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ABSTRACT

This paper investigates a class of learning problems called
learning satisfiability(LSAT) problems, where the goal is to
learn a set in the input (feature) space that satisfies a number
of desired output (label/response) constraints. LSAT prob-
lems naturally arise in many applications in which one is in-
terested in the class of inputs that produce desirable outputs,
rather than simply a single optimum. A distinctive aspect of
LSAT problems is that the output behavior is assessed only on
the solution set, whereas in most statistical learning problems
output behavior is evaluated over the entire input space. We
present a novel support vector machine (SVM) algorithm for
solving LSAT problems and apply it to a synthetic data set.

Index Terms— Machine Learning, Satisfiability, SVM,
Minimum Volume Sets, One-class Neighbor Machines.

1. INTRODUCTION

In most statistical learning problems, one is interested in
minimizing a risk function such as expected squared error or
probability of error. However, in many applications, one is
interested in a solution to the learning problem that satisfies
several criteria simultaneously, rather than simply optimizing
one. In this paper, we introduce and studylearning satisfia-
bility (LSAT) problems, a class of learning problems where
the goal is to learn a set in the input (feature) space that sat-
isfies a number of desired properties expressed in terms of
expectations and/or event probabilities.

LSAT problems arise in a number of important applica-
tions in classification and statistics. An example is an exten-
sion of the false discovery rate approach for controlling the
number of false positives in multiple hypothesis tests [1]. An-
other example is the portfolio selection problem where one
is interested in identifying a set of stocks based on histori-
cal data such that not only is the expected return above some
threshold but large losses are rare. We seek the largest set
G in the input space such that: (i) the expected output value
at every point inG is non-negative; and (ii) the probability
that the output stays above a lower limit is guarenteed to be
large. Both criteria are in the form of constraints and express
different measures ofconfidencein a favorable output.

The rest of the paper is organized as follows. In Sect. 2,
we mathematically define LSAT problems, and we present
a methodology and algorithm to solve them in Sect. 3. In
Sect. 4, we compare our algorithm to standard weighted sup-
port vector machine (SVM) techniques on a synthetic data set.
We conclude and propose future research avenues in Sect. 5.

1.1. Related Work

An example of learning with multiple criteria is the Neyman-
Pearson (NP) learning problem, in which one seeks a clas-
sifier that minimizes the false negative rate subject to a con-
straint on the false positive rate [2, 3]. An important dis-
tinction between NP learning and LSAT problems is that in
LSAT problems output behavior is assessed on the solution
set, whereas in NP learning (as well as most other standard
learning problems) one is concerned with output behavior
over the entire input space. Thus, LSAT criteria generally
involve conditional probabilities/expectations that are func-
tions of the target set, i.e. conditioning is on membership in
theoutputset. In contrast, the conditioning in the constraints
used in Neyman-Pearson learning (and in the performance
metrics used in many standard classification approaches) is
on theinputclass label. This difference leads to requirements
for new theory and learning methods.

LSAT problems are also related to classical satisfiabil-
ity (SAT) problems, most closely perhaps to stochastic SAT
(SSAT) problems [4, 5]. SSAT problems involve criteria that
depend on a mixture of controllable decision variables and
stochastic variables, and the main objective is to determine
whether there exist values for the decision variables such that
the probability that the criteria are satisfied exceeds a cer-
tain threshold. A major difference between SSAT and LSAT
problems is that the randomness in SSAT problems is typi-
cally known and therefore learning from data is not involved.
Also, LSAT does not involve decision variables, but focuses
on identification of the (possibly empty) set of inputs that sat-
isfy stochastic criteria. Finally, since LSAT involves the iden-
tification of maximum volume sets, there are relationships
with one-class neighbor (and support vector) machines and
methods for learning minimum volume sets [6, 7, 8].



