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Abstract

Video-on-demand (VoD) service providers are intensely
interested in transport, storage, streaming and caching in
content delivery networks. Today’s 5,000-hour library may
grow toward the 750,000-hour “Long Tail” movie and TV-
series catalog. We propose a method to calculate how much
of a library should be cached. Much previous work focused
on theoretical caching concepts, or the dynamics of cache
filling and reclamation. Our method explicitly considers the
impact of the available video server equipment; we present
a VoD design tool comprising a novel cost function, hit ratio
estimation and heuristic.

1. Introduction

Network-based video-on-demand (VoD) deployments
are today very limited in scope. The largest deployed li-
braries are just 0.7% (5,000 hours) of the global movie and
TV-series catalog and peak utilization of VoD targets are
10-15% of broadcast TV peak viewing numbers. Recogniz-
ing that libraries and usage may grow, service providers are
intensely interested in the scalability of content delivery net-
works that provide content propagation, storage, streaming,
and transport. Three dominant factors must be considered
when planning scalable deployments for VoD: library size,
peak concurrent streams and rate of ingest of new content.
Each could increase by one or more orders of magnitude
after the deployment. In this paper we describe a method
and design tool for the planning of VoD systems; our work
strives to address the future 750,000-hour global movie and
TV-series catalog, to better exploit the heavy tail of the pop-
ularity distribution, called the “Long Tail” of content [6].

Content delivery networks (CDNs) are designed to dis-
tribute content to a set of clients, as streams or as files [4,5,
11,14,15]. Through approaches such as replication of con-
tent at multiple servers (replicas, proxies or caches), CDNs
attempt to minimize latency at the end-user while reducing
bandwidth consumption and load at the origin server. This

paper deals primarily with the case of a streaming CDN,
in that the client is assumed to have buffering capability
but not caching capability. Nonetheless, the mathematics
and the model are easily extended to the client-cached sce-
nario. The CDN delivery of streaming media causes new
problems that did not apply to the distribution of HTTP ob-
jects: streaming objects are much larger than web objects
and hence create much more traffic [10]. Furthermore, it
is no longer possible to assume infinite storage size at the
replica locations [15].

The design of a CDN consists of making resource plan-
ning decisions and the development of in-service intelligent
request routing, resource control policies, and performance
monitoring. In this paper, we focus on the first challenge:
the allocation of resources during network planning, gen-
erally performed when planning greenfield and incremental
deployments. Of particular interest is VoD delivery across
metropolitan area networks (MANs). A well-known for-
mulation of this task is the replica (or cache) placement
problem. This consists of determining a subset ofN po-
tential locations in a given topology (Fig. 1(a)) to placek
replicas, such that the total network cost is minimized for a
given quality of experience (QoE) impairment, such as de-
lay, packet loss, frame loss, or packet jitter. Bandwidth re-
quirements and transmission distances have generally been
considered as the important resource parameters. Storage
capacity also plays a role. The location of the replicas is im-
portant, but very different designs and costs are achieved de-
pending on the capabilities of the available network equip-
ment. We define theVoD equipment allocation problemas
choosing the number of streaming and storage devices for
each of the replica locations, such that the deployment cost
of the VoD system is minimized. Referring to Fig. 1(b), the
method is implemented by determining the number of VoD
servers present at each replica site. As part of this analy-
sis, we also determine the fraction of the total library that
should optimally be stored at each location.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces related previous work. In Section 3, we ex-



(a) Requests from a group of clients are routed to the associated
replica or to the origin in case of a cache miss.

(b) A VoD server has storage capacity ofGi TB and streaming
capacity ofFi Gbps. The total streaming capacityniFi must be
greater or equal tohiMi wherehi is the hit ratio andMi is the
worst-case demand at sitei.

