

solutions for the delivery of multimedia objects. This chapter serves that purpose and

is organized as follows. Section 2.1 presents architectures and topologies that have been

considered for content distribution (delivery) networks (CDNs) and VoD deployments. Sec-

tion 2.2 surveys the different caching schemes and the strategies to determine file popular-

ity. Section 2.3 covers the techniques used for content delivery, traffic modeling and routing

users’ requests. Section 2.4 describes optimization problems related to the deployment of

content delivery networks such as replica location, content allocation, storage capacity al-

location and resource allocation. We summarize the factors to consider, cost functions and

2 Literature Review 6

heuristics proposed to solve these problems.

2.1 Architecture and Topology

Abstract—In this paper a network design for video on
demand (VoD) services on Ethernet-based WDM networks is
presented. The decentralised architecture consists of
independent regional ring networks with local video servers.
Based on an Integer Linear Programming (ILP) model, a
network design tool, minimising the total installation cost on
the core and the Hybrid Fiber Coax (HFC) access network,
has been developed. Unicast as well as broadcast VoD services
are taken into account. The influence of different parameters
in our traffic and content models on the network design is
studied.

Index Terms—network design, Gigabit Ethernet, WDM,
video on demand

I. INTRODUCTION

NTIL recently, no successful VoD services have been
observed in Europe, due to high deployment costs.

Higher numbers of consumers and more competitive
technologies now enable operators to bring high quality
multimedia applications to the customer’s home.

The introduction of Gigabit Ethernet (GbE) transport
over WDM networks offers high bandwidth streaming
opportunities for VoD services. When designing the
transport network that supports these services, it is
important to decide where to place the video servers, the
WDM equipment and the switches on the network. The
installation cost for QAM modulation on the Hybrid Fiber
Coax (HFC) access network also has to be taken into
account.

One of the most promising VoD services is interactive
VoD (iVoD), also called real VoD. Customers can select
any available movie at any time on their TV screen and

Tim Wauters, Didier Colle, Mario Pickavet, Bart Dhoedt and
Piet Demeester are with the University of Ghent - IMEC,
Department of Information Technology (INTEC), Broadband
Networking Group, Sint-Pietersnieuwstraat 41, B-9000 Gent,
Belgium. Tel.: +32 9 264 99 93, Fax: +32 9 264 99 60, E-mail:
{tim.wauters, didier.colle, mario.pickavet, bart.dhoedt,
piet.demeester}@intec.ugent.be.

Didier Colle thanks the IWT for its financial support through
his post-doctoral grant.

pause, fast forward or fast rewind as they please. This
approach is different from near VoD (nVoD), where movies
only start at specific times and no interaction from the
customer can be supported. Where nVoD can be broadcast
to the users, the more user-friendly iVoD service requires
bandwidth-intensive unicast streaming.

The successful introduction of Content Delivery
Networks (CDNs) for the delivery of this kind of high-
quality multimedia content has proven that a decentralised
approach is most efficient. Deploying smaller, local servers
appears to be more favorable than using a single server
architecture, once the number of subscribers is sufficiently
high [1]. Significant savings in the transport network
compensate the installation and maintenance costs for extra
servers. Introducing local servers also reduces latency and
improves the overall quality of service. In this paper we
therefore introduce video servers at regional (metro) ring
networks, thus offloading the national (core) backbone. A
possible network architecture is shown in Fig. 1.

main node

local node

household

Core network

Metro network

Access network

Fig. 1. General network architecture (the transport network is
divided into a core network and local metro networks).

The core and metro network are based on optical fiber
and have high transport capacity. The access network can

Optical network design for video on demand
services

Tim Wauters, Didier Colle, Mario Pickavet, Bart Dhoedt, Piet Demeester

U

0-7803-8956-5/05/$20.00 ©2005 IEEE. 251

(a) The transport network is divided into a core
network and local metro networks. (Reproduced
from [15])

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 14, NO. 6, AUGUST 1996 1173

A Cost Comparison of Distributed and Centralized.
Approaches to Video-on-Demand

Scott A. Barnett and Gary J. Anido

Abstract- With video-on-demand (VoD) regarded as one of
the drivers for the deployment of broadband integrated service
digital networks (B-ISDN’s), an important issue is how to provide
wide area VoD services most efficiently. A large contributor to the
cost of a VoD system is storage. The nature of the service requires
massive amounts of storage and bandwidth to be supplied from
a video server located within the network. In this paper, we
examine the costs of storage in such servers and develop an
efficient allocation scheme designed to minimize this cost. Using
this scheme, centralized and distributed approaches to VoD are
compared. We conclude that a distributed approach to storage
costs no more than a centralized approach and offers considerable
advantages in terms of bandwidth requirements and service
quality.

I. INTRODUCTION
IDEO-ON-DEMAND (VoD) is recognized as being a v potential driver for the wide deployment of broadband

integrated service digital networks (B-ISDN’s) [l]. VoD and
interactive video services, in general, place a huge demand
on network resources. When we consider that a single feature
film will require (when compressed to MPEG-I standard) at
least 1 GB of storage and 1.5 Mb/s of network bandwidth, it
quickly becomes apparent that serving thousands of different
movies to potentially thousands of customers will require a
massive investment in network infrastructure. It is the focus
of this paper to consider the most efficient way of providing
aspects of this infrastructure. Specifically, we concentrate on
the storage costs of this infrastructure, as it is believed that
this will be the dominant cost in the provision of data-
intensive applications such as VoD [2], [3] . VoD represents
a class of interactive video services ranging from broadcast
television (noninteractive) to true VoD (fully interactive). For
the purposes of this paper, the distinction is not particularly
important, but the discussions here relate predominantly to
true VoD systems.

True VoD requires the provision of a digitally compressed
video stream to an individual customer’s premises. This stream
is then uncompressed and displayed on a standard television,
by way of a simple set-top box (STB). This set-top box is
also able to send control messages upstream which enable
fast-forward (FF), rewind (REW), and pausing capabilities.
Video streams are provided by a large video server (VS)
located within the network. The design of these video servers
is receiving much research attention [4]-[8]. A number of these
video servers are likely to be connected to a local exchange

Manuscript received May 27, 1995; revised October 3, 1995.
The authors are with the Switched Networks Research Centre, University

Publisher Item Identifier S 0733-8716(96)04891-3.
of Wollongong, Northfields Avenue, Wollongong NSW 2522, Australia.

I 1

/ -
STB

STB

STB 1
,.

Fig. 1. Generic VoD network architecture. STB denotes set-top box, FES
denotes front-end server, VB denotes video buffer, VS denotes video server,
and VL denotes video library.

(or video dialtone gateway, hereinafter referred to as a front-
end server (FES)) which is responsible for establishing and
managing connections between the STB and the VS [2]. The
overall network architecture for provision of VoD is shown
in Fig. 1.

With reference to Fig. 1, it is true that the final hop of the
network from the FES to the STB could rely on a number of
technologies. The requirement is for a technology that will
allow several Mbls to be transmitted to individual homes.
Possible alternatives include asymmetric digital subscriber
loop (ADSL), hybrid-fiber-coax (HFC), and fiber-to-the-home
(FTTH). ADSL has the advantage that it relies on existing
twisted-pair, but the modem technology required at each end
of the connection is currently very expensive 191. HFC requires
laying fiber to some point in the community before using
coaxial cable for the final run to each home. This is a
potentially cheaper alternative but requires a sizeable initial
outlay for new cable infrastructure. FTTH is thus a long way
from being a reality.

In the next section of this paper, we will examine the
functionality required at the FES before looking at the various
costs associated with providing a VoD service in the wide area.
We will then derive a cost effective storage allocation method
for a video server, before concluding with a comparison of the
costs of a distributed versus centralized approach to VoD.

11. FUNCTIONALITY OF THE FES
The FES is required in the network for a number of

reasons. It provides i) initial connection establishment to ST13,
ii) a menu of choices to the subscriber, iii) interconnection

0733-8716/96$05.00 0 1996 IEEE

(b) Generic VoD network architecture. (Repro-
duced from [16])

Fig. 2.1 (a) In this architecture, video servers are installed in the metro
network to reduce the load on the core network. (b) Video library (VL) and
video servers (VS) deliver the videos to the user’s set-top box (STB). The front-
end server (FES) is responsible for making and maintaining the connection
between the user’s set-top box and the video server. The front-end servers can
also have a smaller video buffer (VB) to serve a fraction of the requests.

In this section, we present architectures and topologies that have been considered for

VoD networks. In general, the available network infrastructure is divided into a core net-

work and local/metro networks such as that depicted in Fig. 2.1(a) [15–22]. The core

network is typically where substantial bandwidth is both available and needed due to

aggregated transit traffic between the origin and replicas or clients. The local/metro

network is responsible for the delivery to the users and is usually organized in a tree-

hierarchy [16, 18, 21–23], but Wauters et al. have proposed to interconnect nodes as a

ring [15].

The deployment of a VoD network consists of placing and connecting a few elements

shown in Fig. 2.1(b). The set-top box (STB) installed at the users’ household is used to

uncompress and display streams on a standard television. The video library (VL) and

2 Literature Review 7

servers (VS) are responsible for storing and streaming the video objects. The front-end

servers (FES) are responsible for the establishment and management of the connections

between the set-top box and the video server. With the presence of a video buffer, a front-

end server effectively becomes a small video server. Referring to Fig. 2.1(a), the main nodes

represent the video servers and the local nodes front-end servers.

The location and presence of these elements in the network varies between each design.

In a centralized architecture, the origin server is responsible for serving all the clients

(Fig. 2.2(a)). Although it is very simple, this approach has serious weaknesses: a single

point of failure and high load on both the origin server and the backbone network. Due

to these shortcomings, authors have focused on distributed approaches with proxy servers

installed at strategic location in the network (closer to the clients). The proxy servers cache

content to reduce the load on the origin, as shown in Fig. 2.2(b) [15,16,20,22,23].

Instead of deploying proxy servers in the client domain, content distribution networks

(CDNs) use proxy servers (called replicas or surrogates) on the edge of the core of the

network, as close to the user-end as possible (Fig. 2.2(c)). The purpose of a CDN is

to transmit to users the content they requested in the most efficient manner, that is,

meeting the quality of service (QoS) requirements at the lowest cost possible. Content

distribution networks, such as Akamai, achieve this by re-routing clients’ requests to their

replica servers [24]. Placing copies of objects at edge proxy servers closer to the user

minimizes the delay at the user-end while reducing the bandwidth requirements at the origin

server by serving a fraction of the requests at the proxies [25]. Furthermore, Barnett shows

that distributed approaches can solve the main problems associated with centralized design

without increasing cost [16]. However, Hefeeda et al. argue that proxy-based approaches

shift the bottleneck from the origin to the proxy servers without reducing the cost and

that CDNs are not cost-effective solutions for streaming media [17]. As an alternative,

they propose a hybrid architecture based on the peer-to-peer (P2P) paradigm to distribute

the files to the users (Fig. 2.2(d)). Ditze et al. have also considered collaborative transfers

between peers to improve the scalability of media delivery networks [21]. In P2P-based

architectures, network coding eases the scheduling and makes distribution more efficient [26,

27]. Finally, other solutions include placing proxy servers with different functionality both

inside and outside the core [18] and assigning one server for each movie [19].

2 Literature Review 8

and cost-effective media streaming architecture

over the current Internet a challenge. In this paper,

we target on-demand streaming environments

such as the one shown in Fig. 1. Examples of this

environment include a university distance learning

service and an enterprise streaming service. In this
kind of environment, the media contents are

streamed to many clients distributed over several

campuses or branches in the Internet.

Before we proceed, we clarify the differences

between a P2P file-sharing system and a P2P media

streaming system [41]. In file-sharing systems such

as Gnutella [26] and Kazaa [27], a client first

downloads the entire file before using it. The
shared files are typically small (a few Mbytes) and

take a relatively short time to download. A file is

stored entirely by one peer and hence, a requesting

peer needs to establish only one connection to

download the file. There are no timing constraints

on downloading the fragments of the file. Rather,

the total download time is more important. This

means that the system can tolerate inter-packet
delays. In media streaming systems, a client over-

laps downloading with the consumption of the file.

It uses one part while downloading another to be

used in the immediate future. The files are large

(on the order of Gbytes) and take a long time to

stream. A large media file is expected to be stored

by several peers, which requires the requesting peer

to manage several connections concurrently. Fi-

nally, timing constraints are crucial to the

streaming service, since a packet arriving after its

scheduled playback time is useless.

There are several approaches that can be used

to stream media to the clients in the target envi-

ronment. We start by briefly describing the current
approaches in the literature. The objective is to

highlight the key ideas and limitations of each

approach and to position our proposed approach

in the appropriate context within the global pic-

ture. We can roughly categorize the current ap-

proaches into two categories: unicast-based and

multicast-based.

1.1. Unicast-based approaches

In these approaches a unicast stream is estab-

lished for every client. Roughly, there are three

approaches that use unicast for on-demand

streaming: centralized, proxy, and content distri-

bution networks (CDN).

Centralized. The straightforward centralized
approach (Fig. 1) is to deploy a powerful server

with a high-bandwidth connection to the Internet.

This approach is easy to deploy and manage.

However, the scalability and reliability concerns

are obvious. The reliability concern arises from

the fact that only one entity is feeding all clients;

i.e., there is a single point of failure. The scala-

bility of these approaches is not on a par with
the requirements of a media distribution service

that spans large-scale potential users, since adding

more users requires adding a commensurate

amount of resources to the supplying server. There

are two other critical, but less obvious, disadvan-

tages of the centralized approach: high cost and

load on the backbone network. To appreciate the

cost issue, consider, for instance, a streaming ser-
ver connected to the Internet through a T3 link

(�45 Mb/s), which is a decent and expensive link.

This server would be able to support up to 45

concurrent users requesting media files recorded at

1 Mb/s, assuming that the CPU and I/O support

that. Since all clients have to go to the server for all

requests, much traffic will have to travel through

the wide-area network. This adds to the cost of
streaming and increases the load on the backbone

network. In addition, when the traffic travels

ClientOrigin Server

Fig. 1. The target environment for the proposed streaming

architecture. Examples include a university distance learning

service and a corporate streaming service.

354 M.M. Hefeeda et al. / Computer Networks 44 (2004) 353–382

(a) Centralized architecture

through many network hops, it will be susceptible

to higher delay variations and packet losses due to

possible congestion in the Internet.

Proxy. In the proxy approach [13,17,36,39],

proxy servers are deployed near the client domains

(Fig. 2). Since movies are large in size, the proxy
may be able to cache a few movies in their entirety.

A number of caching techniques have been pro-

posed to enable the proxy to cache a fraction of

each movie, and therefore more movies can be

cached. In prefix caching [36], the proxy stores the

first few frames of the movie allowing for short

startup delays. In staging caching [39], the proxy

stores the bursty portions of the frames and leaves
the smoother parts on the central server. This

alleviates the stringent bandwidth requirements on

the WAN links. A non-contiguous selection of

intermediate frames can also be cached [17], which

facilitates control functions such as fast forward

and rewind. The proxy approach and its variations

save WAN bandwidth and is expected to yield

short startup delay and small jitter. On the negative
side, this approach requires deploying and man-

aging proxies at many locations. While deploying

proxies increases the overall system capacity, it

multiplies the cost. The capacity is still limited by

the aggregate resources of the proxies. This shifts

the bottleneck from one central point to a ‘‘few’’

distributed points, but does not eliminate it.

Content distribution network. The third unicast

approach employs a third-party for delivering the

contents to the clients. This third party is known as

a content delivery network (CDN). Content

delivery networks, such as Akamai and Digital

Island, deploy thousands of servers at the edge of
the Internet (see Fig. 3). Akamai, for instance,

deploys more than 10,000 servers [1]. These servers

(also called caches) are installed at many POPs

(point of presence) of major ISPs such as AT&T

and Sprint. The idea is to keep the contents close

to the clients, and hence traffic traverses fewer

network hops. This reduces the load on the

backbone network and results in a better service in
terms of shorter delay and smaller loss rate. The

CDN caches the contents at many servers and

redirects a client to the most suitable server. Pro-

prietary protocols are used to distribute contents

over servers, monitor the current traffic situation

over the Internet, and direct clients to servers.

Cost-effectiveness is a major concern in this ap-

proach, especially for distributing large files such
as movies: the CDN operator charges the content

provider for every megabyte served. This delivery

cost might be acceptable for relatively small files

such as web pages with some images. However, it

would render a costly streaming service for the

targeted environment because media files are typi-

cally large.

Client

Proxy
Server

Origin Server

Fig. 2. Proxy-based architecture for distributing media.

CDN Overlay

ClientMedia Server

Fig. 3. The CDN approach for distributing media.

M.M. Hefeeda et al. / Computer Networks 44 (2004) 353–382 355

(b) Proxy-based architecture

through many network hops, it will be susceptible

to higher delay variations and packet losses due to

possible congestion in the Internet.

Proxy. In the proxy approach [13,17,36,39],

proxy servers are deployed near the client domains

(Fig. 2). Since movies are large in size, the proxy
may be able to cache a few movies in their entirety.

A number of caching techniques have been pro-

posed to enable the proxy to cache a fraction of

each movie, and therefore more movies can be

cached. In prefix caching [36], the proxy stores the

first few frames of the movie allowing for short

startup delays. In staging caching [39], the proxy

stores the bursty portions of the frames and leaves
the smoother parts on the central server. This

alleviates the stringent bandwidth requirements on

the WAN links. A non-contiguous selection of

intermediate frames can also be cached [17], which

facilitates control functions such as fast forward

and rewind. The proxy approach and its variations

save WAN bandwidth and is expected to yield

short startup delay and small jitter. On the negative
side, this approach requires deploying and man-

aging proxies at many locations. While deploying

proxies increases the overall system capacity, it

multiplies the cost. The capacity is still limited by

the aggregate resources of the proxies. This shifts

the bottleneck from one central point to a ‘‘few’’

distributed points, but does not eliminate it.

Content distribution network. The third unicast

approach employs a third-party for delivering the

contents to the clients. This third party is known as

a content delivery network (CDN). Content

delivery networks, such as Akamai and Digital

Island, deploy thousands of servers at the edge of
the Internet (see Fig. 3). Akamai, for instance,

deploys more than 10,000 servers [1]. These servers

(also called caches) are installed at many POPs

(point of presence) of major ISPs such as AT&T

and Sprint. The idea is to keep the contents close

to the clients, and hence traffic traverses fewer

network hops. This reduces the load on the

backbone network and results in a better service in
terms of shorter delay and smaller loss rate. The

CDN caches the contents at many servers and

redirects a client to the most suitable server. Pro-

prietary protocols are used to distribute contents

over servers, monitor the current traffic situation

over the Internet, and direct clients to servers.