2. LSAT PROBLEM FORMULATION

To formally define our problem, let us first introduce the fol-
lowing notation. FeaturesX are elements in the input space
X . An outputY ∈ Y is associated with each input. LetP de-
note a collection of probability measures onX ×Y. Each pair
(X, Y ) is distributed independently and identically according
to an unknown probability measureP ∈ P onX × Y. We
are interested in identifying a set in the input space where cer-
tain output constraints are met. LetG denote a collection of
candidate sets and letC : G×P → Rk+1 be a constraint func-
tion mapping each set and probability measure to a(k + 1)-
dimensional vector of real numbers. For a given probability
measureP , we are interested in the largest setG ∈ G that
satisfies the constraintC(G, P ) ≥ 0, where the inequality
is applied element-by-element. Letµ(G) denote a positive
measure of choice, then

max
G∈G

µ(G) subject toC(G, P ) ≥ 0

A solution may not exist, depending on the nature of the
constraints andP (in such cases, we consider the empty set
to be a default solution). An alternate expression of the LSAT
problem, which also lends itself naturally to the identification
of theµ-largest feasible set, is to express one of the constraint
criteria as a risk function to be minimized subject to the other
constraints. LetR(G, P ) be a risk function chosen such that
it is minimized by the largest set satisfyingC0(G, P ) ≥ 0.

min
G∈G

R(G, P ) subject toCj(G, P ) ≥ 0, j = 1, . . . , k

We wish to stress that any such risk function must satisfy
two important properties with respect to the other constraints:
(i) if there exists a non-empty solution to the standard LSAT
formulation, the (constrained) risk minimizer must coincide
with this solution, and (ii) if there is no solution, the empty
set must have smaller risk than any set failing to satisfyC0.

2.1. Two Types of Constraints

One of the distinctive features of LSAT problems is that the
output behavior is assessed only on the solution set, whereas
in most statistical learning problems output behavior is eval-
uated over the entire input space. We consider two types of
set-based output constraints.

1. Point-wise Constraint: C(G, P ) = C(x, G, P ) is a
function of the input variablex, and the constraint
takes the formC(x, G, P ) ≥ 0, ∀ x ∈ G.

2. Set-average Constraint:C(G, P ) is only a function of
the setG, and the constraintC(G, P ) ≥ 0 is only sat-
isfied “on-average” over the setG.

Examples of the point-wise type of constraint includeE[Y |X =
x] ≥ 0 andP (Y ≥ L|X = x) − p ≥ 0, ∀x ∈ G. Corre-
sponding examples for the set-average constraint type are
E[Y |X ∈ G] ≥ 0 andP (Y ≥ L|X ∈ G)− p ≥ 0.

3. SOLUTIONS TO LSAT PROBLEMS

3.1. Methodology

We are interested in identifying the setG ∈ G that satisfies the
constraintsC(G, P ) ≥ 0 and has minimum riskR(G, P ).
However, since the probability measureP is unknown, we
aim to learn this set from a training sample{Xi, Yi}n

i=1. Sup-
pose that we form empirical versions of the constraint func-
tionsCi(G, P̂ ) and riskR(G, P̂ ), based on the empirical dis-
tribution P̂ of the training sample. For the remainder of the
paper we will no longer explicitly indicate the dependence of
the constraints on the underlying probability measureP , sim-
ply writing C(G) = C(G, P ), Ĉ(G) = C(G, P̂ ), R(G) =
R(G, P ), andR̂(G) = R(G, P̂ ). Define the optimal set

G∗ = arg min
G∈G

R(G) subject toCj(G) ≥ 0, j = 1, . . . , k.

Let ε0, . . . , εk > 0 be fixed and define

Ĝ = arg min
G∈G

R̂(G) subject to Ĉj(G) ≥ −ε1, j = 1, . . . , k.

By allowing constraints to be violated by the small tolerances
εi, we are can relate the performance ofĜ to that ofG∗.

Lemma 1. If supG∈G |R(G)−R̂(G)| ≤ ε0 andsupG∈G |Cj(G)−
Ĉj(G)| ≤ εj for j = 1, . . . , k then

R(Ĝ) ≤ R(G∗) + 2ε0 and Cj(Ĝ) ≥ −2εj , j = 1, . . . , k

Proof. Under the assumed deviation boundŝCj(G∗) ≥
Cj(G∗)−εj ≥ −εj , which implies thatG∗ is in the empirical
constraint set. ThuŝG minimizesR̂ subject to the empirical
constraints:R(Ĝ) ≤ R̂(Ĝ) + ε0 ≤ R̂(G∗) + ε0. Applying
the assumed deviation bound again toR̂(G∗) produces the
result.