Figure 1. (a) Logical connectivity between
clients, replicas and origin. (b) Replica with
ni = 3 VoD servers.

press the equipment allocation problem as an optimization
problem, and we state our assumptions. In Section 4, we
present our solution to this problem, developing a novel cost
function, hit ratio estimation function and heuristic. In Sec-
tion 5, we apply our heuristic to three scenarios with differ-
ent demand, equipment capabilities, and topologies (or ge-
ographies). We also compare the optimal cost, as generated
by our heuristic, to a scenario where no replicas are installed
at the available locations in the topology. Thus, we illustrate
our method of determining when a centralized VoD deploy-
ment should be evolved to a hierarchical-distributed VoD
deployment. In section 6, we summarize our observations.

2. Related work and Contribution

Many techniques have been proposed to place repli-
cas or allocate storage in CDNs in a near-optimal man-
ner [3–5, 12, 15]. They differ primarily according to the
nature of the cost function, which specifies the optimization
parameters (distance, demand, storage, etc.). The simpler
approaches consider only the aggregate user demand; the
specific objects requested are not important [3, 4, 15]. An-
other avenue is to treat objects individually, associating with
each a different popularity (user demand) [5,12]. Although
most of these functions account for transport costs and some
for storage costs, none of them explicitly includes the num-
ber and cost of the equipment installed at each location. We
extend the cost function proposed in [15], which is based on
topology, demand and hit ratio, by also considering the cost
incurred through installation of the VoD servers. These cost
functions are often complex and minimizing them to deter-
mine the optimal design is NP-hard. A popular heuristic
that offers near-optimal performance, considered by many
authors, is greedy selection [5, 7, 15]. It consists of itera-
tively adding replicas to the design to achieve the lowest
cost at every step.

It is not always possible to have complete replicas of the
origin server because the large size of multimedia objects
leads to a high storage cost. An alternative is to store only
specific objects from the origin at the surrogate servers [12].
The empirical study performed in [7] indicates that approx-
imately 80% of requests for Web objects are for 10% of
the objects. This suggests that a relatively small amount of
storage can achieve a high hit ratio if the cached content
is carefully chosen. Previous studies in the distribution of
multimedia files in CDNs or in VoD applications have used
Zipf’s Law to characterize the popularity of the different
files [2, 12, 13]. However, empirical data indicates that a
Zipf model is not a good fit for the most popular files [1,9].
Contributions: Most previous work on content distribu-
tion considered replica placement or content allocation. In
contrast, we address theVoD equipment allocation problem,
which focuses on identifying the optimal number of VoD
servers at a set of locations. We present four main contribu-
tions to solving this problem. We design a parametric func-
tion for estimating the worst-case hit ratio for given system
parameters (cache size, library size and file arrival rate) us-
ing discrete-time simulations based on an extension of the
file access model proposed in [9]. We propose a cost func-
tion based on the hit ratio, the distributed demand and the
number of VoD servers at each location. We develop a two-
step heuristic to generate a solution to the problem, which
first relaxes the integer constraint and then searches for an
integer solution in the neighborhood of this initial solution.
Finally, we develop aninteractivedesign tool that imple-
ments our cost function, hit ratio function and heuristic.



3. Problem statement

We address the problem of determining the number of
storage and streaming devices needed at each potential
replica location. We require a topology of a metro-area net-
work (MAN) indicating the set of inter-nodal distances and
the specifications (cost and capacity) of network elements
and available equipment. We consider the case where only
one type of equipment (VoD server) is installed at each site
but allow this equipment type to vary from site to site. We
define theVoD equipment allocation problemas choosing
the equipment for each of these replicas such that the de-
ployment cost of the network is minimized.

As illustrated in Fig. 1(a), this topology contains one ori-
gin server and a maximum ofN replicas. Each replica is
responsible for a group of clients representing a fraction of
the population; any request made by a client in that group is
routed to that replica. The origin server hosting the entire li-
brary (the complete set of objects) can be located anywhere
and serves all the requests that replicas are unable to fill.

This paper does not consider the management of the con-
tent at the replicas. We suppose that there exists an external
mechanism to maintain the most popular files at the repli-
cas, which can be executed during off-peak hours when
more bandwidth is available. Because content delivery it-
self is also out of the scope of this paper, we are assuming
unicast delivery to the user-end.