Cost-effectiveness is a major concern in this ap-

proach, especially for distributing large files such
as movies: the CDN operator charges the content

provider for every megabyte served. This delivery

cost might be acceptable for relatively small files

such as web pages with some images. However, it

would render a costly streaming service for the

targeted environment because media files are typi-

cally large.

Client

Proxy Server

Media Server

Fig. 2. Proxy-based architecture for distributing media.

CDN Overlay

ClientOrigin Server

Fig. 3. The CDN approach for distributing media.

M.M. Hefeeda et al. / Computer Networks 44 (2004) 353–382 355

(c) CDN approach

1.3. The proposed architecture

We propose a new peer-to-peer (P2P) media

distribution architecture that can support a large

number of clients at a low overall system cost. The
key idea of the architecture is that end systems

(called peers hereafter) share some of their re-

sources with the system. As peers contribute re-

sources to the system, the overall system capacity

increases and more clients can be served. As shown

in Fig. 6, most of the requesting peers will be

served using resources contributed by other peers.

The proposed architecture employs several novel
techniques to avoid the limitations of the current

approaches. Specifically, it has techniques to:

(i) Use the often-underutilized peer resources,

which makes the proposed architecture both

deployable and cost-effective. It is deployable

because it does not need any support from

the underlying network: all work is done at
the peers. Since the architecture neither needs

new hardware to be deployed nor requires

powerful servers, it is highly cost-effective.

(ii) Aggregate contributions from multiple peers

to serve a requesting peer. This indicates that

a single supplying peer may only serve a frac-

tion of the full request. Moreover, the request-

ing peer is not required to have an extra
inbound bandwidth to get full-quality stream-

ing.

(iii) Organize peers in a network-aware fashion, in

which nearby peers are grouped into a logical

entity called a cluster. This organization of

peers is validated by statistics collected and

analyzed from real Internet data. The main
benefit of the network-aware peer organiza-

tion is that it allows for developing efficient

searching (to locate nearby suppliers) and dis-

persion (to disseminate new files into the sys-

tem) algorithms. Network-aware searching

and dispersion result in two desirable effects:

(1) reduction of the load on the underlying

network, since the traffic traverses a fewer
number of hops, and (2) better streaming ser-

vice because the delay is shorter and less var-

iable.

(iv) Make good use of peer heterogeneity [34]. The

architecture assigns relatively more work to

the powerful peers. Specifically, powerful

peers help in the searching and the dispersion

algorithms. This special assignment makes the
proposed architecture not purely P2P. There-

fore, in the rest of the paper we will call it the

hybrid architecture.

The P2P architecture has the potential to pro-

vide the desired large-scale media distribution

service, especially for the environments consid-

ered in this paper (Fig. 1). These environments
assume that peers can be asked/configured to share

resources. For example, a university distance

learning service may configure peers at remote

campuses to share storage and bandwidth. This is

not a concern, since these peers are owned by the

university. The architecture may also be extended

to provide a commercial service. However, in this

case peer rationality or self-interest should be
considered, since peers may not voluntarily con-

tribute resources to the system. This requires

developing economic incentive mechanisms to

properly motivate peers. One such mechanism is

the revenue sharing proposed in [11]. In the reve-

nue-sharing mechanism, the provider shares part

of the revenue from serving clients with the peers

who helped in serving those clients.
The rest of this paper is organized as follows.

Section 2 provides an overview of the proposed

architecture. The network-aware organization of

Super Peer

Peer

Seed Peer

Fig. 6. The proposed hybrid architecture for distributing

media.

M.M. Hefeeda et al. / Computer Networks 44 (2004) 353–382 357

(d) Hybrid architecture

Fig. 2.2 Architectures used for media delivery. (a) In the centralized archi-
tecture, all the requests from the clients are handled at the origin server. (b)
Proxy servers located close to the user-end reduce the load on the origin server
by caching content to serve a fraction of the clients’ requests. (c) Content de-
livery network (CDN) is a third-party solution that deploys proxy servers in
the core of the network (close to the edge) that serve a fraction of the clients’
requests. (d) In a peer-to-peer (P2P) based approach, the peers share their
resources to distribute the media. Powerful peers help in routing the requests
and searching for content. (Reproduced from [17])

2.2 Content Allocation

Deciding upon the location of the proxy servers is not the only task, because the determi-

nation of the optimal content to store at each of these locations is non-trivial. The choice

2 Literature Review 9

of content has an impact on the total cost (amount of storage required) and on the user

perceived quality. If the selection is poorly made, users are forced to retrieve the data from

the origin server which increases latency and the load on the origin server.

A content allocation strategy is server replication, which consists of placing copies of the

origin server at strategic places in the network. Server replication partitions the network,

resulting in lower bandwidth requirements at the expense of server cost. When using such

a strategy, the placement of the servers that minimizes total cost is above the switches

that connect the users to the network; between 70% and 90% of the path length between

the origin server and the user-end [28]. However, according to Lu, content distribution

networks using edge delivery (files are transmitted to users via servers placed on the edge

of the Internet) cannot be scaled to deliver high-quality broadband video because there

are no sufficient and affordable bandwidth and QoS on the last mile. [29]. He proposes

the inclusion of “leaf servers” in local-area networks (LANs); these serve as second-tier

surrogate and support a relatively small number of clients. The motivation behind this

approach is that heavy traffic does not go beyond the edge servers of the core network and

LANs have abundant and stable bandwidth, are less dependent on a sophisticated direction

system and have a higher degree of personalization.

It is not always possible to have complete replicas of the origin server because the large

size of multimedia objects leads to a high storage cost. An alternative is to store only

specific objects from the origin at the surrogate servers; upstream bandwidth is reduced

at the cost of increasing the storage for caching the most popular programs. Using the

cost model he developed, Schaffa found that overall minimum cost is achieved when 15%

of the programs are cached at 80% of the path length between origin and client [28]. The

popularity of an object changes through time and a hot (popular) file might become cold

(the number of requests falls below a given threshold) after some time. To maintain request

coverage stable for long periods, it is important to replace objects that become cold with

hot objects, a procedure called incremental clustering in [30].

Schaffa suggests that program caching be performed at more than one level in the

network hierarchy [28]. The idea is to use a main cache to reduce overall system cost and a

secondary cache at a higher level for fine-tuning the performance. When the main cache is

close to the root, the cost of the system is mainly driven by the bandwidth component which

makes the secondary cache almost useless. As the main cache is placed closer to the user,

storage starts being the dominant factor and splitting the cache becomes advantageous. If

2 Literature Review 10

the client request rate is high and/or proxy storage is limited, storing file prefixes rather

than full files significantly reduces delivery cost [31,32]. It prevents clients from experiencing

delays and jitter and reduces traffic on the origin-proxy path. Despite these advantages,

Almeida et al. argue that storage at proxies is only effective if the origin is not multicast-

enabled, the file request is low or the cost of a proxy is a small fraction of the origin

server [33].

An efficient way to improve the performance is by sharing the content of the different

surrogate servers by grouping them into clusters [20]. Clustering avoids the duplication of

content at servers that are close to each other. In a hierarchical content routing scheme [34],

the request are served by the local server (local hit), by another server in the same cluster

(intra-cluster), by a server outside the cluster (inter-cluster), or by the original content

server. Another approach is to cluster data using correlation distance (spatial, temporal,

session clustering or popularity-based) [30].

Finally, it is worth mentioning that there are two different approaches to allocate con-

tent [30]. First, in the client-initiated approach, or pull-caching, the replica retrieves the

copy of an object in the case of a cache miss. On the other hand, in a server-initiated

approach, or push-caching, content is distributed to replicas before any requests for this

data have been made [35]. If we anticipate that a specific object will be very popular (e.g.

blockbuster movie release), it is advantageous to distribute the object prior to any requests

in order to avoid cache misses and longer delays.

2.2.1 Choice of Content and File Popularity

When allocating content with a program caching scheme, only the most popular files are

stored, with the aim of minimizing the storage and bandwidth needs. By using an appro-

priate popularity distribution, we can predict the hit ratio at a replica site given the set of

files it is hosting. The hit ratio represents the probability that a user’s request is served on

a given path (or a given replica) [2].

Previous studies exploring the distribution of multimedia files in CDNs have used Zipf’s

Law to characterize the popularity of the different files [15, 28, 31, 33, 34]. In Zipf-like

distributions, access frequency for file of rank i is equal to C/iα, where C is a normalization

constant and α > 0 is the distribution parameter [36]. Such distributions generate a linear

curve in a log-log plot of access frequency versus rank. In [30], the analysis of Chen

2 Literature Review 11

indicates that 80% of all requests are for 10% of all Web objects. Based on a video store

rental statistics ([37]), researchers also adopt the Zipf approach [38–40] to model popularity

in video-on-demand applications. Although this data seems to fit a Zipf curve (Fig. 2.3(a))

on a linear scale, Fig. 2.3(b) shows that the part of the curve for the most popular files is

flattened and does not fit the Zipf linear curve on a log-log graph.

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200 250
movie index

re
n

ta
l f

re
q

u
en

cy

(a) linear scale

1

10

100

1000

1 10 100 1000
movie index

re
n

ta
l f

re
q

u
en

cy
(b) log-log scale

Fig. 2.3 (a) The popularity distribution from a 1992 video rental data set
used to justify Zipf’s law in many video-on-demand proposals, along with a
Zipf curve fit with α = 0.9, and (b) the same data set and curve fit plotted on
a log-log scale. Contrary to the assumption of many papers, video rental data
does not appear to follow Zipf’s law. (Reproduced from [10])

Gummadi et al. explain this behaviour by analyzing the characteristics of video ob-

ject access [10]. VoD system users rarely access the same file twice because the files are

not modified (fetch-at-most-once). However, new files are often added to the system. In

contrast, Web objects are accessed more than once because they are updated regularly

(fetch-repeatedly). Since the popularity of a movie diminishes in time, when new titles are

added to the system, they become the most popular titles. Hence, popularity distributions

need to be adjusted over time. To model the flattened part of the curve, Almeida et al.

used a mixture of two Zipf distributions, after noticing the log-log graph is divided in two

linear curves [41]. Although the mixture model fits the data reasonably well, there is no

explanation of why the mixture is a realistic model. Gummadi et al. propose a model

that is driven by Zipf’s Law but takes into account the “fetch-at-most-once” and “new

arrivals” factors [10]. When a client makes a second request, the previously fetched files

are removed from the distribution and access probabilities are recalculated to have a total

probability of 1. When an object is added to the system, its popularity rank is determined

from a Zipf distribution, the rank of existing files which are less popular is decreased and

2 Literature Review 12

file probabilities are recalculated to normalize the distribution to 1.

Gridwodz et al. propose a model for request generation based on the long-term life cycle

of movies in the VoD context and varying user population sizes. They consider not only

day-to-day changes when estimating the popularity of a file, but also the variations of the

users’ behaviour throughout the day: children’s interests dominate during the afternoon

whereas adults’ interests dominate later in the day [23].

2.3 Content Delivery

Content delivery consists of transmitting objects from the surrogate servers (or origin

servers) to the clients. A popular technique to transmit large multimedia files over the

Internet is called streaming. It allows clients to start displaying the data before the en-

tire file has been transmitted which is useful if the user does not have fast access or the

file to send is very large. VoD is unicast in nature (there is a dedicated stream to each

user), which imposes significant bandwidth pressure on the network, but provides inter-

active VCR functions to the user. In broadcast schemes, the video is transmitted with

a pre-defined schedule on a dedicated channel that supports any number of clients with

a constant amount of bandwidth. As opposed to unicast connections, the client has no

control on the stream (when it starts or stops) and bandwidth is wasted if the popularity

of the video is low.

Another scheme is multicasting, which is a one-to-many connection where multiple

clients receive the same stream from a server by monitoring (listening) to a specific multicast

IP address [42]. Lichtenberg argues that multicasting can easily be implemented in existing

client and server structures and provides a better Quality-of-Service (QoS) while saving a

substantial amount of bandwidth [43]. An example of multicasting is batching, which

collects requests that arrive within a given time interval and then multicasts the stream

to the clients [44, 45]. In patching (stream tapping), if there is no stream for a video,

then one is initiated when a client requests it [46–48]. If it already exists, then the client

simultaneously listens to the multicast stream of the video and retrieves, from a proxy

server, the part of the video that was streamed before he joined the broadcast. In [14],

Lee proposes a trade-off between nVoD and iVoD called unified video-on-demand (uVoD).

This approach first tries to serve a client by searching for a channel that is multicasting the

requested movie, if none is available it assigns the first free unicast channel. Although this

2 Literature Review 13

scheme shows performance close to that of iVoD, it requires additional buffering capabilities

at the user-end.

The problem with aforementioned techniques is that they all require the path between

the server and the client to be multicast-enabled (all the routers on the path must be able

to interpret Class D IP addresses), but multicast capability is far from being fully deployed

on the Internet due to its lack of support by Internet Service Providers (ISPs) [31, 49].

One solution when the end-to-end network provides only unicast service is to use proxy-

assisted transmission schemes (one-to-one connection between the server and the client).

By using patching in the unicast context (which is possible because proxies can forward

one copy of the data to multiple clients), Wang et al. derived a transmission scheme that

takes advantage of prefix caching at proxy servers [31]. The proxy transmits the prefix

to the clients (if present locally) and schedules the transmission of the suffix from the

origin server. If a request arrives within a given interval after the transmission of the suffix

starts, the proxy can schedule a patch from the origin for the missing part of the suffix.

Application-layer Multicast provides another alternative to IP multicast [49–51]. In this

method, end hosts need to maintain a data forwarding path for nearby hosts. In [49],

Milic et al. suggest an approach called Multicast Middleware that uses a virtual network

device for capturing the traffic and forwarding it to a user application. Hsu et al. propose

a mechanism called Active Video Delivery (AVD) that takes advantage of application-layer

multicast [52]. Although AVD does not require all the routers on the transmission path

to be multicast-enabled, it achieves the same efficiency as IP Multicast. Another way to

transmit content without requiring multicast support on the delivery path is to use peer

resources [17,21,26,27].

2.3.1 Traffic Models

We are interested in modeling traffic generated by high quality video (determining the

amount of bandwidth required for a stream) for applications like VoD. Without using any

compression schemes, it would be difficult to transmit DVD-like quality videos over the

Internet because of their large bandwidth requirements. For that reason, compression

methods like MPEG, which can achieve high compression ratio while maintaining good

quality, are used and MPEG-encoded sources are expected to generate a large part of the

Internet traffic in the future.

2 Literature Review 14

(a) Concurrent streams per subscriber (b) Bandwidth per subscriber

Fig. 2.4 VoD usage projections by time of day and day of week. (Reproduced
from [54])

MPEG videos are encoded using a variable bit rate (VBR) making traffic modeling a

non-trivial task. The VBR is caused by the fact that compression is performed by encoding

each frame using one of three different schemes: intra(I), predicted(P) and bidirectional(B).

I-frames are encoded with a low compression ratio, but are independent and act as reference

points. P-frames provide a higher compression by using motion-compensated prediction

based on the previous I or P frame. Finally, B-frames achieve the highest level of compres-

sion by using both the previous and next frame in the sequence for its prediction. These

different levels of compression produce frames with different sizes and hence a variable bit

rate. MPEG movies use a group-of-picture (GOP) structure based on a (N,M) cyclic for-

mat; each sequence contains N frames (6, 8, 10, etc.) with the first one being an I-frame

and every Mth one a P-frame [53]. A full-length movie is usually encoded with one GOP

structure even though the MPEG standard allows the use of many different structures.

The variable bit rate (VBR) and high burstiness of these movies make it difficult to

predict the required resources. By reserving resources based on average rates, long delay

are experienced in case of bursts or when the source is transmitting at peak rates. Fig. 2.4

depicts projections of the usage (in terms of concurrent streams and bandwidth per sub-

scriber) of VoD during the next five years. Although these expectations are not based on

actual data, the presence of peak hours, during which bandwidth requirements are substan-

tially greater than at other times, is highly likely. If the system is designed to support the

peak rates, it will be under-utilized outside the high-usage periods [54]. On the other hand,

if it is not, the customers will experience poor service during the busy hours. One way to

2 Literature Review 15

eliminate the peaks and maintain a constant rate is to request content ahead of time. How-

ever, this procedure requires users to have a device that can store the content at home. A

solution to this problem is using a stochastic process to model the dynamics of VBR video

traffic. Models of this nature take advantage of the statistical properties of the source to

achieve higher utilization of the bandwidth. However, Wrege et al. argue that using these

models has several drawbacks, mainly arising from difficulty of implementation and com-

plexity [55]. Therefore, as an alternative, they suggest using deterministic models, which

provide an absolute upper bound (worst case) on the source’s arrival traffic. Empirical

evidence indicates that peak-rate allocation, which leads to low-utilization of the network

resources for bursty traffic, is not required for deterministic models [56–59]. These models

are parameterized to establish an upper-bound on the arrival rate from the source . As an

example, the token-bucket approach uses two parameters: average rate and bucket depth.

As this solution is not suitable for variable bit rate sources, Lee et al. present an improved

version of the leaky-bucket scheme by updating the parameter pair after every group-of-

picture [60]. They take advantage of the fact that I-frames and P-frames can tolerate one

extra frame delay compared to B-frames to reduce the bandwidth requirements [61]. Their

simulations show better accuracy and higher utilization than previous leaky-bucket models

or peak rate models.

The deterministic models are called data-rate models (DRMs) because they only con-

sider the rate at which data is arriving. While these models are good for predicting average

packet-loss probability, they fail to identify such details as percentage of frames lost or

incomplete [53]. Alternatively, there are frame-size models (FSMs) which generate the size

of individual MPEG frames that can afterwards be used to deduce the data-rate. Sarkar

et al. show, through model simulation, that even a small loss rate can decrease the video

quality substantially because loss of an I-frame (or part of it) affects an entire GOP [53].

They propose two FSMs that generate frame sizes for full-length VBR videos preserving

both GOP periodicity and size-based video-segment transitions, which previously proposed

FSMs failed to do. These transitions are modeled with a Markov renewal process, an ap-

proach also adopted in [62, 63]. Zhang et al. add that it is important to consider the

entire auto-correlation structure (many models deal with I, B and P frames sub-sequences

separately) [64]. Finally, Janakiraman et al. propose a proactive multicast scheme and

demonstrated that it was able to deliver VBR content over constant-rate channels with

minimal performance loss or complexity overhead [65].

2 Literature Review 16

Another consideration with video on demand (VoD) when predicting the required band-

width is that several videos can be transmitted simultaneously on the same link. In that

case, effective bandwidth per video (measure of the amount of bandwidth that a given

source will use over a given time period) is in fact much lower because the average frame-

size of a VBR video is usually different in different segments; this is known as multiplexing

gain. Zhou et al. have developed a Markov-modulated gamma (MMG)-based model to

predict the value of this multiplexing gain [63].