3.1. Mathematical formulation

Let S = {si : i = 1, ..., N} andT = {ti : i = 1, ..., N}
wheresi is the number of streaming devices with capacity
Fi (Gbps) andti the number of storage devices with capac-
ity Gi (TB) of replica sitei. Let CTOT(S, T ) be a positive
function that maps the number of devices installed at each
location to the total network cost. The objective is to deter-
mineS andT to minimize total system cost:

{S∗, T ∗} = arg min
S,T

CTOT(S, T ) (1)

This formulation is only valid when the streaming and
storage devices can be deployed independently (si does
not need to be equal toti). However, in practice, the two
devices are often deployed as a joint unit called a VoD
server, so thatsi = ti (Fig. 1(b)). In that case, we let
N = {ni : i = 1, ..., N} and defineni as the number
of VoD servers with streaming capacityFi and storage ca-
pacityGi at locationi. The objective in this second formu-
lation (used in the rest of this paper) is to choose the number
of VoD servers at each replica that minimizes the total cost:

Nopt = arg min
N

CTOT(N ) (2)

We denote the worst-case demandMi at replicai as the
total bandwidth required to serve all client requests using

unicast streaming during the peak utilization hours. We as-
sume that we either knowMi or can approximate it from a
given population size and peak usage ratio. We define the
hit ratio hi as the smallest fraction of requests satisfied by
replicai at any given time (worst-case). If the desired ob-
ject is not present at the replica or the replica does not have
enough streaming capacity, the request is unsatisfied (cache
miss) and routed to the origin server. Although the hit ratio
could be used as a measure of service quality, we decided
not to add this constraint to the optimization problem be-
cause of the imperceptible difference in quality of streaming
video between the origin and a replica in a MAN.

4. Proposed solution

In this section, we present the three components of our
solution: the hit ratio function, the cost function and the
heuristic. The first step of the heuristic produces an initial
solutionX that represents the fraction of the library that
should be stored at every replicai to minimize our cost
function. This value is then mapped to an estimate of the
hit ratio, which allows us to calculate the number of servers
needed,Nini. The second step of the heuristic consists of
searching the neighborhood ofNini to determine a near-
optimal integer solutionNopt. By feeding these values into
our cost function, we generate the infrastructure and trans-
port cost for the entire network.

4.1. Hit ratio function

The purpose of a file popularity model is to predict the
access frequency of a given file, which can be estimated
by dividing the number of requests for this file by the total
number of requests. The authors of [9] propose a file access
model that is driven by Zipf’s Law, but takes into account
the “fetch-at-most-once” and “new arrivals” factors. VoD
system users rarely access the same file twice because the
files are not modified (fetch-at-most-once). Also, new files
are periodically added to the system and since the popular-
ity of a titles diminishes in time, these objects become the
most popular titles. Although it is possible to estimate the
worst-case hit ratio through simulations, for the purpose of
an interactive design process where we need to modify pa-
rameters repetitively, it is impractical and time-consuming.
Our objective is to train a parametric function that provides
an estimate of the worst-case hit ratio based on specified
system parameters in a few seconds compared to the tens of
minutes simulations would take.

We designed a simulation environment with a library of
sizeY and a cache of sizeX · Y where files are accessed
according to the model described by Gummadi [9]. We cal-
culate the hit ratio by dividing the number of requests for
objects in the cache by the total number of requests. Let
each client’s libraryLj be a subset of the complete library
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Figure 2. Plots showing data fitting curves to
construct the form of Ĥ, A and B.

L that excludes all files clientj has selected in the previous
weeks. During each iteration (one week) of the discrete-
time simulation, the following sequence of events occurs:

1. Clients are added to the population at a specified rate.
2. New files are added to the libraryL at a specified rate.
3. The cache is filled with the most popular files.
4. Each clientj selects an object from his libraryLj .
5. The weekly hit ratio is calculated.

The users’ requests are generated using a Zipf distribution
with coefficientα = 1. The probability of selecting the file
at ranki in library Lj is given bypj(i):

pj(i) =
i−α∑

i∈Lj
i−α

Files that have already been fetched by the user cannot
be selected again (fetch-at-most-once-model). After every
request a user makes, the selected file is removed from his
library Lj and file selection probabilities are recalculated.
New files are introduced in the libraryL and each libraryLj

at a specified rate. The insert position of a file is determined
using a Zipf distribution (withα = 1); the ranks of exist-
ing files which are less popular are decreased and selection
probabilities are recalculated. We ran extensive simulations
with different values for the following parameters:
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Figure 3. Histograms of the error Ĥ − H be-
tween our function estimate Ĥ and the value
observed during simulations H. Top: entire
dataset (1000 ≤ Y ≤ 10000). Bottom: reduced
dataset 2500 ≤ Y ≤ 10000.

1. Number of weeks (length of the simulation).
2. Size of the client population.
3. Number of new clients every week.
4. Size of the initial library of objectsY .
5. Number of files added to the library every weekZ.
6. Size of the cache as a fraction (X) of the library size.

From our simulation results, we determined that the only
parameters that have a significant impact on the hit ratio
were the library sizeY , the number of files added every
weekZ and the cache size ratioX. We generated 864 points
for the hit ratioH by running the simulation four times for
216 possible combinations ofX, Y andZ. In Fig. 2(a), we
observe the linear behavior ofH as a function oflog(X)
for different values ofY andZ and propose the form in (3)
for our estimateĤ, where0 ≤ X ≤ 1, 1000 ≤ Y ≤ 10000
and0 ≤ Z ≤ 100. We construct the bilinear functional
form for A andB represented respectively by (4) and (5)
based on the linear relationship betweenA andZ observed
in Fig. 2(b) and similar observations made forB. Perform-
ing further plot analysis, we observed that usinglog(Y ) in
(4) andY in (5) generated the best fit forA andB.

Ĥ = A + B · log(X) = f3(X) (3)

A = K1 + K2Z + K3 log(Y ) + K4Z log(Y ) (4)

B = K5 + K6Z + K7Y + K8ZY (5)

We determine the values of the coefficientsK1 to
K8 by solving in the least squares sense the system
KV (X, Y, Z) ∼= H obtained by substituting (4) and (5) into
(3). Our resulting function forhi is quite accurate, showing



less than 2% error eighty-five percent of the time and less
than 5% error ninety-nine percent of time. In the top plot
of Fig. 3, we show the histogram of the error distribution
for the entire dataset used(1000 ≤ Y ≤ 10000) for our
simulations where the error is less than 5% ninety-nine per-
cent of the time. In the bottom plot we show the histogram
of a reduced dataset where the values for library size below
2500 are discarded. The accuracy of this reduced dataset is
much higher (less than 1.5% error ninety-eight percent of
the time) becauseY = 1000 did not fit the proposed forms
as well as the other data points (see Fig. 2(b)).

4.2. Cost function

We can express the total cost,CTOT, as the sum of the
cost of infrastructure,CT , and the cost of transport,CS .

CTOT = CT + CS (6)

The cost of infrastructure,CT , includes the software and
start-up cost of a location (Ai) and the cost of VoD servers
(Bi) for every replica sitei and the origin server. In (7),
we expressCT as a function of the number of VoD servers
installed at locationi, ni, and the origin,no.

CT =
N∑

i=0

Ai + Bini = f1(no) +
N∑

i=1

f1(ni) (7)

The cost of transport consists of two components: trans-
port from the origin to replicas and clients,CSORi

, and
transport from replicai to client i, CSRCi

. It includes the
cost of node interfaces (CIF ) and of fiber (Cf ). The trans-
port from replicas to the user-end (small distances) uses di-
rect fiber whereas the transport from the origin to the repli-
cas uses DWDM connections.