2.3.2 Request Routing

Request routing is a function performed by a content distribution network which consists

of directing the client requests to the best surrogate server. The objective of a request

routing algorithm is to exclude the surrogate servers that provide low performance while

avoiding overloading the others.

For a replicated server system, one of the simplest approaches is Round-Robin (RR) [66].

This algorithm selects which surrogate serves a specific request in a cyclic mode without

considering the state of the network. It means that a RR scheme can assign a surrogate that

is overloaded or out of service to handle a specific request. On the other hand, there are

many schemes which use various metrics to make a better decision than the RR algorithm.

For example, the Response Time (RT) algorithm selects the surrogate based on the response

time the user previously experienced with a particular server [67]. Although this scheme

distributes requests among the different surrogates more efficiently than the RR scheme

and provides users with low delay, it does not necessarily prevent overloading. On the other

hand, the Load scheme assigns a probability to each surrogate in inverse proportion to the

client-replica path’s current utilization [68]. So, the Load algorithm prevents overloading

by reducing the chance of a request being served by a busy server. In [66], Masa proposes an

algorithm that takes full advantage of the CDN architecture by considering latency, cluster

request rate and link load and capacity. Worst Surrogate Exclusion (WSE) is based on

three concepts: the exclusion of surrogates with latency higher than the estimated average

system response time, the equalization of the average response time and the prevention

of overloading the surrogate servers. Based on simulation results, Masa shows how WSE

performs better than the other schemes which either consider only one metric (Load and

RT) or do not consider the network at all (RR).

2 Literature Review 17

When program caching is preferred to server replication, the request routing algorithms

are different than those just described. Because surrogate servers are hosting sets of differ-

ent objects, requests cannot be simply routed according to some metric. A simple method

is the query-based scheme [34], in which a proxy broadcasts a query to other nodes in its

cluster if it does not have the requested content locally. If a node in its cluster responds

positively, the request is routed to that server. The downside of this approach is that the

queries and replies generate a significant amount of traffic. An alternative is a digest-based

scheme where each proxy maintains a list of the information stored on all others [69]. Al-

though there is no “query traffic”, these lists need to be kept up-to-date date which, again,

can produce significant traffic. One way to reduce this “update-traffic” is to centralize the

list of files hosted by each proxy on a directory server [70]. Even if this approach helps to

reduce undesired traffic, it has the disadvantage of having a single point of failure. Jian

et al. propose a solution called the semi-hashing based approach which has small routing

overhead and high efficiency [34]. Their scheme is a modified version of the hashing method

([71,72]) which uses the content’s URL, the address of the proxies and a hashing function to

redirect the request to a designated proxy. Their enhancement consists of reserving a por-

tion of storage at each proxy for local popular content. They show that even if the amount

of storage dedicated is very small (smaller than 20%), there is a significant improvement

in performance (higher hit-ratio). The only constraint is that cooperating proxies must be

close to one another because requests are often redirected.

2.4 Optimization Problems

In section 2.1, we presented distributed architectures in which replicas are placed in strategic

locations. Placing replicas very close to the clients, in order to achieve very small delay, is

not a viable solution because of the storage costs it incurs. On the other hand, placing the

replicas too close to the origin requires far too much bandwidth to handle all the traffic. The

replica placement problem consists of determining the location of replicas in the network

such that the performance is maximized given an infrastructure or that the infrastructure

cost is minimized for a given quality of experience (QoE) impairment, such as delay, packet

loss, frame loss, or packet jitter. Content delivery networks are usually modeled as read-

only (or read-mostly) workloads using classic network problems like the k-median problem

or the facility location problem [73]. In the k-median problem, the objective is to select k

2 Literature Review 18

locations for replicas among m potential sites for a fixed k. The choice for this value of

k is not obvious; if the value is too small, clients are forced to take a longer route (long

response time and high load on the network) whereas if the value is too large, the hit ratio

becomes smaller and hence cost of delivery is shared by fewer requests. A high number

of replicas results in a considerable traffic load to distribute the objects to the replicas.

Therefore, contrary to intuition, deploying as many replicas as possible is not always good.

A solution, to avoid this tedious task of determining a value for k, is to find the subset of

the m locations that minimizes the cost over all possible values of k, which is known as the

facility location problem [2].

Determining the location of the replicas is only one of the problem involved in the design

on content distribution networks. The placement of the objects (which objects to cache

at each replica) and the allocation of streaming and storage capacity at each location are

other problems that affect the final design. In [45], the video placement problem is defined

as identifying the number of copies of each video and their location such that capacity

usage is minimized and a specified quality-of-service (QoS) is guaranteed. Laoutaris et al.

argue that the replica and video placement problems should not be solved independently

of the resource allocation problem to avoid a suboptimal solution [74]. They define the

storage capacity allocation problem as the distribution of an available storage capacity

budget to the nodes of a hierarchical content distribution system, given known access costs

and client demand patterns. In [15], Wauters et al. address the resource allocation problem

of determining the equipment required for transport (number of ports at each server and

number of multiplexers and switch ports at each node). In this thesis, we focus on a

different resource allocation problem: determining equipment required to store and stream

the content at each location (number of streaming and storage devices).

2.4.1 Parameters and constraints

To solve these problems, it is crucial to first determine a good cost function which is

minimized whilst respecting appropriate constraints. An important factor to consider when

determining the cost function is the internodal distance between clients, replicas and origin

servers. Many metrics are used to represent distance such as network latency, number

of hops, or link cost (also called bandwidth cost). Another way to express distance is

transmission cost, i.e., the cost to transmit a bit on a specific path [31, 75]. Bartolini et

2 Literature Review 19

al. propose a scheme where requests are served by the closest replica and use distance

as a means to measure the users’ perceived quality by summing the user-replica distance

over all requests [5]. In the streaming case, finding the multicast tree that minimizes the

bandwidth cost is a trade-off between minimizing distance and maximizing the number

of clients sharing a path segment (streaming and multicast are discussed in section 2.3).

Almeida et al. argue that closest server and shortest path routing do not necessarily lead

to lowest cost [76]. Instead, to calculate the delivery cost, they use the total network

bandwidth, which is expressed as the sum (possibly weighted) of the bandwidth required

for each hop on the delivery path.

Another key parameter is the storage server cost, or replication cost, of keeping a copy

of an object at a given location [5, 28, 75, 77]. In addition to storage cost, a fixed start-up

cost or a server installation cost has been considered in [75,77]. Bartolini et al. propose an

algorithm where the location of the replica changes dynamically [5]. The start-up cost is

expressed as the addition or removal of a replica site. The server must also be able to serve

all the incoming requests for this specific file. The server cost therefore includes the cost

of the required bandwidth, which is proportional to the popularity of the file it stores. A

server that hosts very large files (high storage cost) which are not popular (like archives)

has low bandwidth requirements.

In multimedia applications, due to the size of the objects, it is not always possible

to have complete replicas of the origin server, because unacceptably large storage costs

incur. Therefore, a selection of the objects is stored at proxy servers; the choice is based

on popularity and hit ratio. The decision of whether to place a file at a replica is based

on its size and its popularity: is the object popular enough (able to maintain a given

hit ratio) to deserve the storage space it requires? As the popularity of an object can

change through time, it might be necessary to replace objects or update them. In HTTP

applications, objects are small and the transmission cost from the origin server to the replica

is negligible. However, video objects are much larger and the distribution of a document

is only compensated by a finite number of requests from the client. Therefore, the number

of updates or replacements required is another factor to consider.

In defining the optimization problem, the constraints to impose on the possible solutions

must be considered. Depending on the given infrastructure, it might be necessary to upper-

bound the storage capacity of the servers [7,75]. Nguyen et al. add constraints on the load

capacity of the server (number of requests it can handle) and a quality of service (QoS)

2 Literature Review 20

threshold (maximum delay) for each request [77]. Other researchers impose requirements

of the availability of any object in the system, e.g., all requests must be handled and all

objects must be available [75,77].

2.4.2 Cost functions

We divide cost functions into categories according to whether they consider a single or

multiple objects and whether they take storage into account [73]. In a single object cost

function, only the aggregate user demand is considered; the specific objects requested are

unimportant. In the case of streaming media applications, a common choice for the delivery

cost model is one that considers the bandwidth required by the servers and network as the

only factor [33, 76]. An alternative choice is a cost function based simply on distance and

hit ratio [2] (Table 2.1). In a paper by Bartolini et al. the storage, or hosting cost, is part

of the so-called maintenance cost, which also includes the cost of updating the copies at

the different locations (Table 2.1) [5].

A more complicated case is one where there are many different objects in the system,

each with different popularity (user demand). A proposed solution by Wang et al. is

to minimize the transmission cost (similar to what is done in the examples above with

delivery cost) by finding the position for each object that results in the largest savings in

transmission cost (Table 2.1) [31]. However, it is often impossible to minimize the cost while

maximizing the performance because these are two conflicting objectives. Buchholz maps

the quality of the service into the cost domain by determining the amount the customers

are willing to pay for maximal performance [7]. Finally, in the case where both multiple

objects and storage are considered, the cost function is the sum of the start-up cost, storage

cost and transmission cost, as shown in Table 2.1 [28,75,77].

dj demand from client j

hitratio hit ratio of replica i

cij cost (distance) from client j to replica i

ci cost (distance) from the origin to replica i

A(x) user-perceived quality in network configuration x

M(x) maintenance cost per unit of time of a network configuration x

τ(x, d) dwell time of a network configuration x

vi prefix size

2 Literature Review 21

Table 2.1 Categories of cost functions
Objects Storage Example Other

Single
No

∑
∀j

dj · hitratio · cij + dj · (1− hitratio) · (ci + cij) [2] [15,33,76]

Yes [A(x) + M(x)] · τ(x, d) +

|VR|∑
j=1

C∑
k=1

(dk+
j C+ + dk−

j C−) [5]

Multiple No
∑
∀i

saving(mi) =
∑
∀i

Ci(0)− Ci(miu/bi) [31] [7]

Yes
n∑

i=1

CF · y(i) +
n∑

i=1

K∑
k=1

Cs · [
n∑

j=1

xk(i, j)/M]+

+
n∑

i=1

K∑
k

n∑
j=1
j 6=i

Cij · xk(i, j) [75] [28,77]

Ci(vi) transmission cost for video i if a prefix vi is stored

u smallest unit of cache allocation

mi size of video i

bi mean bandwidth of video i

y(i) 1 if a server is installed at location i

xk(i, j) transmission cost of program k from location i to j

CF installation cost of a server

CS storage cost

M number of multiple accesses

Cij transmission cost per program from location i to j

2.4.3 Heuristics

The cost functions presented in section 2.4.2 are often complex and obtaining the optimal

solution is impractical; solving the replica placement problem is considered NP-hard1. The

heuristics (algorithms with no guarantee of finding a solution) presented in this section offer

near-optimal performance as a trade-off to reducing the complexity. In simpler scenarios, it

1The complexity class of decision problems that are intrinsically harder than those that can be solved
by a nondeterministic Turing machine in polynomial time. [78]

2 Literature Review 22

is sometimes possible to calculate the optimal solution and use it as a reference to evaluate

the performance of heuristics.

A popular heuristic, considered by many authors [2,7,30,74,77], is greedy selection [79].

It first chooses the replica that minimizes the total cost and then selects a second replica

among the remaining sites such that the total is minimized when combined with the first

choice. Replica sites are added either until a predetermined number of sites is reached

(k-median problem) or when adding more replicas increases the total cost (facility location

problem) [2]. Genetic algorithms are another approach to solve the optimization problems

described at the beginning of this section [45,75].

Although these methods are known to perform very closely to the optimal solution

(within a factor of 1.1-1.5), they require knowledge about the client locations in the network

and internodal distances [80]. Among the alternatives to greedy algorithms are hot-spot [2]

and max fan-out [2, 80]. In the hot-spot algorithm, the traffic generated near each site is

used as the metric for selection and is expressed as the total number of requests from clients

within a given range. At each step, the algorithm selects the hottest (maximum number of

requests) site available. This is different from the greedy scheme as the latest choice does

not depend on the combined cost with previous selections. The max fan-out algorithm

behaves similarly with the difference that the metric used is the number of input/output

terminals at each site. In both cases, sites are added until a local minimum is reached. As

routers with high fan-out are usually busy, the solution is to build a cluster of replicas as

close as possible to high fan-out routers [80]. By using the sum of distances between each

client and its replica as performance metric, these strategies usually work very well (within

1.1-1.2 of greedy placement). However, performance decreases when the number of clients

is small.

The system state might change through time and the quality of an originally near-

optimal configuration can deteriorate substantially. In order to adapt to system variations,

we can periodically execute any of the aforementioned static algorithms to reposition repli-

cas such that cost is minimized. However, if the period between two executions is not

chosen carefully, the replica placement determined by the last algorithm execution can be-

come poorly matched to the current network state. The dynamic algorithm proposed by

Bartolini et al. analyzes the current configuration and removes unnecessary replica(s) (if

possible) if it can support an increase in user demand [5]. If the current configuration can-

not, the algorithm adds one or more replica(s) while taking the cost of these changes into

2 Literature Review 23

account. When considering as performance measures (i) the average number of replicas,

(ii) user-replica average distance and (iii) the number of requests that cannot be served, the

heuristic performs within 2-4% of the optimal strategy as computed by solving the Markov

decision model.

2.5 Concluding remarks

In this chapter, we reviewed the many aspects to consider when planning a VoD network:

the architecture, the content allocation and delivery and the location of the replicas. In

the first section, we discussed three different distributed architectures that reduce the load

on the origin server by placing replicas (proxy-based and content distribution networks) or

using peer resources (peer-to-peer) to deliver media. In section 2.2, we addressed content

allocation. The size of the media objects and the amount of storage it takes to store

entire libraries (server replication) motivates program caching (cache only the most popular

objects) and prefix caching. Gummadi et al. showed evidence that the Zipf distribution,

which is a good model for the popularity of Web objects and has used by many authors

in the context of VoD, is not appropriate for media objects because of the access pattern

of users for movies (fetch-at-most-once and new arrivals) [10]. In section 2.3, we reviewed

delivery protocols, traffic models for video and request routing mechanisms. Although iVoD

is unicast in nature, multicast is more efficient, but it is much harder to implement because

it is not guaranteed to be supported along all delivery paths. In section 2.4, we presented the

parameters and constraints to consider when solving optimization problems related to the

design of content delivery networks. In particular, the replica placement problem consists

of finding the location of replicas that minimizes a function that includes storage and/or

transport cost. Because minimizing the cost function is a NP-hard problem, heuristics that

produce near-optimal results have been proposed. Greedy algorithms perform the best

when client locations, internodal distances and demand are known, but algorithms such as

hot-spot and max fan-out have been suggested when this information is unknown.

In [15], Wauters et al. have presented a design tool to determine the network equipment

(number of ports at each server and number of multiplexers and switch ports at each node)

needed for a VoD deployment. In this thesis, we address the resource allocation problem

of finding the number of VoD servers required at each location. Our main objective is to

determine not only the location of the replicas, but the details of the equipment required

2 Literature Review 24

(number of storage and streaming devices) at each site of the VoD network. We consider

an architecture in which replicas are organized in a star topology with the origin server

in the middle. This simple architecture requires no complex request routing; requests are

first handled at the replica and, only if necessary, forwarded to the origin. The delivery

to the client is performed using unicast from the replica or the origin and each stream

is dedicated a predetermined and constant amount of bandwidth. We estimate the total

load at each location by calculating the worst-case demand (during peak hours) based

on the population size and use the bandwidth available during off-peak hours for content

distribution (content update) from the origin to the replicas. In the following chapter, we

construct a cost function based on the hit ratio that we optimize by choosing the fraction of

the library to cache at at each location. We assume that the VoD software installed at each

replica is capable of determining the popularity of each movie and properly fill the cache

with the most popular ones. However, to map the size of a cache to its hit ratio, we build

a function based on data generated by simulator that implements the “fetch-at-most-once”

and “new arrivals” factors introduced by Gummadi et al. in [10].

25

Chapter 3

Video-on-demand equipment

allocation

In this chapter, we focus on resource allocation in a VoD network deployed in a metropol-

itan area network such as the one depicted in Fig. 3.1(a). We define the VoD equipment

allocation problem as choosing the number of streaming and storage devices (depicted as

VoD servers in Fig. 3.1(b)) for each potential replica locations, such that the deployment

cost of the VoD system is minimized. We solve this problem by determining the fraction

of the total library that should optimally be stored at each location.

The remainder of this chapter is organized as follows. In Section 3.1, we express the

equipment allocation problem as an optimization problem, and we state our assumptions.

In Section 3.2, we present our solution to this problem, developing a novel cost function,

hit ratio estimation function and heuristic. In Section 3.3, we present the VoD Equipment

Allocation Tool: an interactive design tool that implements our solution. In Section 3.4, we

apply our heuristic to three scenarios with different demand, equipment capabilities, and

topologies (or geographies). We compare the cost generated by our heuristic to a centralized

design and illustrate our method of determining when a centralized VoD deployment should

be modified to a hierarchically-distributed VoD deployment.

3.1 Problem statement

We address the problem of determining the number of storage and streaming devices needed

at each potential replica location. We require the specification of the topology of a metro-

3 Video-on-demand equipment allocation 26

Replica

(a) Logical connectivity

i i i i

i i

i

OR

RC

Streaming
Device

Streaming
Device

Streaming
Device

(b) Replica level

Fig. 3.1 (a) The topology shows the logical connectivity between the clients,
replicas and the origin. All requests originating from a group of clients are
routed to the associated replica through direct fiber. If the request cannot
be served by the replica (file not present), it is re-routed to the origin and
served through DWDM equipment. (b) A replica with ni = 3 VoD servers
each with storage capacity of Gi TB and streaming capacity of Fi Gbps. The
total streaming capacity ni ·Fi must be greater or equal to hi ·Mi where hi is
the hit ratio at site i given the storage capacity ni ·Gi and Mi is the worst-case
demand from the attached group of clients.

area network (MAN) indicating the set of inter-nodal distances and the specifications (cost

and capacity) of network elements and available equipment. We consider the case where

only one type of equipment (VoD server) is installed at each site but allow this equipment

type to vary from site to site. However, in Chapter 4, we relax this assumption and assume a

case where we are given a set of available VoD server models and must determine the number

and the model of servers to install at each location. We define the VoD equipment allocation

problem as choosing the equipment for each of these replicas such that the deployment cost

of the network is minimized.

As illustrated in Fig. 3.1(a), this topology contains one origin server and a maximum of

N replicas. Each replica is responsible for a group of clients representing a fraction of the

population; any request made by a client in that group is routed to that replica. The origin

server hosting the entire library (the complete set of objects) can be located anywhere and

3 Video-on-demand equipment allocation 27

serves all the requests that replicas are unable to fill.

This thesis does not consider the management of the content at the replicas. We suppose

that there exists an external mechanism (e.g., VoD software installed at each replica) to

maintain the most popular files at the replicas, which can be executed during off-peak hours

when more bandwidth is available. Because content delivery itself is also out of the scope

of this thesis, we are assuming unicast delivery to the user-end.

3.1.1 Mathematical formulation

Let S = {si : i = 1, . . . , N} and T = {ti : i = 1, . . . , N} where si is the number of streaming

devices with capacity Fi (Gbps) and ti the number of storage devices with capacity Gi (TB)

of replica site i. Let CTOT(S, T) be a strictly positive function that maps the number of

devices installed at each location to the total network cost. The objective is to determine

S and T to minimize total system cost:

{S∗, T ∗} = arg min
S,T

CTOT(S, T) (3.1)

This formulation is only valid when the streaming and storage devices can be deployed

independently (si does not need to be equal to ti). However, in practice, the two devices

are often deployed as a joint unit called a VoD server, so that si = ti (Fig. 3.1(b)). To

address this scenario, we define N = {ni : i = 1, . . . , N}, where ni is the number of VoD

servers with streaming capacity Fi and storage capacity Gi at location i. The objective in

this second formulation (used in the rest of this chapter) is to choose the number of VoD

servers at each replica in order to minimize the total cost:

Nopt = arg min
N

CTOT(N) (3.2)

We denote the worst-case demand Mi at replica i as the total bandwidth required to

serve all client requests using unicast streaming during the peak utilization hours. We

assume that we either know Mi or can approximate it from a given population size and

peak usage ratio1. We define the hit ratio hi as the smallest fraction of requests satisfied by

replica i at any given time (worst-case). If the desired object is not present at the replica

or the replica does not have enough streaming capacity, the request is unsatisfied (cache

1Worst-case demand Mi = population size × ratio of subscribers (clients/house) × peak usage rate
(stream/client) × bitrate (Mbps/stream)

3 Video-on-demand equipment allocation 28

miss) and routed to the origin server. Although the hit ratio could be used as a measure

of service quality, we do not to add this constraint to the optimization problem because of

the imperceptible difference in quality of streaming video between the origin and a replica

in a MAN.

3.2 Proposed solution

In this section, we present the three components of our solution: the hit ratio function,

the cost function and the heuristic (Fig. 3.2). We call our heuristic the Integer Relaxation

Heuristic (IRH). The first step of the heuristic produces an initial solution X = {Xi : i =

1, . . . , N} where Xi is the fraction of the library stored at every replica i to minimize our

cost function. This value is then used to form an estimate of the hit ratio, which allows us

to calculate the number of servers needed, Nini. The second step of the heuristic consists

of searching the neighborhood of the non-integer solution Nini to determine the integer

number of servers NIRH . We generate the infrastructure and transport cost for the entire

network by calculating the output of the cost function for NIRH .

Inputs
Topology

 Demand & Distances
Equipment specs

 Cost & Capacity
File and Library specs

Outputs
Equipment

 Number of servers
Costs

 Transport and Infrastructure

Heuristic
(Step 1)

Hit ratio
function

Cost function

Heuristic
(Step 2)

Nini NIRH

Fig. 3.2 High level overview of the proposed solution components: the
heuristic, the cost function and the hit ratio function. The inputs consists
of the worst-case distributed demand and internodal distances, the cost and
capacity of the VoD servers, network interfaces and other network components
and the number and type of objects (size and bandwidth requirements) stored
at the origin and replicas. These values, the form of the cost function and
hit ratio function are the inputs to the heuristic that produces an initial non-
integer solution Nini. A near-optimal integer solution NIRH is generated by
searching the neighborhood of Nini during the second step of the heuristic.

3 Video-on-demand equipment allocation 29

3.2.1 Hit ratio function

The purpose of a file popularity model is to predict the access frequency of a given file,

which can be estimated by dividing the number of requests for this file by the total number

of requests. In section 2.2.1, we reviewed popularity models and file access models for

video-on-demand systems. Of particular interest are the “fetch-at-most-once” and “new

arrivals” factors introduced by Gummadi et al. in [10]. Although it is possible to estimate

the worst-case hit ratio through simulations, for the purpose of an interactive design process

where we need to modify design choices repeatedly, it is impractical and time-consuming.

Our objective is to train a parametric function that provides an estimate of the worst-case

hit ratio based on specified system parameters in a few seconds compared to the tens of

minutes required by simulations.

−1 −0.8 −0.6 −0.4 −0.2 0
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

log(X)

H
it

ra
tio

 (
H

)

Z=0
Z=10
Z=25
Z=100

−1 −0.8 −0.6 −0.4 −0.2 0
log(X)

Y=1000
Y=2500
Y=5000
Y=10000

Fig. 3.3 Data fitting curves to construct the form of the hit ratio estimate
Ĥ. The linear curves indicate that Ĥ = A + B log(X) achieves an adequate
fit. Markers show values of H and the dashed lines (- -) show the linear fits.
We plot the hit ratio H as a function of log(X) where X is the cache size ratio
(Number of files in cache / Library Size). LEFT: We plot different values of
file arrival rate Z for library size Y = 2500. RIGHT: We plot different values
of library size Y for file arrival rate Z = 50.

We designed a simulation environment with a library of size Y and a cache of size X ·Y
where files are accessed according to the model described by Gummadi [10]. We calculate

3 Video-on-demand equipment allocation 30

0 25 50 75 100
File arrival rate (Z)

Y=1000
Y=2500
Y=5000
Y=10000

0 2500 5000 7500 10000
0.8

0.85

0.9

0.95

1

Library Size (Y)

A

Z=0
Z=10
Z=25
Z=100

Fig. 3.4 Data fitting curves to construct the form of A in Ĥ = A+B log(X).
Markers show values of A and the dashed lines (- -) show the our fit A =
K1 + K2Z + K3 log(Y) + K4Z log(Y) where Y is the library size and Z is the
file arrival rate. LEFT: A as a function of the library size Y for different values
of file arrival rate Z . RIGHT: A as a function of Z for different values of Y .

the hit ratio by dividing the number of requests for objects in the cache by the total number

of requests. Let each client’s library Lj be a subset of the complete library L that excludes

all files client j has selected in the previous weeks. During each iteration (one week) of the

discrete-time simulation, the following sequence of events occurs:

1. Clients are added to the population at a specified rate.

2. New files are added to the library L at a specified rate.

3. The cache is filled with the most popular files.

4. Each client j selects an object from his library Lj.

5. The weekly hit ratio is calculated.

The users’ requests are generated using a Zipf distribution with coefficient α = 1. The

probability of selecting the file at rank i in library Lj is given by pj(i):

pj(i) =
i−α∑

i∈Lj
i−α

Files that have already been fetched by the user cannot be selected again (fetch-at-

3 Video-on-demand equipment allocation 31

0 25 50 75 100
File arrival rate (Z)

Y=1000
Y=6500
Y=10000

0 2500 5000 7500 10000
0.22

0.24

0.26

0.28

0.3

0.32

0.34

Library Size (Y)

B

Z=0
Z=50
Z=100

Fig. 3.5 Data fitting curves to construct the form of B in Ĥ = A+B log(X).
Markers show values of B and the dashed lines (- -) show the our fit B =
K5 + K6Z + K7Y + K8ZY where Y is the library size and Z is the file arrival
rate. LEFT: A as a function of the library size Y for different values of file
arrival rate Z . RIGHT: A as a function of Z for different values of Y .

most-once-model). After every request a user makes, the selected file is removed from his

library Lj and file selection probabilities are recalculated. New files are introduced in the

library L and each library Lj at a specified rate. The insert position of a file is determined

using a Zipf distribution (with α = 1); the ranks of existing files which are less popular are

decreased and selection probabilities are recalculated. We ran extensive simulations with

different values for the following parameters:

1. Number of weeks (length of the simulation).

2. Size of the client population.

3. Number of new clients every week.

4. Size of the initial library of objects Y . [1000 2500 5000 6500 8000 10000]

5. Number of files added to the library every week Z. [0 10 25 50 75 100]

6. Size of the cache as a fraction (X) of the library size. [0.1 0.2 0.3 0.5 0.7 0.9]

From our simulation results, we determine that the only parameters that have a signif-

icant impact on the hit ratio are the library size Y , the number of files added every week

Z and the cache size ratio X. We generated 864 points for the hit ratio H by running

3 Video-on-demand equipment allocation 32

the simulation four times for 216 possible combinations of X, Y and Z. In Fig. 3.3, we

observe the linear behavior of H as a function of log(X) for different values of Y and Z

and propose the form in (3.3) for our estimate Ĥ, where 0 ≤ X ≤ 1, 1000 ≤ Y ≤ 10000

and 0 ≤ Z ≤ 100. We construct the bilinear functional form for A and B represented re-

spectively by (3.4) and (3.5). In Fig. 3.4 and Fig. 3.5, we show the fitting curves generated

with those functional forms with the dashed lines (- -) and the actual values of A and B

with the markers. The curves fit the markers for most of the sets depicted; the lines for the

file arrival rate Z = 0 and library size Y = 1000 in both figures do not represent the actual

value of A and B as accurately as the other curves. We consider that Y = 1000 represents

a library size smaller than those of interests for large-scale deployment.

Ĥ = A + B · log(X) = f3(X) (3.3)

A = K1 + K2Z + K3 log(Y) + K4Z log(Y) (3.4)

B = K5 + K6Z + K7Y + K8ZY (3.5)

We determine the values of the coefficients K1 to K8 by solving in the least squares

sense the system KV (X, Y, Z) ∼= H obtained by substituting (3.4) and (3.5) into (3.3).

Our resulting function for hi is accurate, showing less than a 0.02 error eighty-five percent

of the time and less than a 0.05 error ninety-nine percent of time. In Fig. 3.6(a), we show

the histogram of the error distribution for the entire dataset (1000 ≤ Y ≤ 10000) for our

simulations, the error is less than 0.05 ninety-nine percent of the time. In Fig. 3.6(b), we

show the histogram of a reduced dataset that focuses on the error for library sizes larger

than 2500 files. The accuracy of the function estimate for this set is much higher: the error

is less than 0.015 ninety-eight percent of the time.

3.2.2 Cost function

We can express the total cost, CTOT, as the sum of the cost of infrastructure, CT , and the

cost of transport, CS.

CTOT = CT + CS (3.6)

The cost of infrastructure, CT , includes the software and start-up cost of a location (Ai)

and the cost of VoD servers (Bi) for every replica site i and the origin server. In (3.7), we

3 Video-on-demand equipment allocation 33

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

50

100

150

200

250

300

350

400

450

500

Error

N
um

be
r

of
 p

oi
nt

s

(a) Entire dataset (1000 ≤ Y ≤ 10000)

−0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

50

100

150

200

250

300

350

400

450

500

Error

N
um

be
r

of
 p

oi
nt

s

(b) Reduced dataset (2500 ≤ Y ≤ 10000)

Fig. 3.6 Histograms of the error Ĥ − H between our function estimate Ĥ
and the value observed during simulations H. (a) The error for entire dataset
generated by our simulations. The error is less than 0.05 ninety-nine percent
of the time. (b) The error of a reduced dataset where the values for library
size below 2500 are discarded. In the case of 2500 ≤ Y ≤ 10000, the error is
less than 0.015 ninety-eight percent of the time.

express CT as a function of the number of VoD servers installed at location i, ni, and the

origin, no.

CT =
N∑

i=0

Ai + Bini = f1(no) +
N∑

i=1

f1(ni) (3.7)

The cost of transport consists of two components: transport from the origin to replicas

and clients, CSORi
, and transport from replica i to client i, CSRCi

. It includes the cost

of node interfaces (CIF) and of fiber (Cf). The transport from replicas to the user-end

(small distances) uses direct fiber whereas the transport from the origin to the replicas uses

DWDM connections.

3 Video-on-demand equipment allocation 34

CS =
N∑

i=1

CSORi
+ CSRCi

(3.8)

CSRCi
= nRCi

· (2 · CIF + dRCi
· Cf) (3.9)

CSORi
= nORi

(2 · CIF) +
nORi

wmax

[
2CDWDM + dORi

· Cf +

(
dORi

damp

)
· CLA

]
(3.10)

nORi
: Num. of interfaces (fibers) toward the origin.

nRCi
: Num. of interfaces (fibers) toward the user-end.

c: Fiber capacity. (Gbps)

CIF : Node switch interface cost. ($)

Cf : Cost of fiber. ($/km)

CDWDM : Cost of DWDM equipment ($)

wmax: Number of fibers supported by DWDM equipment.

CLA: Cost of line amplifier. ($)

damp: Max. distance between two amplifiers. (km)

The number of fibers at each node depends on the amount of traffic on the various links,

the hit ratio at the replica and the fiber capacity. On the link between location i and the

clients (RCi), the traffic is equal to the demand from the user, Mi. On the link between the

origin and a location i (ORi), all the requests that cannot be served by the replica (cache

misses) are handled by the origin server, generating a traffic equal to (1− hi) ·Mi. Notice

that we are using non-integer values for the number of network equipment (number of fibers

and ports) because we assume that the unused fraction can be used for other applications

and does not need to be included in the cost.

nORi
=

(1− hi) ·Mi

c
nRCi

=
Mi

c
(3.11)

The worst-case demand between location i and the group of clients is fixed, so CSRCi

does not depend on any of the optimization variables.However, CSORi
indirectly depends on

ni because the hit ratio hi changes with the number of VoD servers installed. We express

the cost of transport CS as follows, where f2(hi, Mi) is obtained by substituting (3.11) into

(3.10) and (3.9):

3 Video-on-demand equipment allocation 35

CS =
N∑

i=1

CSORi
+ CSRCi

=
N∑

i=1

f(nORi
) + f(nRCi

)

=
N∑

i=1

f2(hi, Mi) (3.12)

By substituting (3.7) and (3.12) in (3.6), we can express the total cost as a function of

the number of VoD servers installed (ni), the hit ratio (hi) and the demand (Mi) at each

location:

CTOT = f1(no) +
N∑

i=1

f1(ni) + f2(hi, Mi) (3.13)

The required number of VoD servers is determined by either the streaming or storage

requirement (ni = max(si, ti)), expressed as functions of Xi:

si =
hi ·Mi

Fi

=
f3(Xi) ·Mi

Fi

ti =
Xi · Y

Gi

(3.14)

so =

∑
i(1− f3(Xi)) ·Mi

Fo

to =
Y

Go

(3.15)

Define f4(X) , max(so, to) and f5(Xi) , max(si, ti). By substituting (3.3), (3.14)

and (3.15) into (3.13) and assuming that the demand Mi is known, we express CTOT as a

function of the optimizing variable Xi:

CTOT = f1(f4(X) +
N∑

i=1

f1(f5(Xi)) + f2(f3(Xi)) (3.16)

3.2.3 Integer Relaxation Heuristic (IRH)

The Integer Relaxation Heuristic (described in Algorithm 3.1) consists of two steps: (i)

relaxing the integer constraint and (ii) searching the surroundings of the initial solution for

a near-optimal integer solution.

Step 1: The first step of the heuristic is to provide an initial solution, Xini = {Xi : i =

1, . . . , N}, representing the optimal fraction of the library to store at each replica. We

3 Video-on-demand equipment allocation 36

obtain Xini by performing a constrained nonlinear optimization on CTOT (as expressed in

(3.16)) where 0 ≤ Xi ≤ 1, which is solved using a sequential quadratic programming (SQP)

method [81,82]. From Xini, we calculate Nini, the set of fractional numbers of VoD servers,

by expressing si, ti, so and to as functions of Xi with (3.14) and (3.15).

Obtain Xini by performing a constrained nonlinear optimization on CTOT;1

Calculate the integer values of NIRH with (3.14) and (3.15);2

Calculate XIRH from NIRH using (3.17) and (3.18);3

Set C0 = CIRH = CTOT(XIRH) and k = 1;4

repeat5

forall locations i do6

X = XIRH and N = NIRH ;7

for ni ± 2 do8

calculate Xi with (3.17) and (3.18);9

calculate cost CTOT(X);10

if CTOT(X) < CIRH then CIRH = CTOT(X), NIRH = N , XIRH = X11

end12

end13

Ck = CIRH ;14

k + +;15

until Ck ≥ Ck−1 ;16

Algorithm 3.1: Integer Relaxation Heuristic (IRH)

Step 2: The second step of the heuristic consists of searching the neighbourhood of Nini

for a near-optimal integer solution. One iteration consists of going through each location i

and calculate the cost for integer values of ni near the initial value (ni ± 2) by converting

N to X using (3.17) and (3.18). At the end of each iteration k, we compare the lowest

cost Ck with the lowest cost from the previous iteration Ck−1. We continue the search until

Ck ≥ Ck−1, which means that there was no improvement in the last iteration.

Xstorage =
niG

Y
Xstreaming = f−1

3 (hi) = f−1
3

(
niF

Mi

)
(3.17)

Xi = min(Xstorage, Xstreaming) (3.18)

3 Video-on-demand equipment allocation 37

3.3 Interactive Design Tool

Our design tool, the VoD Equipment Allocation Tool, is an interactive Graphical User

Interface (GUI) application used to plan the deployment phase of a video-on-demand (VoD)

network. The tool includes two components: the Topology Design Tool (TDT) (developed

by Vinokurov in [83]) and the optimization program. The TDT allows the user to (i) create

topologies and models of network components and VoD infrastructures and (ii) visualize the

design suggested by the optimization program (the solution we generate with our heuristic).

Fig. 3.7 Model editor of the design tool. Topology of a MAN where the small
squares represent inter-connected locations. The demand and infrastructures
(replica) installed at each location can be customized by the user. The model
editor allows the user to create different models for VoD Servers or other
network components. The models are added to a library which is loaded every
time a new project is created.

We describe the typical workflow to follow to design a VoD network with the tool. The

3 Video-on-demand equipment allocation 38

Fig. 3.8 Replica editor of the design tool. The object editing window allows
the user to create and edit objects in the topology; for example, the user can
edit a replica object by changing the type of VoD servers available. This win-
dows also displays results from the optimization: si, ti, ni, hi and bandwidth
available during off-peak hours.

first step is to create the network topology with all the locations using the TDT Wizard or

manually. The second step is to build models for network components, VoD equipment and

the VoD network itself. At least one model (cost and specifications) needs to be craeted for

each of the following components before adding infrastructures to the topology: network

interface, DWDM switch, fiber, stored file, VoD server, library server (or origin) and replica

server. In Fig. 3.7, we show the model editor that allows the creation and modification of

all the components. When the topology and the models are created, the user can create

replicas and origin objects using the Objects Editor (shown in Fig. 3.8). The editor allows

the creation and modification of each replica and the origin server. A valid VoD network

3 Video-on-demand equipment allocation 39

includes only one origin and any number of replicas (up to one per location). With a valid

network setup, it is possible to run the optimization to determine the optimal equipment.