CS =
N∑

i=1

CSORi
+ CSRCi

(8)

CSRCi
= nRCi · (2 · CIF + dRCi · Cf ) (9)

CSORi
= nORi

(2 · CIF ) +
nORi

dwmax

[
2CDWDM +

dORi
· Cf +

(
dORi

maxamp

)
· CLA

]
(10)

nORi
: Num. of interfaces (fibers) toward the origin.

nRCi
: Num. of interfaces (fibers) toward the user-end.

c: Fiber capacity. (Gbps)
CIF : Node switch interface cost. ($)
Cf : Cost of fiber. ($/km)
CDWDM : Cost of DWDM equipment ($)
wmax: Number of fibers supported by DWDM equipment.
CLA: Cost of line amplifier. ($)

damp: Max. distance between two amplifiers. (km)

The number of fibers at each node depends on the amount
of traffic on the various links, the hit ratio at the replica and
the fiber capacity. On the link between locationi and the
clients (RCi), the traffic is equal to the demand from the
user,Mi. On the link between the origin and a locationi
(ORi), all the requests that cannot be served by the replica
(cache misses) are handled by the origin server and gener-
ate a traffic equal to(1− hi) ·Mi. Notice that we are using
non-integer values for the network components because we
assume that the unused fraction can be used for other appli-
cations and does not need to be included in the cost.

nORi
=

(1− hi) ·Mi

c
nRCi

=
Mi

c
(11)

Because the worst-case demand between locationi and
the group of clients is fixed,CSRCi

does not depend on any
of the optimization variables. However,CSORi

indirectly
depends onni because the hit ratiohi changes with the
number of VoD servers installed. We express the cost of
transportCS as follows, wheref2(hi,Mi) is obtained by
substituting (11) into (10) and (9):

CS =
N∑

i=1

CSORi
+ CSRCi

=
N∑

i=1

f(nORi
) + f(nRCi

)

=
N∑

i=1

f2(hi,Mi) (12)

By substituting (7) and (12) in (6), we can express the to-
tal cost as a function of the number of VoD servers installed
(ni), the hit ratio (hi) and the demand (Mi) at each location:

CTOT = f1(no) +
N∑

i=1

f1(ni) + f2(hi,Mi) (13)

The required number of VoD servers is determined
by either the streaming or storage requirement (ni =
max(si, ti)), expressed as functions ofXi:

si =
hi ·Mi

Fi
=

f3(Xi) ·Mi

Fi
ti =

Xi · Y
Gi

(14)

so =
∑

i(1− f3(Xi)) ·Mi

Fo
to =

Y

Go
(15)

Definef4(Xi) , max so, to andf5(Xi) , max si, ti.
By substituting (3), (14) and (15) into (13) and assuming
that the demandMi is known, we expressCTOT as a func-
tion of the optimizing variableXi:

CTOT = f1(f4(Xo))+
N∑

i=1

f1(f5(Xi))+f2(f3(Xi)) (16)



Figure 4. Screenshot of our design tool.

4.3. The heuristic

Step 1: The first step of the heuristic is to provide an ini-
tial solution,X = {Xi : i = 1, ..., N}, representing the
optimal fraction of the library to store at each replica. We
obtainX by performing a constrained nonlinear optimiza-
tion on CTOT (as expressed in (16)) where0 ≤ X ≤ 1,
which is solved using a sequential quadratic programming
(SQP) method [8]. FromX , we calculateNini, the set of
fractional number of VoD servers, by expressingsi, ti, so

and to as functions ofXi. From this initial solutionNini

we can calculate the lower-bound ofCTOT and upper-bound
by roundingNini up to the nearest integer.
Step 2: The second step of the heuristic consists of search-
ing the surroundings ofNini for a near-optimal integer so-
lution. For each replica, we calculate the cost for integer
values ofni near the initial value calculated (ni±2) looking
for a lower cost. We repeat this procedure until no changes
in Nopt can decrease the total cost. For each value ofni we
maximize the hit ratio to decrease the transport cost from
the replica to the origin:

Xstorage =
niG

Y
Xstreaming = f−1

3 (hi) = f−1
3

(
niF

Mi

)

Xi = min(Xstorage, Xstreaming)

5. Results

In this section we examine the results obtained from
applying our heuristic to three scenarios using our design
tool. The tool, shown in Fig. 4, allows the quick creation
of topologies, easy modification of system parameters and
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Figure 5. Scenario 1. Impact of each step of
the heuristic on total network cost (top) and
cost improvement (bottom). In both plots,
20 different cases are displayed in increasing
order of cost of NoReplica.

visualization of the resulting design. In the figure, we can
see the topology of a MAN (small squares represent inter-
connected locations) and the object editing window which
allows the user to create and edit objects in the topology;
for example, the user can edit a replica object by changing
the type of VoD servers available.