3.4 Results

In this section we examine the results obtained from applying our heuristic to three scenarios

using our design tool.

Scenario1 20 different sets of inputs where the number of locations N in the topol-

ogy is between 1 and 100, the number of files in the library between

1000 and 10000 and the file arrival rate per week is between 0 and 100.

The system parameters are all uniformly distributed within the following

specified ranges: demand M (1-20Gbps), startup cost A (6-37k$), VoD

server cost B (1-53k$), streaming capacity F (1-5Gbps), storage capacity

G (1-10TB), distance to the origin dOR (0-50km), average distance to the

client dRC (0-5km), cost of bandwidth (0-4k$/Gbps) and cost of storage

(0-3k$/TB);

Scenario2 Topology of 25 locations with the system parameters uniformly distrib-

uted within the same ranges as in Scenario1. For each trial, demand

Mi = M at each replica, where M varies from 2.5Gbps to 50Gbps;

Scenario3 Topology of 14 locations with the system parameters uniformly distrib-

uted within the same ranges as in Scenario1. The specifications of the

equipment and demand at each node appear in Table 3.1.

Fig. 3.9(a) shows three different total network costs CTOT for Scenario1: cost of a

centralized design (ni = 0 for all i) and cost after the first and second step of the Integer

Relaxation Heuristic (IRH). Fig. 3.9(b) shows the percentage reduction of the cost achieved

by the Integer Relaxation Heuristic. IRH yields average improvements of 17% over the a

centralized design. The majority of the heuristic improvement comes from the first step.

In Scenario2 we illustrate the impact of the demand M on the deployment cost. In

Fig. 3.10(a), as the demand increases, the cost differential between the design generated by

our tool and a design in which no equipment is installed grows substantially. Below a certain

demand (≈ 7− 8 Gbps), both designs are of equal cost, which means that if the demand

is too low, it is no longer cost-efficient to deploy equipment. Fig. 3.10(b) compares costs of

transport and infrastructure for a single location i, which has a startup cost A = 19k$ and

3 Video-on-demand equipment allocation 40

5 10 15 20
0

0.5

1

1.5

2

x 104

Index of Network Configuration

T
ot

al
 C

os
t (

k$
)

Centalized
IRH (Step1)
IRH (Step2)

(a) Total network cost for different inputs sets

0 5 10 15 20
0

10

20

30

40

50

60

Index of Network Configuration

Im
pr

ov
em

en
t (

%
)

Centralized to IRH(Step 2)
IRH (Step1) to IRH (Step2)

(b) Heuristic improvement

Fig. 3.9 Scenario 1. (a) Three values for the total network cost for each of
the 20 different inputs sets are shown: placing no equipment (Centralized),
after the first step of the heuristic (IRH (Step 1)) and after the Integer Re-
laxation Heuristic (IRH (Step 2)). (b) Cost improvement from a centralized
approach and running the first step of the Integer Relaxation Heuristic (IRH
(Step 1)) to running the entire IRH (IRH (Step 2)). Running IRH yields an
average improvement of 2.5% on Step 1 and a 17% average improvement on a
centralized design. In both (a) and (b), the 20 different cases are displayed in
increasing order of cost of Centralized.

where VoD servers with 3Gbps and 2TB capacity are available at 2k$. Provided “Cost of 1

VoD server” is lower than “Cost of transport (Centrlized)”, it is beneficial to cache content

at i. If the equipment installed at the origin and i is identical and “Cost of transport

(Centalized)” is smaller than “Cost of 1 VoD server”, then it is cheaper not to install any

replica and carry the entire demand up to the origin. In the analyzed scenario, equipment

is cheaper at i than at the origin, so there is one point (M = 8.3Gbps) where the heuristic

indicates that a replica should be installed even though the cost of transport is less than

the minimum deployment cost. Therefore, the demand and type of equipment not only

have an impact on the fraction of the library to cache, but also determine whether or not

caching content is even profitable.

Table 3.1 displays the values for ni, si and ti calculated with our tool for Scenario3. The

total network cost for this equipment is 1,810k$. Looking at the table, we notice significant

discrepancies between the values of si1 and ti1 , which signifies that resources are wasted

3 Video-on-demand equipment allocation 41

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

Demand per location (Gbps)

T
ot

al
 C

os
t (

k$
)

IRH (Step 2)
Centralized

(a) Entire Network

0 10 20 30 40 50
0

20

40

60

80

100

120

Demand per location (Gbps)

C
os

t (
k$

)

Cost of replica (IRH)
Cost of transport (IRH)
Cost of transport (Centralized)
Cost of 1 VoD server

(b) One location

Fig. 3.10 Scenario 2. (a) Total network cost with demand Mi = M at
each replica, where M varies from 2.5Gbps to 50Gbps. As M increases, the
gain from applying the Integer Relaxation Heuristic increases. The demand
must be at least ≈ 7− 8Gbps to justify the installation of equipment. (b)
We consider location i with the following specifications: A1 = 19k$, B1 =
2k$, F1 = 3Gbps, G1 = 2TB. As a function of the demand Mi we show
the following costs: transport cost from this location when hi = 0 (Cost
of transport (Centralized)), cost of equipment (Cost of replica (IRH)) and
transport (Cost of transport (IRH)) when we apply our Integer Relaxation
Heuristic (IRH) and minimum deployment cost (installing one VoD server:
Ai + Bi).

because of poorly chosen equipment. For example, at location 3, the required number of

streaming devices is almost twice the number of storage devices, whereas the streaming

capacity of the equipment is half of the storage capacity. We consider the effect of making

equipment available at these locations with specifications that better match storage and

streaming needs. For example, we change the value of F3 from 1 to 3 in order to have a

closer match for s3 and t3. We repeat for the other three locations where ni 6= 0 (7, 10

and 11) and adjust the value of B accordingly; for example, B3 increases from 9k$ to 15k$

to support an extra 2Gbps. All the modifications (Bi2 , Fi2 and Gi2) and new results (ni2 ,

si2 , ti2) are also shown in Table 3.1. We notice that the four locations where we modified

the hardware now have si2 = ti2 , which indicates a better usage of resources. Moreover,

because of the savings at these locations, it is now beneficial to install more equipment at

locations 1 and 14 to achieve a minimal network cost. We also note that even though the

3 Video-on-demand equipment allocation 42

Table 3.1 Scenario 3. Initial specifications of 14 locations (left). On the
right, specifications of the locations after modifying equipment (modified val-
ues are highlighted with the surrounding box).

Location Mi Ai Bi1 Fi1 Gi1 ni1 si1 ti1 Bi2 Fi2 Gi2 ni2 si2 ti2
1 10 19 12 2 2 0 0 0 12 2 2 3 4.3 4.3
2 13 8 29 1 9 0 0 0 29 1 9 0 0 0

3 18 12 9 1 2 18 17.8 11 15 3 2 6 5.5 5.5
4 5 13 16 4 1 0 0 0 16 4 1 0 0 0

5 9 15 19 4 2 2 0 0 19 4 2 2 1.7 1.7
6 2 15 22 4 3 0 0 0 22 4 3 0 0 0

7 19 10 30 4 6 4 4.5 3.6 22 4 3 4 4.2 4.2
8 1 15 12 1 3 0 0 0 12 1 3 0 0 0
9 9 18 24 2 6 0 0 0 24 2 6 0 0 0

10 19 16 27 3 6 5 6.3 3.6 16 3 2 6 5.8 5.8

11 19 19 24 3 5 5 6.1 4.4 16 3 2 6 5.6 5.6
12 10 6 29 2 8 0 0 0 29 2 8 0 0 0
13 8 13 35 2 10 0 0 0 35 2 10 0 0 0

14 14 14 22 4 3 1 0 0 22 4 3 4 3.1 3.1

value of n5 has not changed, the streaming and storage requirements have increased from

0 to 1.7. This means that the initial solution is n5 = 2 instead of n5 = 0 and that the

value of n5 is already optimal after the first step of the heuristic, it does not change from

0 to 2 during the searching step. The new total network cost for this setup is 1,580k$, a

12.5% improvement. It is important to stress that the prices and capacity used in these

scenarios are not intended to reflect the real values used in practice. However, this simple

example shows the impact of modifying the type of equipment installed at each location

on the total deployment cost.

3.5 Conclusion

Network cost is affected not only by where replicas are located, but also what equipment

comprises a replica. We developed a design tool (that implements a cost function, hit ratio

function and heuristic) to address the VoD equipment allocation problem. There are four

principal contributions in solving that problem. We used extensive simulations to train a

parametric function that generates accurate estimates of the hit ratio for given cache size,

3 Video-on-demand equipment allocation 43

library size and file arrival rate. We constructed a cost function based on the hit ratio

hi, the demand Mi, and the number of VoD servers ni at each location. We designed a

two-step heuristic, called the Integer Relaxation Heuristic (IRH), that relaxes the integer

constraint to produce an initial solution and then identifies a near-optimal integer solution

in a reduced search space. The tool that implements our cost function, hit ratio function

and IRH is truly interactive because it allows designers to create and change network models

to generate optimal designs in an efficient and timely manner.

Our key conclusions are: (i) the nature of the available server equipment has a major

impact on the design and cost of a VoD network; and (ii) it is not always beneficial to

cache content. It is profitable to install VoD servers (regardless of the library size) if the

demand at the given location is significant. On the other hand, even if the library has

tens of thousands of assets, if the demand is too low, no amount of caching can reduce

the network cost. Accounting for the available equipment during the VoD network design

is critical as the choice of equipment has a direct impact on the minimum demand that

makes caching profitable. Moreover, selecting equipment that jointly matches streaming

and storage requirements at each location can result in substantial reductions in network

cost; we provide an example in Section 3.4 which illustrates that only a few equipment

changes can have a major impact.

In this chapter, we adressed the problem of determining the number of VoD servers

to install at each location when the streaming and storage capacity at each site was fixed

prior to the optimization. In the next chapter, we relax this assumption and define a new

problem where we are given a set of available VoD servers that can be installed at any

location. This extension of the VoD equipment allocation problem consists of determining

both the number and model of VoD servers to install at each location, such that the total

cost is minimized.

44

Chapter 4

VoD Servers Model Selection

In Chapter 3, we presented the equipment allocation problem and our approach to solving

it based on the assumption that a fixed, single and predetermined type of VoD server was

available at each location. As a result of making this simplifying assumption, if multiple

models are available, a network planner has to iteratively change the available server model

at various locations until the network deployment cost cannot be further decreased. We

showed how it is possible to identify which locations have suboptimal VoD server model

by inspecting the discrepancy between the number of required and installed streaming and

storage devices. A large difference is an indication of wasted resources, and hence of a bad

choice of server model. The exercise of identifying suboptimal VoD server models is not

trivial and can become very tedious for a large network.

In this chapter, we relax the assumption that we must pre-determine the available

type of VoD server for each location. Instead, we assume that any server model from a

given set can be chosen for each location. However, we still restrict ourselves to the case

where a single type of server is installed at each location (one cannot mix several types of

server). This is motivated by practical considerations such as the purchase (one vendor),

the physical installation (rack of same servers) or the software management (same OS) of

the servers. We formulate a new problem statement and propose two heuristics (IRH and

IGS) for finding approximate solutions.

4 VoD Servers Model Selection 45

4.1 Problem Statement

We address the problem of determining not only the number, but also the model of the

VoD servers at each potential replica location. The assumptions for this problem are the

identical to those described in Chapter 3 (Section 3.1). To solve this problem, we also

require the specification of a set of available VoD server models W = {wj : j = 1, . . . ,W}
where wj is a VoD server with streaming capacity Fj Gbps, storage capacity Gj TB and unit

cost Bj k$. We define the sets N = {ni : i = 1, . . . , N} and V = {vi ∈ W : i = 1, . . . , N}
where ni is the number and vi is the model of the servers installed at location i. The new

optimization problem is expressed as follows:

{N ∗,V∗} = arg min
N ,V

CTOTV (N) (4.1)

where CTOTV (N) is the total cost of the network CTOT for a fixed set V .

4.2 Cost function

We adopt an approach to solving this new equipment allocation problem different from

that presented in Chapter 3. Instead of expressing cost as a function of the fraction of

the library cached at each location Xi, we optimize the number of VoD servers ni directly.

Recall that the total cost CTOT is the sum of the cost of infrastructures, CT , and the cost

of transport, CS:

CS =
N∑

i=1

f2(hi, Mi)

CT = f1(no) +
N∑

i=1

f1(ni)

CTOT = f1(no) +
N∑

i=1

f1(ni) +
N∑

i=1

f2(hi, Mi)

(4.2)

To derive an expression for CTOT solely in terms of ni for i = 1, . . . , N , we resolve hi and

no as functions of ni (Mi it is assumed to be a fixed parameter). We develop expressions

to calculate hi and no for a fixed N . The hit ratio at a location is limited by either the

streaming or the storage capacity. The demand at the replica hi · Mi cannot exceed the

4 VoD Servers Model Selection 46

streaming capacity ni · Fi. We calculate the cache size ratio Xi from the storage capacity

ni ·Gi. Using the value of Xi just calculated and (3.3), the equation for Ĥ presented in the

previous chapter, we determine the maximum hit ratio hi achievable for a given storage

capacity. We express hi as f3(ni):

hi = min

[
ni · Fi

Mi

, Ĥ

(
ni ·Gi

Y · file size
, Y, Z

)]
= f3(ni) (4.3)

The number of servers required at the origin, no, is also constrained by either streaming

or storage. The storage capacity no · Go must be at least equal to the amount of storage

needed for a library of Y objects. The origin must also have enough streaming capacity

no · Fo to handle the cache misses from all the replicas equal to the sum of (1 − hi) ·Mi

for all locations i. In (4.4), we define no as f4(ni) by substituting hi with the expression in

(4.3).

no = max

[∑N
i=1(1− hi) ·Mi

Fo

,
Y · file size

Go

]
= f4(N) (4.4)

By replacing the equations for no and hi in the initial definition of CTOT, we derive a

new expression solely in terms of ni:

CTOT = f1(f4(N)) +
N∑

i=1

f1(ni) + f2(f3(ni)) (4.5)

4.3 Description of Heuristics

The most obvious approach to find the solution that minimizes CTOT is to perform a

complete search in the solution space. However, this procedure, called Full Search (FS),

is time consuming and not scalable. In this section, we quickly describe the full search

and present four heuristics that can determine a near-optimal solution to the equipment

allocation problem in a reasonable amount of time.

4.3.1 Full Search (FS)

The Full Search is a very straightforward approach that consists of trying all the possible

points in the solution space. We reduce this space by calculating the maximum number

4 VoD Servers Model Selection 47

of servers it is worth installing at a given location using (4.6). We define ub = {ubi :

i = 1, . . . , N} where ubi is the upper-bound on the number of servers that represents the

number of servers required to store the entire library and handle 100% of the requests

(hi = 1.0).

ubi = max

(
Mi

Fi

,
Y · file size

Gi

)
(4.6)

For a given V , the boundaries of the solution space are N = 0 to ub where 0 =

{ni = 0 : i = 1, . . . , N}. To complete the full search, all the possible combinations of V
must also be tried. Although this procedure is guaranteed to find the optimal solution,

it is very computationally expensive and the amount of time to search the entire space

grows exponentially with the size of the network (complexity is discussed in more detail in

Section 4.4).

4.3.2 Central or Fully Distributed Heuristic (CoFDH)

Ccentral = ∞;1

forall locations i do /* centralized design, Ncentral = 0 */2

ni = 0;3

end4

forall models wj ∈ W do /* pick model at origin */5

Set V ′
: v

′
i = wj for i = 1, . . . , N ;6

calculate cost CTOTV′ (Ncentral);7

if CTOTV′ (Ncentral) < Ccentral then Ccentral = CTOTV′ (Ncentral) and Vcentral = V ′
;8

end9

Algorithm 4.1: Central Heuristic

The Central or Fully Distributed Heuristic simply calculates the cost of a centralized

design (∀i : ni = 0) and a fully distributed design (∀i : ni = ubi) for each available

VoD server model in W and picks the cheapest design. The Cental part of the heuristic

is described in Algorithm 4.1; the Fully Distributed in Algorithm 4.2. This heuristic is

straight-forward and highly suboptimal, but it provides an upper-bound that can used as

a comparison base for other approaches.

4 VoD Servers Model Selection 48

CFD = ∞;1

forall models wj ∈ W do2

forall locations i do3

v
′
i = wj;4

n
′
i = ubi /* fully distributed, N ′

= ub */;5

end6

calculate cost CTOTV′ (N
′
);7

if CTOTV′ (N
′
) < CFD then CFD = CTOTV′ (N

′
), NFD = N ′

, VFD = V ′
;8

end9

Algorithm 4.2: Fully Distributed Heuristic

4.3.3 Greedy Search (GS)

We define a topology in the discrete solution space where each solution is connected to its

neighbouring solutions. In this case, a neighbour consists of adding one server at one of

the locations or changing the server model of the origin or any location. Greedy Search

(GS) is a searching heuristic that explores all neighbouring nodes and selects the one that

yields the best solution at every iteration without considering the subsequent steps [79].

The search continues until it reaches a local maximum (or minimum); no neighbours offer

a better solution than the current one. We define N = 0 as our initial solution, i.e., no

servers installed at any of the locations. Then, at each iteration, the algorithm tries to place

a server at each of the N locations and selects the placement that yields the lower cost.

Because we also need to consider the server model, we adapted the greedy search to our new

equipment allocation problem by making a few modifications, as shown in Algorithm 4.3.

For each node, not only do we try each of the N locations (lines 5-7), but also the

different server models for both the origin server (lines 8-9) and the current location (lines

10-11). Therefore, each solution has NW 2 neighbours; we select the origin model v1, the

location i and the model at that location vi that yield the lowest cost at each iteration.

Note that with this procedure, the value of v1 and vi can change at every iteration.

Typically, if it is impossible to find a neighbour yielding a better solution than the

current one, the search stops. To perform a more thorough search, we wait for more than

one (I = 3, 5, 10, 20, etc.) iteration over which the cost does not decrease before stopping

the search. Let Ck be the minimum cost after placing k servers (k iterations), then the

search stops when Cj ≥ Cj−1 ∀j ∈ k− I + 1. . .k. Finally, another tactic to explore a larger

4 VoD Servers Model Selection 49

Set CGS = ∞, NGS: ni = 0 and VGS: vi = w1 for i = 1, . . . , N ;1

Set C0 = CGS, N0 = NGS, V0 = VGS and k = 0;2

repeat /* cost has not decreased for I iterations */3

k++;4

Set Ck = ∞, N = Nk−1 and V = Vk−1;5

forall locations i do6

N ′
= N , V ′

= V ;7

n
′
i = ni + 1 /* add one server at i */;8

forall models wj ∈ W do9

v
′
1 = wj /* model at origin */;10

forall models wk ∈ W do11

v
′
i = wk /* model at location i */;12

calculate cost CTOTV′ (N
′
);13

if CTOTV′ (N
′
) < CGS then CGS = CTOTV′ , NGS = N ′

, VGS = V ′
;14

if CTOTV′ (N
′
) < Ck then Ck = CTOTV′ , Nk = N ′

, Vk = V ′
;15

end16

end17

end18

until Cj ≥ Cj−1 ∀j ∈ k − I + 1. . .k;19

Algorithm 4.3: Greedy Search (GS)

4 VoD Servers Model Selection 50

part of the solution space is to perform two different greedy searches: one where servers are

added to an initial solution N = 0 and a second one that removes servers from an initial

solution N = ub). For the second search, line 5 of Algorithm 4.3 becomes n
′
i = ni− 1. We

then select the solution that produces the lowest cost.

4.3.4 Integer Relaxation Heuristic (IRH)

The Integer Relaxation Heuristic presented in Algorithm 4.4 is a modified version of the

IRH presented in Section 3.2.3 of the previous chapter. As before, the first step is to find

an initial non-integer solution and the second step is to search its neighborhood for a near-

optimal integer solution. However, both steps have been adapted to this new problem.

In the first step (lines 1-13), we start by finding a non-integer solution for each server

model using a constrained nonlinear optimization. Then, we calculate the cost associated

with each replica (CTi
+ CSORi

) and determine the model that minimizes this cost for each

location. We complete the initial solution by determining the best server model to install at

the origin (lines 9-13). In the second step (lines 14-42), we perform two different searches

to find a near-optimal integer solution. In the first one (lines 14-26), we iteratively set

ni = 0 at each location to make sure it is profitable to setup a replica. The second search

(lines 27-42) is identical to the one described in Section 3.2.3: we iteratively try to remove

or add up to two servers at each location until we find a local minimum.

4.3.5 Improved Greedy Search (IGS)

As in the Integer Relaxation Heuristic, the Improved Greedy Search is divided into two

steps: determining an initial solution and searching its surroundings for a better one. In

IGS, both steps are inspired by the greedy search. Through simulations and results from

Chapter 3, we noticed that the number of installed servers at a given location is either

none or very close to the upper-bound. During the first step of the heuristic (lines 7-17 of

Algorithm 4.5), we iteratively add servers in a greedy-fashion starting from a centralized

design by setting ni = ubi at the location that achieves the lowest cost. We repeat this

process of adding ubi servers at a chosen location such that cost is minimized after each

iteration, until it is no longer possible to decrease the cost. This first step is repeated for

each VoD server model at the origin and the other locations (lines 1-6) and at that point, we

have determined an initial integer solution and the first step is complete. The second step

4 VoD Servers Model Selection 51

forall models wj ∈ W do1

Set Vj: v
′
i = wj for i = 1, . . . , N ;2

Obtain Nj by performing a constrained nonlinear optimization on CTOTVj
;3

end4

forall locations i do5

Set vi = wj and ni = nj such that CTi
+ CSORi

is minimized;6

end7

Set CIRH = ∞, NIRH = N ;8

forall models wj ∈ W do9

Set vo = wj;10

Calculate cost for CTOTV (N);11

if CTOTV < CIRH then CIRH = CTOTV , VIRH = V12

end13

Set C0 = CIRH and k = 0;14

repeat15

k + +;16

Set N = NIRH ;17

forall locations i do18

Set N ′
= N and n

′
i = 0;19

Calculate cost CTOTV (N ′
);20

if CTOTV (N ′
) < CIRH then CIRH = CTOTV (N ′

), NIRH = N ′
;21

end22

Ck = CIRH ;23

until Ck ≥ Ck−1 ;24

Set C0 = CIRH and k = 0;25

repeat26

k + +;27

Set N = NIRH ;28

forall locations i do29

Set N ′
= N ;30

for k = ni ± 2 do31

Set n
′
i = k;32

Calculate cost CTOTV (N ′
);33

if CTOTV (N ′
) < CIRH then CIRH = CTOTV (N ′

), NIRH = N ′
;34

end35

end36

Ck = CIRH ;37

until Ck ≥ Ck−1 ;38

Algorithm 4.4: Integer Relaxation Heuristic (IRH)

4 VoD Servers Model Selection 52

Set CIGS = ∞;1

forall models wj ∈ W do2

Set V ′
: v

′
i = wj and calculate upper bounds ubi for i = 1, . . . , N ;3

forall models wk ∈ W do4

Set v
′
o = wk;5

Set C0 = ∞ and l = 0;6

repeat7

l + +;8

Set N ′
= N ;9

forall locations i do10

Set n
′
i = ubi and calculate CTOTV′ (N

′
);11

if CTOTV′ (N
′
) < CIGS then CIGS = CTOTV′ , NIGS = N ′

, VIGS = V ′
;12

end13

Set Cl = CIGS;14

until Cl ≥ Cl−1 ;15

end16

end17

Set C0 = CIGS, N0 = NIGS and V0 = VIGS;18

repeat /* cost has not decreased for I iterations */19

k++;20

Set Ck = ∞, N = Nk−1 and V = Vk−1;21

forall locations i do22

for m = −1 and m = 1 do23

Set N ′
= N and n

′
i = ni + m;24

calculate cost CTOTV (N ′
);25

if CTOTV (N ′
) < CIGS then CIGS = CTOTV′ , NIGS = N ′

, VIGS = V ′
;26

if CTOTV (N ′
) < Ck then Ck = CTOTV′ , Nk = N ′

, Vk = V ′
;27

end28

end29

until Cj ≥ Cj−1 ∀j ∈ k − I + 1. . .k or Cj ≥ CIGS ∀j ∈ k − 2I + 1. . .k;30

Algorithm 4.5: Improved Greedy Search (IGS)

4 VoD Servers Model Selection 53

(lines 20-36), just like in the Integer Relaxation Heuristic, is an exploration procedure in

the neighbourhood of the initial solution. In a greedy-type approach, at iteration k we add

or remove one server to the initial solution at the location that minimizes the cost Ck. We

stop the search when Cj ≥ Cj−1 ∀j ∈ k− I + 1. . .k or when Cj ≥ CIGS ∀j ∈ k− 2I + 1. . .k

(minimum cost has not decreased for 2I iterations). Because we increase and decrease the

number of servers, some solutions can be revisited during the searching procedure. For

that reason, we add the second termination condition to guarantee the convergence of the

heuristic (to avoid a loop in the solution space topology).

4.4 Complexity Analysis

In this section, we analyze the worst-case complexity, WCC, of each of the heuristic pre-

sented in the previous section. We define the worst-case complexity as the maximum

number of operations that the heuristics can perform before terminating. The expressions

presented are functions of the number of locations N , number of VoD server models W

and the maximum of all upper bounds ubi, Umax = max(ub). To further simplify these

expressions, we assume that ubi = Umax for all locations; this is reasonable for a network

where the demand is distributed evenly among all the locations.

4.4.1 FS

In the full search, all models must be evaluated at all locations (WN) for all the possible

number of servers (
∏N

i ubi). When we assume ubi = Umax for all locations, the maximum

number of iterations for FS is:

WCCFS = WN

N∏
i

ubi = WN · Umax
N

= (W · Umax)
N

(4.7)

In the case of the full search, this expression is not the worst-case scenario, but the

actual number of iterations for every search. It is exponential in the size of the network,

N , indicating that it is impractical to use this method for most scenarios. This justifies

the development of the heuristics presented in this chapter.

4 VoD Servers Model Selection 54

4.4.2 CoFDH

CoFDH was written to generate an upper-bound and a comparison base for the solutions

produced by the other heuristics. It is trivial and has low complexity; running either the

central or the fully distributed heuristic only requires a number of iterations equal to W

because the value of N is either 0 (centralized) or ub (fully distributed).

WCCCoFDH = 2W (4.8)

4.4.3 GS

One iteration of the greedy search of Algorithm 4.3 consists of trying each model at each

location and the origin: N ·W 2 operations. The worst-case scenario is that the best solution

is a fully distributed design (ni = ubi for all locations) which requires
∑N

i ubi iterations if

the algorithm reaches that solution.

WCCGS =
N∑
i

ubi · (N ·W 2) = (N · Umax) · (N ·W 2)

= N2W 2Umax

(4.9)

Under our simplifying assumptions, the complexity of GS is a second degree polynomial

in N and W and linear in Umax.

4.4.4 IRH

The first step of IRH consists of performing a constrained nonlinear optimization for each

VoD server model. This type of optimization is performed using a sequential quadratic

programming (SQP) [81, 82] algorithm which has a complexity of O(N2). With W more

operations, we determine the model at the origin. The first part of the searching step (lines

11-18 of Algorithm 4.4) of the heuristic requires going through each location once until the

cost does not decrease. The worst-case scenario is starting from a solution N with ni 6= 0

for all locations and finishing with N = 0; which requires up to N iterations. In the second

part, each iteration requires five operations (trying each of ni ± 2) for each location. The

worst-case number of iterations is
∑N

i ubi if we start from N = 0 and terminate the search

4 VoD Servers Model Selection 55

with N = ub or vice-versa.

WCCIRH = (W ·N2 + W) + (N2) + 5N
N∑
i

ubi

= N2(W + 1 + 5Umax) + W

(4.10)

4.4.5 IGS

Each iteration of the first step of IGS has the same complexity as a GS iteration, but the

maximum number of iterations is N because we add ubi servers at a time instead of one.

In one iteration of the searching phase, two operations are performed for each location.

The worst-case is the same as the one described in IRH: going from fully distributed to

centralized or vice-versa.

WCCIGS = (W 2N2) + 2N
N∑
i

ubi

= (W 2N2) + 2N2Umax

(4.11)

4.4.6 Worst-case heuristic comparison

We complete our analysis of the complexity by showing in Table 4.1 the WCC of all the

heuristics described in this section. From this table, it is clear that a full search approach

is unsuitable for our problem; even smaller problems such as N = 5, W = 6 and Umax = 20

take on the order of 109 operations. A large value of Umax is an indication of large worst-case

demand Mi, files of large size or that the model is simply unfit for the specific location. The

three other proposed approaches GS, IRH and IGS have reasonable worst-case complexity

even for complex problems like N = 100, W = 6 and Umax = 20. We note that for most

sample scenarios shown, the WCC of IRH and IGS together is still lower than running the

GS. This leads us to think that it is possible to perform both searches and choose the best

of the two solutions.

It is important to stress that the values and the expressions derived in this section

are worst-case estimates and do not show the average complexity of these heuristics. The

objectives were to provide an estimate of the maximum number of operations before con-

4 VoD Servers Model Selection 56

Table 4.1 Worst-case complexity for given N , W and Umax.

N W Umax WCCFS WCCCoFDH WCCGS WCCIRH WCCIGS

5 2 5 100,000 4 500 202 350

5 2 20 102,400,000 4 2,000 577 1,100

5 6 5 24,300,000 12 4,500 306 1,150

5 6 20 2.4883 · 109 12 18,000 681 1,900

50 2 5 1 · 1050 4 50,000 20,002 35,000

50 2 20 1.2677 · 1080 4 200,000 57,502 110,000

50 6 5 7.179 · 1073 12 450,000 30,006 115,000

50 6 20 9.1004 · 10103 12 1,800,000 67,506 190,000

100 2 20 1 · 10100 4 200,000 80,002 140,000

100 2 20 1.6069 · 10160 4 800,000 230,002 440,000

100 6 5 5.1538 · 10147 12 1,800,000 120,006 460,000

100 6 20 8.2818 · 10207 12 7,200,000 270,006 760,000

vergence of our heuristics and confirm our intuition that the full search is unfit to solve

this problem. The actual computational requirements are different than those estimates

due to the different complexities of each iterations. In the next section, we compare the

requirements of each heuristic by measuring the CPU time used during our simulations.

4.5 Simulation Experiments

In this section, we present our simulation results obtained by applying our heuristics to

different networks. Each test network is defined by the constant variables in Table 4.2

and choosing values for the other network parameters from uniform distributions with the

ranges specified in Table 4.3. Simulations were executed on a AMD Athlon 3000+ with 1

GB of OCZ Premier Series 400 MHz Dual Channel memory.

In our first set of tests, we generated networks with the number of locations N ∈
{1, . . . , 5} and the number server model W = 1 and another series with N = 3 and

W ∈ {1, 2, 3}. We choose small networks to compare the complexity and cost of our

heuristics with the full search; other settings with larger inputs take too much time to solve

(as shown in the previous section).

In Fig. 4.1, we show the computational time in seconds on a log-scale averaged for 30

different networks with the same N and W . In both plots, we see the exponential behavior

4 VoD Servers Model Selection 57

Table 4.2 Values of constant vari-
ables used for the simulations.

Variable Value
CIF 10 k$

CDWDM 25 k$
CLA 10 k$
Cf 0.006 k$/km

dwmax 16
c 10 Gbps

maxamp 75 km
bit rate 3.75 Mbps
duration 5400 s
file size 2.53 GB

Table 4.3 Range of the variables
used for the simulations.

Variable Min Max
dOR (km) 0 50
dRC (km) 0 5
Y (files) 1000 10000

Z (files/week) 0 100
priceGbps (k$/Gbps) 0 4

priceTB (k$/TB) 0 3
A (k$) 6 36

F (Gbps) 1 5
G (TB) 1 11

M (Gbps) 1 20

1 2 3

10
−1

10
0

10
1

10
2

10
3

Number of models (W) for N=3
1 2 3 4 5

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of locations (N) for W=1

C
P

U
 T

im
e

(s
)

IRH
IGS
GS
FS

Fig. 4.1 Computational time in seconds required to find a solution by each of
the heuristics averaged over 30 runs shown on a log-scale. Computational time
of Full Search (FS) grows exponentially with the size of the network. Greedy
Search (GS), Integer Relaxation Heuristic (IRH) and Improved Greedy Search
(IGS) all provide solutions within 0.1 seconds.

of the full search whereas the other heuristics show a very small increase in CPU time. We

note that the computational time of the greedy-based heuristics (GS and IGS) is one order

of magnitude lower than the integer relaxation approach, but both are nevertheless below

4 VoD Servers Model Selection 58

0.1 seconds for the simulated networks.

1 2 3 4 5
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

Number of locations (N) for W=1

C
os

t f
ra

ct
io

n
of

 fu
ll

se
ar

ch

IRH
IGS
GS

1 2 3
Number of models (W) for N=3

Fig. 4.2 Ratio between the cost of the heuristics solution and the full search
(optimal) solution averaged over 30 runs.

In Fig. 4.2, we show the performance of our heuristics by dividing the cost of the

solution by the optimal solution provided by the full search. For these small networks,

Integer Relaxation Heuristic and Improved Greedy Search perform within 4% of the optimal

solution. For all values of N and W , both IRH and IGS perform better than the Greedy

Search, which is within 8% of the Full Search solution.

In this next set of tests, we compare the complexity and the performance for networks

with N = 25 to 100 potential replica locations and W = 2 to 10 server models. We

use Central or Fully Distributed Heuristic (CoFDH) to measure the performance of our

heuristics because it is impossible to determine the optimal solution with the Full Search.

CoFDH produces a very simple and quick solution by choosing the best our of a fully

centralized (no replicas) and a fully distributed design.

In Fig. 4.3, we show values (averaged over 15 runs) of the ratio between the cost of

Integer Relaxation Heuristic, Improved Greedy Search and Greedy Search and the cost of

CoFDH. Whereas Greedy Search is actually very close to the cost produced by CoFDH,

the other two heuristics generate solutions that cost 2-5% less. It is not clear from those

plots whether Integer Relaxation Heuristic or Improved Greedy Search performs better. By

4 VoD Servers Model Selection 59

25 40 55 70 85 100
0.9

0.92

0.94

0.96

0.98

1

Number of locations (N) for W=10

C
os

t f
ra

ct
io

n
of

 C
oF

D
H

IRH
IGS
IRH+IGS
GS

2 4 6 8 10
Number of models (W) for N=100

Fig. 4.3 Ratio between the cost of the heuristics solution and CoFDH av-
eraged over 25 runs. IRH+IGS is the average of the minimum value between
IRH and IGS for all runs.

combining both (choosing the best solution of the two), we obtain a slightly better heuristic

(IRH+IGS): 4-6% of CoFDH. In the left panel, we notice the downward trend of the cost

fraction as the number of locations in the network increases because more modifications to

the CoFDH design can be made to improve cost.

For the same set of tests, we also show the complexity expressed as the computational

time in seconds in Fig. 4.4 and the number of iterations (cost function evaluations) to obtain

a solution in Fig. 4.5. As suggested by the Worst-Case Complexity analysis in section 4.4,

the greedy search (GS) takes many more iterations to find a solution than our other two

heuristics Integer Relaxation Heuristic and Improved Greedy Search. However, even if the

number of iterations for Greedy Search is much larger than for IRH, their computational

time is comparable in the left panel of Fig. 4.4. This is an indication that IRH’s iterations

take more time to execute than those in the greedy approaches (GS and IGS).

In Table 4.1, the WCC is lower for Integer Relaxation Heuristic than for the Improved

Greedy Search, but for the most complex network we simulated, IGS produces a solution

in less than half a minute and 50,000 iterations compared to the four minutes and 100,000

iterations taken by IRH. The Integer Relaxation Heuristic was the slowest of the tested

heuristics, but it still converges in a reasonable amount of time. Since the computation

4 VoD Servers Model Selection 60

25 40 55 70 85 100
0

50

100

150

200

250

Number of locations (N) for W=10

C
P

U
 ti

m
e

(s
)

IRH
IGS
GS

2 4 6 8 10
Number of models (W) for N=100

Fig. 4.4 CPU time in seconds for all heuristics averaged over 25 runs.
IRH+IGS is the average of the sum of the time taken to perform both searches.

25 40 55 70 85 100
0

1

2

3

4

5
x 10

5

Number of locations (N) for W=10

N
um

be
r

of
 it

er
at

io
ns

IRH
IGS
GS

2 4 6 8 10
Number of models (W) for N=100

Fig. 4.5 Number of iterations (function evaluations) for all heuristics aver-
aged over 25 runs. IRH+IGS is the average of the total number of iterations
performed in both searches.