Scenario1 20 different sets of inputs where the number of
locationsN in the topology is between 1 and 100,
files in the library between 1000 and 10000 and file
arrival rate per week between 0 and 100. System pa-
rameters are all uniformly distributed within specified
ranges: demandM (1-20Gbps), startup costA (6-
37k$), VoD server costB (1-53k$), streaming capacity
F (1-5Gbps), storage capacityG (1-10TB), distance
to the origindOR (0-50km), average distance to the
client dRC (0-5km), cost of bandwidth (0-4k$/Gbps)
and cost of storage (0-3k$/TB);

Scenario2 Topology of 25 locations with the system para-
meters uniformly distributed within the same ranges as
in Scenario1. For each trial, demandMi = M at each
replica, whereM varies from 2.5Gbps to 50Gbps;

Scenario3 Topology of 14 locations with the system para-
meters uniformly distributed within the same ranges as
in Scenario1. The specifications of the equipment and
demand at each node appear in Table 1.

The top panel of Fig. 5 shows three different total net-
work costsCTOT for Scenario1: cost without any equip-
ment installed at the replicas (ni = 0 for all i) and cost
after the first and second step of the heuristic. The bottom
panel of Fig. 5 shows the percentage reduction of the cost
achieved by the two-step heuristic. Our two-step heuristic



0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Demand per location (Gbps)

C
os

t (
k$

)

 

 
0

2000

4000

6000

8000

T
ot

al
 C

os
t (

k$
)

 

 
Heuristic (Step 2)
NoReplica

Cost of replica (Heuristic)
Cost of transport (Heuristic)
Cost of transport (NoReplica)
Cost of 1 VoD server

Figure 6. Scenario 2. Total network cost
(top) and individual location cost (bottom) for
Mi = M at each replica, where M varies from
2.5Gbps to 50Gbps.

yields average improvements of 17% over the case where
no equipment is deployed. The majority of the heuristic im-
provement comes from the first step.

In Scenario2 we illustrate the impact of the demandM
on the deployment cost. Fig. 6 illustrates that as the de-
mand increases, the cost differential between the design
generated by our tool and a design in which no equip-
ment is installed grows substantially. Below a certain de-
mand (≈ 7− 8Gbps), both designs are of equal cost, which
means that if the demand is too low, it is no longer cost-
efficient to deploy equipment. The bottom panel of Fig. 6
compares costs of transport and infrastructure of a single lo-
cationi, which has a startup costA = 19k$ and where VoD
servers with3Gbps and2TB capacity are available at2k$.
As long as “Cost of 1 VoD server” is lower than “Cost of
transport (NoReplica)”, it is beneficial to cache content at
i. If the equipment installed at the origin andi is identical
and “Cost of transport (NoReplica)” is smaller than “Cost
of 1 VoD server”, then it is cheaper not to install any replica
and carry the entire demand up to the origin. In the ana-
lyzed scenario, equipment is cheaper ati than at the origin,
so there is one point (M = 8.3Gbps) where the heuristic in-
dicates that a replica should be installed even though the
cost of transport is less than the minimum deployment cost.
Therefore, the demand and type of equipment not only have
an impact on the fraction of the library to cache, but also de-
termine whether or not caching content is even profitable.