4 VoD Servers Model Selection 61

time of Improved Greedy Search is so low, we can combine IRH and IGS and obtain a

solution in a timely fashion.

25 40 55 70 85 100
0

0.2

0.4

0.6

0.8

1

Number of locations (N)

R
at

io
 o

f r
ep

lic
as

IRH+IGS
GS

25 40 55 70 85 100
0

0.2

0.4

0.6

0.8

1

Number of locations (N)

A
ve

ra
ge

 H
R

Fig. 4.6 LEFT: Ratio between the number of replicas and the number of
locations (fraction of locations where content is cached). RIGHT: Average hit
ratio at all the replicas. The values shown are averages of 25 runs with W = 6.

Finally, we focused on the networks with six server models (similar behaviour was ob-

served for other values of W) to analyze the hit ratio, ratio of locations with replicas,

average demand at replica locations and load on the origin server. Fig. 4.6 and Fig. 4.7

show the results and provide interesting insights on the solution generated by the heuris-

tics. The left panel of Fig. 4.6 shows that for networks of any size where demand is not

uniformly distributed among all locations (i.e, the demand at each location is different), the

percentage of locations where a replica will be deployed is below 40% for both heuristics.

Although a case where the demand load is evenly shared among all the locations (all Mi are

approximately equal) is more plausible, this result means that it is not always advantageous

to cache content. Whether it is because the demand is too low or the site is too close to

the origin, it might be more cost-effective to assume the entire load from a group of clients

directly at the origin. An impact of this low percentage is shown in Table 4.4 where we

show the number of servers installed at the origin. Because the fraction of locations where

replicas are installed remains constant for any value of N , the total number of sites for

which the origin must assume the demand grows as the network becomes larger.

4 VoD Servers Model Selection 62

Table 4.4 Average number of VoD servers installed at the origin for different
number of locations N . We show the average of the results obtained with the
Greedy Search (GS) and by taking the best of the Integer Relaxation Heuristic
and Improved Greedy Search (IRH+IGS)

N 25 40 55 70 85 100
IRH+IGS 56 85 131 156 175 192

GS 81 109 133 190 244 223

25 40 55 70 85 100
0

4

8

12

16

20

Number of locations (N)

A
ve

ra
ge

 d
em

an
d

M
 (

G
bp

s)

IRH+IGS (Rep)
IRH+IGS (NoRep)
GS (Rep)
GS (NoRep)

25 40 55 70 85 100
0

0.2

0.4

0.6

0.8

1

Number of locations (N)

F
ra

ct
io

n
of

 to
ta

l d
em

an
d

at
 r

ep
lic

as

IRH+IGS (Entire load)
IRH+IGS (Served)
GS (Entire load)
GS (Served)

Fig. 4.7 LEFT: Fraction of the total network demand supported by replica
locations. Total is the sum of the demand Mi at each location where a replica
is installed and Real is the actual part of the demand that the replica handles
(Mi · hi). RIGHT: Average load on the locations where replicas are installed
(Rep) and where no replicas are installed (NoRep). The values shown are
averages of 25 runs with W = 6.

In the right panel of Fig. 4.6, we display the averaged hit ratio at all the locations

where content was cached. The average hit ratio of 90% suggests that the optimal number

of servers to install at a replica is often very close to ubi. This is explained by both our

popularity model and the ratio between the startup cost of a location (A) and the cost

incurred in transportation to the origin. From our popularity model, we know that it is

possible to achieve a high hit ratio with a relatively small amount of storage. Depending

on the actual demand and the type of server installed, the streaming capacity is usually

4 VoD Servers Model Selection 63

the limiting factor, which means that storage is often available to increase the hit ratio to

the values we observe in this plot.

We display the fraction of the total network demand at the replica locations in the left

panel of Fig. 4.7. We show two lines for each heuristic: the sum of the demands Mi at

each location where a replica is installed (Entire Load) and the actual part of the load

(Mi · hi) handled by the replica (Served). For both Greedy Search and the best of Integer

Relaxation Heuristic and Improved Greedy Search (IRH+IGS), the performance is very

similar as a result of the high average hit ratio (≈ 90%). We compare this ratio with

the fraction of replicas in the network (left panel of Fig. 4.6). For GS, the difference is

not significant, but in the case of IRH+IGS the percentage of the network load handled

at replicas is approximately ten-twenty percent higher. This signifies that the locations

chosen by IRH+IGS to host replicas generally have a high demand. This interpretation

is confirmed in the right panel of Fig. 4.7 in which we depict the difference between the

average demand at replica locations and locations where no caching is performed. Whereas

there is only a marginal difference in the GS case, the average demand at replica sites in the

IRH+IGS solutions is almost twice the average demand of the other locations. The solutions

generated by combining Integer Relaxation Heuristic and Improved Greedy Search have a

much lower total cost than the GS solutions, indicating that it is more cost-efficient to

install replicas at locations where demand is high and transport the entire load of locations

with low demand to the origin.

4.6 VoD in AAPN

Given that we proposed a solution to the VoD equipment allocation problem, we are now

interested in validating our design choices by using the agile all-photonic network (AAPN)

topology as an example. We also look at the advantages and disadvantages of using an

AAPN as the core/backbone network to a video-on-demand deployment and describe the

design process of such a network.

4.6.1 AAPN Architecture

An AAPN is a network in which the transmission and the switching through the core are

done purely in the optical domain (all-photonic) [11, 84]. It is built using an overlaid star

topology which connects all the edge nodes together using central core nodes (Fig. 4.8).

4 VoD Servers Model Selection 64

SEL/MUX

CORE NODES

EDGE NODES

USER-
END

Fig. 4.8 The three-layer design of an agile all-photonic network (AAPN)
includes edge nodes (switches that perform the O-E-O conversion), selec-
tor/multiplexor (Sel/Mux) devices, and all-photonic switches as the core
nodes. The edge nodes are formed into sets and each set is connected to
one or more Sel/Mux devices. Each Sel/Mux device is connected via DWDM
equipment to one core node. (Reproduced from [11])

An edge node is the interface between the AAPN and the opto-electronic networks outside

of the AAPN. These nodes can support a different number of wavelengths meaning that

they do not all have necessarily the same traffic capacity. However, each node must be

able to support a certain amount of traffic with every other edge node. All these edge

nodes are connected to each other through more than one core nodes (for robustness). The

core nodes are basically optical switches with an opto-electronic interface for control. The

clients are connected to a single edge node (or second one for backup) directly or through

a switch, which is the case in Fig. 4.8.

4.6.2 Analysis

The need for substantial bandwidth in the core of the network makes the AAPN topology

a sensible candidate to support an application like video-on-demand. Based on its topology

and our proposed architecture (see Section 3.1), we propose to collocate the replica servers

4 VoD Servers Model Selection 65

with the edge nodes of the AAPN where the replica-client path is outside of the AAPN.

The origin server is deployed near an edge-node collocated with the core node. Having

the transmission path used to stream videos across larger distances (cache misses) and

distribute (update) content at the replicas, traversing the AAPN is a clear advantage and

should result in significant improvement in performance and reduction in cost. Because

re-routing a cache miss to the origin or any other replica is equivalent in an AAPN, we

suggest to implement a mechanism to share the load among all the replicas and the origin.

We consider two different scenarios for the design of a VoD network over an AAPN.

First, we consider the case of an existing AAPN where the edge and core node locations

have already been decided. In that case, VoD traffic is allocated a fraction of the overall

AAPN traffic, thereby putting a constraint on the load from the origin to the replicas.

We enforce this constraint by putting a lower-bound on the hit ratio of each replica based

on the demand and calculate the minimum number of VoD servers to achieve such a hit

ratio. This effectively reduces the solution space because the valid range for the number

of servers at each location is smaller. The other case is the one where the AAPN and the

VoD network are jointly designed. As it is anticipated that the video-on-demand network

accounts for a substantial portion of the AAPN traffic, it influences the location of the

AAPN edge nodes. The origin servers definitely generate a large amount of traffic for the

distribution of objects to replica servers or for the delivery to users. Thus, it makes sense

to collocate AAPN edge nodes with origin servers. Also, the users for a VoD system are

mainly located in residential areas, which is typically not the main source for other types

of network traffic, so the presence of a video-on-demand service changes the traffic pattern

in the network.

4.7 Concluding remarks

In this chapter, we defined an extension of the VoD equipment allocation problem described

in Chapter 3. Instead of considering fixed and pre-determined streaming and storage ca-

pacity at each location, we require the specification of a set of available VoD servers models.

The optimization problem consists of choosing the number and type of VoD servers to in-

stall at each potential location in the network such that cost is minimized. We modified

the total cost expression defined in Section 3.2.2 to make it a function of the number of

servers ni instead of the cache size ratio Xi. Solving this problem with a complete search is

4 VoD Servers Model Selection 66

possible, but for networks of more than five locations and a set of available models larger

than three the computational requirements render the approach impractical.

We described three heuristics to find a near-optimal solution including two greedy-type

approaches (GS and IGS) and a modified version of the integer relaxation method (IRH)

presented in the previous chapter. The Improved Greedy Search has very low complexity

in practice (less than half a minute and 50,000 iterations for large networks), but does not

always provide a better solution than the Integer Relaxation Heuristic. We showed that it

is possible to combine both by choosing the best of the two to obtain a better solution while

maintaining the computational time reasonably low (slightly more than four minutes and

150,000 iterations on average for large networks). Depending on the context, two heuristics

are available: Improved Greedy Search for a very quick solution (almost instantaneous) or

combining IRH and IGS for a better solution that takes more time.

For all our simulations, we generated network topologies where the load was different

at each location. For such networks, we observed that the fraction of locations where it

was cost-efficient to install replicas was small (35-45% depending on network size). In

the optimal solutions produced by our heuristic IRH+IGS, the average worst-case demand

at replica locations is approximately 15 Gbps and 8 Gbps at locations where the entire

load is transported to the origin server. For networks with 100 locations, the replica sites

assume less than 45% of the total network load which results in a very large number (almost

200) of required servers at the origin that might be impossible to deploy in practice. Our

simulations indicate that the average hit ratio at the replica sites is above 85% for all

network sizes. This suggest that it is possible to have a cost-efficient solution with a higher

fraction of the network load handled at replicas and much reduced load at the origin. A

way to obtain such a solution is by using equipment (VoD server model) that satisfies the

streaming and storage requirements of most of the locations in the topology. Alternatively,

the network designer could strive to divide the demand evenly among all locations such

that it is optimal to deploy replicas at most locations using the same model of equipment.

In the next chapter, we discuss these results and possible extensions to our design tool in

more detail and describe the design process of a VoD network over an AAPN.

67

Chapter 5

Conclusion

5.1 Summary

In this thesis, we focused on resource allocation during the network planning of a video-on-

demand deployment. More specifically, we addressed the VoD equipment allocation problem

of determining the number of storage and streaming devices needed at each potential replica

location in a metropolitan-area network.

As a first step to solving that problem, in Chapter 2 we reviewed previously proposed

approaches for the delivery of multimedia objects. Depending on the network architecture,

many aspects have to be considered to deploy a complete media delivery solution. A

centralized architecture, in which a unique media server handles the entire demand, is the

most simple solution, but it has serious weaknesses: a single point of failure and high load

on one server and the backbone network. Many proxy-based solutions have been proposed

to reduce both the latency at the user-end and the load on the origin by caching content

at servers located closer to the clients. The trade-off is the complexity of the design; we

presented solutions to the replica placement problem to determine the optimal location of

proxy servers in the topology. To solve that problem, we must determine a cost function

for the transport and storage of the media objects that depends on the content cached at

each replica, the delivery protocol and the clients’ requests handling mechanism. Due to

the size of multimedia objects, it is problematic and costly to replicate the entire library

at each site. The analysis of video rental statistics showed that a large fraction of the

requests are for only a small portion of the library. It therefore makes sense to cache

only the most popular content at the replicas. When performing program caching, it is

5 Conclusion 68

important to have a proper mechanism to serve requests and to handle cache misses. When

the requested content is not present at the replica, the request is routed either to the origin

server or to another replica. Forming clusters or replica minimizes the number of requests

that are routed to the origin, but a directory of the objects cached at each location must

be maintain to direct requests properly. The streaming capacity at each replica depends

on the chosen delivery protocol. Using unicast delivery is the simplest approach, but it

consumes a significant amount of bandwidth. For that reason, authors have proposed to

use multicast to reduce bandwidth requirements at the replicas and on the network.

In Chapter 3, we presented our solution to the VoD equipment allocation problem. We

chose an architecture where the population is partitioned and each partition is assigned

to a specific replica. We estimate the load at each location with the worst-case demand:

the bandwidth required to serve all requests at peak hours using unicast delivery. If the

replica does not have the requested content, the origin delivers the movie to the client. To

avoid low-utilization of the resources, we use available bandwidth during off-peak hours

to distribute and update content from the origin to the replicas. We developed a hit

ratio function, cost function and heuristic integrated in an interactive design tool to solve

the VoD equipment allocation problem. We trained a parametric function that generates

accurate estimates of the hit ratio for given cache size, library size and file arrival rate and

then constructed a cost function based on the hit ratio, the worst-case distributed demand

and the number of VoD servers ni at each location. To find a configuration that minimizes

this cost, we developed the Integer Relaxation Heuristic that produces a non-integer initial

solution and then searches its neighbourhood for a near-optimal integer solution.

Through simulations, we discovered that the model of installed equipment has a di-

rect impact on the minimum demand that makes caching profitable. For that reason, in

Chapter 4, we relaxed the assumption that the specifications (streaming and storage ca-

pacity) of the VoD server were fixed and pre-determined before the optimization. Instead,

we require the pre-selection of a set of available VoD servers; the optimization determines

which model should be installed at each location. In Section 4.1, we generalized the VoD

equipment allocation problem as determining both the number and the model of the VoD

servers to install at each potential replica location. Due to the higher complexity of this

problem, new algorithms are required to generate a solution. We described three heuris-

tics to find a near-optimal solution including a modified version of the Integer Relaxation

Heuristic (IRH) presented in Chapter 3. The basic idea behind IRH remains the same, but

5 Conclusion 69

we changed it so that the non-integer initial solution takes the set of available VoD server

models into account. The two new heuristics are based on the greedy search approach. Our

Greedy Search (GS) consists of adding one VoD server of any model at every iteration at

the location which minimizes the total cost for that particular iteration. Whereas greedy

search algorithms usually terminate when the placement of an additional server no longer

reduces cost, we allow the search to continue for more iterations to explore a larger portion

of the solution space. We developed an Improved Greedy Search (IGS) heuristic that uses

greedy search tactics to generate an initial solution and to search its neighbourhood for a

solution with a lower cost. We observed that it has lower complexity and is faster than IRH

in practice, but does not always generate a better solution. By taking the best of the Inte-

ger Relaxation Heuristic and Improved Greedy Search designs, we produce a near-optimal

solution in a timely manner.

5.2 Discussion

In Chapter 3, we described and proposed a solution to the simplified VoD equipement

allocation problem of determining the number of VoD servers to deploy at each potential

replica location in the given topology. Our results showed that the nature of the type of

equipment installed at each location has a significant impact on the optimal design and the

deployment cost. In Chapter 4, we extended the problem to a case where a set of available

VoD server models for all locations is provided instead of having fixed and pre-determined

streaming and storage capacity at each location. For networks where the demand is not

evenly distributed among all locations, we noted that is was beneficial to cache content in

only a small fraction of the locations for a given set of available VoD server models.

This leads to the following question: should the hardware manufacturer develop custom

equipment or, if possible, should network engineers design topologies based on the avail-

able equipment at their disposal? From our perspective, the problem of jointly designing

the VoD network and the logical topology is a very interesting and challenging one and

represents the sensible extension to the resource allocation problem we addressed in this

thesis. This problem consists of choosing a topology that allows an allocation of resources

that minimizes the deployment cost of the network. Whereas throughout this thesis we

assumed a given set of inter-nodal distances, potential replica location positions and dis-

tributed worst-case demands, in this problem, these variables are unknown and the number

5 Conclusion 70

and position of the replica locations become part of the set of optimization variables with

the number and model of the VoD servers. Not only is this a much more complex prob-

lem to solve, but it also introduces some new issues such as establishing a request routing

mechanism and possibly forming and maintaining replica clusters.

In this thesis, we considered the scenario where the service provider does not own any

network equipment or infrastructures prior to the deployment. However, this is not always

the case because some provider might be able to transport data for free, i.e., no need to

install fiber, network interfaces, switches, or amplifier. For example, a provider who owns a

backbone network such as AAPN is interested in offering video-on-demand. Even if there

is no installation cost, there is still fees incurred by the usage and maintenance of the

equipment and the resources, which have to be considered when generating solutions for

this scenario.

We focused on large-scale deployments, but there is also the issue of scalability of such

deployments. We assumed a growth in the library sizes and usage on video-on-demand

services, but it is hard to predict the exact impact that this expansion will have on the

designs. As the library reaches tens of thousands of assets, the access model we assumed

changes as a larger portion of requests are located in the heavy tail of the popularity

distribution. It is unclear if this simply shifts the hit ratio curve down (more storage

needed to achieve the same hit ratio) or the function would be completely different. The

growth in usage also affects the design. During our simulations for the hit ratio function,

we determined that the impact of the varying number of users on the hit ratio is not

significant. Even if the storage requirements are not affected, the higher loads at each

location and on the origin server require more streaming capacity. In that case, it is

sensible to impose a constraint on the maximum number of servers at the origin to avoid

a high load on one location (or alternatively impose a minimum hit ratio at each replica).

The reason we chose not to include these constraints in our initial problem statement was

to allow a maximum number of valid solutions. Producing the most cost-efficient solution,

whether it is feasible in practice or not, provides important feedback on the design choices

of the network planner. From our results, an infeasible design is an indication that the

equipment was a mismatch for the given topology or, alternatively, the chosen topology

was not optimal for the available equipment.

5 Conclusion 71

5.3 Future Work

We observed that it is difficult to select a model that matches the requirements of each

location even when a set of many VoD server models is available. For that reason, an

extension for the design tool is to determine how the topology should be designed, how the

demand should be shared among the locations, for a given a set of available equipment. In

Section 4.6.2, we presented two scenarios to consider for the design of a VoD network over

an AAPN. We propose to adopt an iterative process for the joint design. First, we decide

upon the location of the AAPN edge nodes based on a prior model for the traffic pattern in

the network. We then solve the VoD equipement allocation problem for a specific demand.

This placement changes the traffic pattern, so we repeat the AAPN topology design step

(placement of edge nodes) for the new model of traffic demand. This process is repeated to

adjust the locations according to the performance of the prior setup until a local minimum

is reached.

In the previous section, we presented a scenario where the service provider owns in-

frastructures prior to the deployment. Our tool needs to be extended to support this

scenario by including usage and maintenance costs for bandwidth and infrastructures. To

do so, we need to either add components to the cost function to model these fees or modify

it completely such that it is expressed as the cost of using (rather than installing) equip-

ment for storing, streaming and transporting the data. By adding those features to the

tool, we could address other problems such as the delivery and distribution in a peer-to-peer

architecture similar to that presented in Section 2.1. In that case, no or very few replicas

are required, but the installation of equipment for transport might be required and the cost

of usage and maintenance definitely need to be included.

Because library size and usage of video-on-demand services will grow, providers are

interested in the scalability of a deployment during the design. For larger libraries, the file

access model and popularity distribution are different and affect the hit ratio function we

designed. To asses that effect, we redefine a file access model and popularity distribution

based on usage/rental statistics of video-on-demand services. Then, we train a new para-

metric hit ratio function by following the procedure described in Section 3.2.1. As usage

increases, the load on the origin server becomes very high and more streaming capacity is

required. The tool can be extended to impose an upper-bound on the number of servers at

the origin to share the load among all locations. This is done by modifying the heuristics

5 Conclusion 72

to avoid searching the regions that are no longer in the solution space (solutions that yield

no > upper-bound). The extended tool supports the constraints to simply flag a solution

judged infeasible, but still provides sufficient information for the user to gain better un-

derstanding of resource allocation for video-on-demand deployment, which we feel was the

main contribution of this work.

73

References

[1] G. Peng, “Cdn: Content distribution network,” State University of New York (SUNY)
at Stony Brook, Stony Brook, NY, Tech. Rep., Jan. 2003, research Proficiency Exam
report.

[2] M. Yang and Z. Fei, “A model for replica placement in content distribution networks
for multimedia applications,” in Proc. IEEE Int. Conf. Communications, Anchorage,
AK, May 2003.

[3] S. V. Rompaey, K. Spacy, and C. Blondia, “Bandwidth versus storage trade-off in a
content distribution network and a single server system,” in Proc. Conf. Telecommu-
nications, Zagreb, Croatia, June 2003.

[4] A. Vakali and G. Pallis, “Content delivery networks: Status and trends,” IEEE Inter-
net Computing 7, vol. 6, pp. 68–74, Nov. 2003.

[5] N. Bartolini, F. Presti, and C. Petrioli, “Optimal dynamic replica placement in content
delivery networks,” in Proc. IEEE Int. Conf. on Networking, Sydney, Australia, Sept.
2003.

[6] K. Hosanagar, R. Krishnan, M. Smith, and J. Chuang, “Optimal pricing of content
delivery network (CDN) services,” in Proc. Hawaii Int. Conf. System Sciences, Big
Island, Hawaii, Jan. 2004.

[7] S. Buchholz and T. Buchholz, “Replica placement in adaptive content distribution
networks,” in Proc. Symp. Applied Computing, Nicosia, Cyprus, Mar. 2004.

[8] L. Kontothanassis, R. Sitaraman, J. Wein, D. Hong, R. Kleinberg, B. Mancuso,
D. Shaw, and D. Stodolsky, “A transport layer for live streaming in a content de-
livery network,” Proc. IEEE, vol. 92, pp. 1408–1419, Sept. 2004.

[9] P.Lyman and H.R.Varian. (2003) How much information 2003? Study at
School of Information Management and Systems at the University of California
at Berkeley. [Online]. Available: http://www.sims.berkeley.edu/research/projects/
how-much-info-2003

References 74

[10] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorjan,
“Measurement, modeling, and analysis of a peer-to-peer file-sharing workload,” in
Proc. ACM Symp. Operating Systems Principles (SOSP), Bolton Landing, NY, Oct.
2003.

[11] L. Mason, A. Vinokurov, N. Zhao, and D. Plant, “Topological design and dimen-
sioning of agile all photonic networks,” Computer Networks, Special issue on Optical
Networking, vol. 50, pp. 268–287, Feb. 2006.

[12] S. Tsao and Y. Huang, “An efficient storage server in near video-on-demand systems,”
IEEE Trans. Consumer Electronics, vol. 44, pp. 27–32, Feb. 1998.

[13] T. Chiueh and C. Lu, “A periodic broadcasting approach to video-on-demand service,”
in Proc. SPIE, vol. 2615, Oct. 1995, pp. 162–169.

[14] J. Lee, “On a unified architecture for video-on-demand services,” IEEE Trans. Multi-
media, vol. 4, pp. 38–47, Mar. 2002.

[15] T. Wauters, D. Colle, M. Pickavet, B. Dhoedt, and P. Demeester, “Optical network
design for video on demand services,” in Proc. Conf. Optical Network Design and
Modelling, Milan, Italy, Feb. 2005.

[16] S. A. Barnett and G. J. Anido, “A cost comparison of distributed and centralized
approaches to video-on-demand,” IEEE J. Selected Areas in Communications, vol. 14,
pp. 1173–1183, 1996.

[17] M. M. Hefeeda, B. K. Bhargava, and D. K. Y. Yau, “A hybrid architecture for cost-
effective on-demand media streaming,” Computer Networks, vol. 44, pp. 353–382, 2004.

[18] D. A. Tran, K. A. Hua, and S. Sheu, “A new caching architecture for efficient video-
on-demand services on the internet,” in Proc. Symp. on Applications and the Internet,
Orlando, FL, Jan. 2003.

[19] P. Machanick, “Design of a scalable video on demand architecture,” in Proc. South
African Institute of Computer Scientists and Information Technologists (SAICSIT),
Gordon’s Bay, South Africa, Nov. 1998.

[20] P. Mundur, R. Simon, and A. Sood, “End-to-end analysis of distributed video-on-
demand systems,” IEEE Trans. Multimedia, vol. 6, pp. 129–141, Feb. 2004.

[21] M. Ditze, C. Loeser, P. Altenbernd, and K. Wan, “Improving content replication and
QoS in distributed peer-to-peer VoD appliances,” in Proc. Int. Conf. on Distributed
Computing Systems (ICDCS), Tokyo, Japan, Mar. 2004.

References 75

[22] J. Nussbaumer, B. Patel, F. Schaffa, and J. Sterbenz, “Networking requirements for
interactive video on demand,” IEEE J. Selected Areas in Communication, vol. 13, pp.
779–787, 1995.

[23] C. Griwodz, M. Bar, and L. Wolf, “Long-term movie popularity models in video-
on-demand systems: or the life of an on-demand movie,” in Proc. ACM Int. Conf.
Multimedia, Seattle, WA, Nov. 1997.

[24] Akamai. [Online]. Available: http://www.akamai.com

[25] C. Yuan, Y. Chen, and Z. Zhang, “Evaluation of edge caching/off loading for dynamic
content delivery,” IEEE Trans. Knowledge and Data Engineering, vol. 16, pp. 1411–
1423, Nov. 2004.

[26] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content distribution,”
in Proc. IEEE Infocom, Miami, FL, Mar. 2005.

[27] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed content delivery
across adaptive overlay networks,” IEEE/ACM Trans. on Networking (TON), vol. 12,
pp. 767–780, Oct. 2004.

[28] F. Schaffa and J.-P. Nussbaumer, “On bandwidth and storage tradeoffs in multimedia
distribution networks,” in Proc. IEEE Infocom, Boston, MA, Apr. 1995.

[29] J. Lu, “An architecture for delivering broadband video over the Internet,” in Proc.
Int. Symp. Information Technology (ITCC), Las Vegas, NV, Apr. 2002.

[30] Y. Chen, L. Qiu, W. Chen, L. Nguyen, and R. Katz, “Efficient and adaptive web
replication using content clustering,” IEEE J. Selected Areas Communication, vol. 21,
pp. 979–994, Aug. 2003.

[31] B. Wang, S. Sen, M. Adler, and D. Towsley, “Optimal proxy cache allocation for
efficient streaming media distribution,” in Proc. IEEE Infocom, New York, NY, June
2002.

[32] S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching for multimedia streams,” in
Proc. IEEE Infocom, New York, NY, Mar. 1999.

[33] J. Almeida, D. Eager, M. Ferris, and M. Vernon, “Provisioning content distribution
networks for streaming media,” in Proc. IEEE Infocom, New York, NY, June 2002.

[34] N. Jian, D. Tsang, I. Yeung, and H. Xiaojun, “Hierarchical content routing in large-
scale multimedia content delivery network,” in Proc. IEEE Int. Conf. Communications
(ICC), Anchorage, AK, May 2003.

References 76

[35] S. Ramesh, I. Rhee, and K. Guo, “Multicast with cache (mcache): An adaptive zero
delay video-on-demand service,” in Proc. IEEE Infocom, Anchorage, AK, Apr. 2001.

[36] G. K. Zipf, Human Behavior and the Principal of Least-Effort. Cambridge, MA:
Addison-Wesley, 1949.

[37] (2000, March) Video store magazine. Avanstar Communications. [Online]. Available:
http://www.videostoremag.com

[38] D. S. A. Dan and P. Shahabuddin, “Scheduling policies for an on-demand video server
with batching,” in Proc. ACM Int. Conf. Multimedia, San Francisco, CA, Oct. 1994.

[39] K. A. Hua and S. Sheu, “Skyscraper broadcasting: A new broadcasting scheme for
metropolitan video-on-demand systems,” in Proc. ACM SIGCOMM, Cannes, France,
Sept. 1997.

[40] J. Segarra and V. Cholvi, “Distribution of video-on-demand in residential networks,” in
Proc. Int. Workshop Interactive Disttributed Multimedia Systems (IDMS), Lancaster,
UK, Sept. 2001.

[41] J. M. Almeida, J. Krueger, D. L. Eager, and M. K. Vernon, “Analysis of educational
media server workloads,” in Proc. ACM Int. Workshop Networks and Operating Sys-
tems Support for Digital Audio Video (NOSSDAV), Danfords on the Sound, NY, June
2001.

[42] M. Goncalves and K. Niles, IP Multicasting: Concepts and Applications. McGraw-
Hill, 1998.

[43] J. Lichtenberg and J. Gomez, “Multicast based client for video-on-demand services - a
case study,” in Proc. IEEE Region 3 Technical, Professional, and Student Conference
(SoutheastCon), Fort Lauderdale, FL, Apr. 2005.

[44] C. Aggarwal, J.Wolf, and P.Yu, “On optimal batching policies for video-on-demand
storage servers,” in Proc. Int. Conf. Microelectronics Computer Science (ICMCS),
Hiroshima, Japan, June 1996.

[45] W. Tang, E. Wong, S. Chan, and K. Ko, “Optimal video placement scheme for batching
vod services,” IEEE Trans. on Broadcasting, vol. 50, pp. 16–25, Mar. 2004.

[46] S. Carter and D. Long, “Improving video-on-demand server efficiency through stream
tapping,” in Proc. IEEE Int. Conf. Computer Communications Networks (ICCCN),
Las Vegas, NV, Sept. 1997.

[47] K. A. Hua, Y. Cai, and S. Sheu, “Patching: a multicast technique for true video-on-
demand services,” in Proc. ACM Multimedia, Bristol, England, Sept. 1998.

References 77

[48] L. Gao and D. F. Towsley, “Supplying instantaneous video-on-demand services us-
ing controlled multicast,” in Proc. Int. Conf. Microelectronics Computer Science
(ICMCS), Florence, Italy, June 1999.

[49] D. Milic, M. Brogle, and T. Braun, “Video broadcasting using overlay multicast,” in
Proc. IEEE Int. Symp. Multimedia (ISM), Irvine, CA, Dec. 2005.

[50] Y.-H. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,” in Proc.
ACM Sigmetrics, Santa Clare, CA, June 2000.

[51] J. Ni and D. Tsang, “Large-scale cooperative caching and application-level multicast
in multimedia content delivery networks,” IEEE Communications Magazine, vol. 43,
pp. 98–105, May 2005.

[52] C. C. Hsu, T. Aoki, and H. Yasuda, “Distributing video content using a router-assisted
multicast mechanism,” in Proc. IEEE Pacific Rim Conf. Communications, Computers
and Signal Processing (PACRIM), Victoria, Canada, Aug. 2003.

[53] U. Sarkar, S. Ramakrishnan, and D. Sarkar, “Modeling full-length video using markov-
modulated gamma-based framework,” IEEE/ACM Trans. on Networking, vol. 11, pp.
638–649, Aug. 2003.

[54] K. Couch. (2005, January) Raising the bar for triple play with VoD. [Online].
Available: http://www.convergedigest.com/blueprints/ttp03/2005nortel1.asp?ID=
189&ctgy=Headend

[55] D. E. Wrege, E. W. Knightly, H. Zhang, and J. Liebeherr, “Deterministic delay bounds
for VBR video in packet-switching networks: fundamental limits and practical trade-
offs,” IEEE/ACM Trans. on Networking, vol. 4, pp. 352–362, June 1996.

[56] R. Cruz, “A calculus for network delay, part I: Network elements in isolation,” IEEE
Trans. on Information Theory, vol. 37, pp. 114–131, January 1991.

[57] E. Knightly and H. Zhang, “Traffic characterization and switch utilization using deter-
ministic bounding interval dependent traffic models,” in Proc. IEEE Infocom, Boston,
MA, April 1995.

[58] J. Liebeherr, D. E. Wrege, and D. Ferrari, “Exact admission control for networks with
a bounded delay service,” IEEE/ACM Trans. on Networking, vol. 4, pp. 885–901, Dec.
1996.

[59] H. Zhang and D. Ferrari, “Improving utilization for deterministic service in multimedia
communications,” in Proc. Int. Conf. Microelectronics Computer Science (ICMCS),
Boston, MA, May 1994.

References 78

[60] C. Lee, C. Lin, and P. Chang, “An improved traffic modeling scheme for MPEG video
over content delivery networks,” in Proc. IEEE Int. Conf. Computational Science
(ICCS), Singapore, Nov. 2002.

[61] W. Tan and A. Zakhor, “Packet classification schemes for streaming MPEG video
over delay and loss differentiated networks,” in Proc. Int. Packet Video Workshop,
Kyongju, Korea, May 2001.

[62] J. Zhao, B. Li, and I. Ahmad, “Traffic modeling for layered video,” in Proc. IEEE Int.
Conf. Multimedia Expo (ICME), Baltimore, MD, July 2003.

[63] W. Zhou, S. Ramakrishnan, D. Sarkar, and U. Sarkar, “Bandwidth estimation for mul-
tiplexed videos using MMG-based single video traffic model,” in Proc. IEEE Globecom,
San Francisco, CA, Dec. 2003.

[64] Q. Zhang, C. Lin, H. Yin, and Q.-H. Dai, “An accurate scene-based traffic model
for mpeg video stream,” in Proc. IEEE Int. Conf. Electronics, Circuits and Systems
(ICECS), Sharjah, United Arab Emirates, Dec. 2003.

[65] R. Janakiraman, M. Waldvogel, and L. Xu, “Fuzzycast: Efficient video-on-demand
over multicast,” in Proc. IEEE Infocom, New York, NY, Jun. 2002.

[66] M. Masa and E. Parravicini, “Impact of request routing algorithms on the deliv-
ery performance of content delivery networks,” in Proc. Int. Performance Computing
Communications Conf. (IPCCC), Phoenix, AZ, Apr. 2003.

[67] R. L. Carter and M. E. Crovella, “Server selection using dynamic path characterization
in wide-area networks,” in Proc. IEEE Infocom, Kobe, Japan, Apr. 1997.

[68] J. S. Chase, “Server switching: Yesterday and tomorrow,” in Proc. IEEE Workshop
Internet Applications (WIAPP), San Jose, CA, July 2001.

[69] A. Rousskov and D. Wessels, “Cache digests,” Computer Networks and ISDN Systems,
vol. 30, pp. 2155–2168, 1998.

[70] S. Gadde, M. Rabinovich, and J. S. Chase, “Reduce, reuse, recycle: An approach
to building large internet caches,” in Proc. Workshop Hot Topics Operating Systems
(HotOS), Cape Cod, MA, May 1997.

[71] V. Valloppillil and K. W. Ross, “Cache array routing protocol v1.0,” Internet draft,
Feb. 1998. [Online]. Available: http://icp.ircache.net/carp.txt

[72] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina, K. Iwamoto,
B. Kim, L. Matkins, and Y. Yerushalmi, “Web caching with consistent hashing,”
Computer Networks, vol. 31, pp. 1203–1213, 1999.

References 79

[73] M. Karlsson, C. Karamanolis, and M. Mahalingam, “A unified framework for evaluat-
ing replica placement algorithms,” Hewlett-Packard Laboratories,” Technical report,
2002.

[74] N. Laoutaris, V. Zissimopoulos, and I. Stavrakakis, “On the optimization of storage
capacity allocation for content distribution,” Computer Networks Journal, vol. 47, pp.
409–428, Feb. 2005.

[75] S.-J. Kim and M. Choi, “A genetic algorithm for server location and storage alloca-
tion in multimedia-on-demand network,” in Proc. Symp. Trends in Communications,
Bratislava, Slovakia, Oct. 2003.

[76] J. M. Almeida, D. L. Eager, M. K. Vernon, and S. Wright, “Minimizing delivery cost
in scalable streaming content distribution systems,” IEEE Trans. Multimedia, vol. 6,
pp. 356–365, April 2004.

[77] T. Nguyen, C. Chou, and P. Boustead, “Resource optimization for content distribution
networks in shared infrastructure environment,” in Proc. Australian Telecommunica-
tions Networks and Applications Conf., Melbourne, Australia, Dec. 2003.

[78] M. Atallah, Ed., Algorithms and Theory of Computation Handbook. CRC Press LLC,
1999, page 19-26.

[79] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cam-
bridge, MA: The MIT Press, 1990.

[80] P. Radoslavov, R. Govindan, and D. Estrin, “Topology-informed internet replica place-
ment,” in Proc. IEEE Workshop Web Content Caching and Distribution (WCW),
Boston, MA, June 2001.

[81] R. Fletcher, Practical Methods of Optimization. New York, NY: John Wiley and
Sons, 1987.

[82] W. Hock and K. Schittkowski, “A comparative performance evaluation of 27 nonlinear
programming codes,” Computing, vol. 30, pp. 335–358, 1983.

[83] A. Vinokurov, “Tools for optical networks design,” in Proc. European Next Generation
Internet Design and Engineering (EURO-NGI), Rome, Italy.

[84] G. Bochmann, M. Coates, T. Hall, L. Mason, R. Vickers, and O. Yang, “The agile
all-photonic network: An architectural outline,” in Proc. Queen’s Biennial Symp. on
Communications, Kingston, Canada, May 2004.