Table 1 displays the values forni, si and ti calculated
with our tool for Scenario3. The total network cost for
this equipment is 1,810k$. Looking at the table, we no-
tice significant discrepancies between the values ofsi1 and
ti1 , which signifies that resources are wasted because of

poorly chosen equipment. For example, at location 3, the
required number of streaming devices is almost twice the
number of storage devices, whereas the streaming capacity
of the equipment is half of the storage capacity. We consider
the effect of making equipment available at these locations
with specifications that better match storage and streaming
needs. For example, we change the value ofF3 from 1 to
3 in order to have a closer match fors3 andt3. We repeat
for the other three locations whereni 6= 0 (7, 10 and 11)
and adjust the value ofB accordingly; for example,B3 in-
creases from 9k$ to 15k$ to support an extra 2Gbps. All the
modifications (Bi2 , Fi2 andGi2) and new results (ni2 , si2 ,
ti2) are also shown in Table 1. We notice that the four loca-
tions where we modified the hardware now havesi2 = ti2 ,
which indicate a better usage of resources. Moreover, be-
cause of the savings at these locations, it is now beneficial
to install more equipment at locations 1 and 14 to achieve
a minimal network cost. We also note that even though the
value ofn5 has not changed, the streaming and storage re-
quirements have increased from 0 to 1.7. The new total net-
work cost for this setup is 1,580k$, a 12.5% improvement.
It is important to stress that the prices and capacity used
in these scenarios are not intended to reflect the real values
used in practice. However, this simple example shows the
impact of modifying the type of equipment installed at each
location on the total deployment cost.

6. Conclusion

Network cost is affected not only by where replicas are
located, but also what equipment comprises a replica. We
developed a design tool to address theVoD equipment al-
location problem. There are three principal contributions
from the development of this tool. We used extensive simu-
lations to train a parametric function that generates accurate
estimates of the hit ratio for given cache size, library size
and file arrival rate. We constructed a cost function based
on the hit ratiohi, the demandMi, and the number of VoD
serversni at each location. We designed a two-step heuris-
tic that relaxes the integer constraint to produce an initial so-
lution and then identifies a near-optimal integer solution in
the reduced search space. The tool that implements our cost
function, hit ratio function and two-step heuristic is truly
interactive because it allows designers to create and change
network models to generate optimal designs in an efficient
and timely manner.

Our key conclusions are: (i) the nature of the available
server equipment has a major impact on the design and cost
of a VoD network; and (ii) it is not always beneficial to
cache content. It is profitable to install VoD servers (regard-
less of the library size) if the demand at the given location
is significant. On the other hand, even if the library has tens
of thousands of assets, if the demand is too low, no amount
of caching can reduce the network cost. Accounting for the



Table 1. Scenario 3. Initial specifications of 14 locations (left). On the right, specifications of the
locations after modifying equipment (modified values are highlighted with the surrounding box).

Mi Ai Bi1 Fi1 Gi1 ni1 si1 ti1 Bi2 Fi2 Gi2 ni2 si2 ti2
10 19 12 2 2 0 0 0 12 2 2 3 4.3 4.3
13 8 29 1 9 0 0 0 29 1 9 0 0 0
18 12 9 1 2 18 17.8 11 15 3 2 6 5.5 5.5
5 13 16 4 1 0 0 0 16 4 1 0 0 0
9 15 19 4 2 2 0 0 19 4 2 2 1.7 1.7
2 15 22 4 3 0 0 0 22 4 3 0 0 0
19 10 30 4 6 4 4.5 3.6 22 4 3 4 4.2 4.2
1 15 12 1 3 0 0 0 12 1 3 0 0 0
9 18 24 2 6 0 0 0 24 2 6 0 0 0
19 16 27 3 6 5 6.3 3.6 16 3 2 6 5.8 5.8
19 19 24 3 5 5 6.1 4.4 16 3 2 6 5.6 5.6
10 6 29 2 8 0 0 0 29 2 8 0 0 0
8 13 35 2 10 0 0 0 35 2 10 0 0 0
14 14 22 4 3 1 0 0 22 4 3 4 3.1 3.1

available equipment during the VoD network design is crit-
ical as the choice of equipment has a direct impact on the
minimum demand that makes caching profitable. Moreover,
selecting equipment that jointly matches streaming and stor-
age requirements at each location can result in substantial
reductions in network cost; we showed in Scenario3 that
only a few equipment changes can have a major impact.

We are extending the design tool to support more than
one type of equipment per location, and determine not only
the number of servers at each site, but also select which type
of equipment yields the best solution. We are modifying the
tool to include usage and maintenance costs for the network
components subsequent to deployment.
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