3.2. Support Vector Machine (SVM) algorithm

We describe an SVM algorithm for solving the empirical con-
strained optimization problem in some common LSAT sce-
narios. We focus on the case where there is one pointwise
constraintC0, and we assume that it is possible to identify an
associated empirical risk̂R0 that satisfies the properties iden-
tified in Sect. 2.

Our algorithmic approach is to map the constrained opti-
mization into a cost-sensitive classification problem. We as-
sociate with each data point a cost of inclusion and a cost of
exclusion. This cost is a Lagrangian sum of the riskR̂0 and
individual cost terms for each setwise constraint. We thus
map each data point(Xi, Yi) to a triple(Xi, Zi, γi), whereZi

is a class label andγi is the penalty incurred through misclas-
sification of this point. In the LSAT setting, we have multiple
constraints, so we generate a labelZi,j and a costγi,j for each
data pointi and constraintj. After this procedure, we have



associated with each data point multiple class labelsZi,j . In
order to apply cost-sensitive classification, we must collapse
these to a single labelZi. We begin by assigning a weightλj

to each constraint. The parametersλj provide a mechanism
for adjusting the relative importance of each constraint. If
Zi,j = 1 for all j, then we setZi = 1 andγi =

∑k
j=0 λjγi,j .

A similar procedure applies ifZi,j = 0 for all j. The situation
is more complicated ifZi,j differs for various constraints. In
this case, we setZi = 1 andγi =

∑
Zi,j=1 λjγi,j . However,

we also construct an auxiliary data point(Xĩ, Zĩ, γĩ), with
Zĩ = 0 andγĩ =

∑
Zi,j=0 λjγi,j .

To solve the cost-sensitive classification, we iteratively
apply a modified version of the cost-sensitive2ν-SVM, as de-
scribed in [9, 10]. Performance is dependent on the choice of
kernel, as with any SVM, but we do address that issue here;
the results we present are derived using a Gaussian kernel,
and exploring a set of logarithmically-spaced variances. The
2ν-SVM solves the optimization problem in (1), wherew and
b determine the separating hyperplane in the kernel-space,ε
andρ are slack variables,ν+ andν− provide a method for
globally adjusting the weight associated with exclusion and
inclusion, andn+ andn− are the number of points included
in, and excluded from, the identified set.

min
w,b,ε,ρ

||w||2

2
−2ν+ν−ρ+

ν−
n+

∑
i∈I+

εiγi +
ν+

n−

∑
i∈I−

εiγi (1)

s.t. Zi(k(w, xi) + b) ≥ ρ− εi for i = 1, . . . , n
εi ≥ 0 for i = 1, . . . , n
ρ ≥ 0.

We choose initial values forλj and the SVM parameters.
After each iteration of the SVM, we check to see if the iden-
tified set satisfies the empirical setwise constraints, and ad-
just the associatedν+, ν− andλj accordingly - increasing the
penalty if the set fails to satisfy a constraint, and decreasing
it otherwise. This algorithm is limited to constraints where
one can identify an appropriate mapping to labels and costs.
This can, however, be achieved for a wide range of important
constraints, including those involving bounds on pointwise or
set-average expectation or tail probabilities.

3.3. Example

We are interested in the setG ∈ X of largestP -measure that
satisfiesE[Y |X = x] ≥ U , for all x ∈ G, andP (Y >
L|X ∈ G) ≥ p. The parametersU , L < U , andp > 0 are
specified by the user. To cast this in the notation above, let

C(G, P ) =
[

minx∈G E[Y |X = x]− U
P (Y > L|X ∈ G)− p

]
As discussed in [10], minimizing the risk̂R0 can be

achieved by assigning to each training point a class-label
Zi,0 = 1Yi>U and a costγi,0 = |Yi − U | and then applying a
cost-sensitive classification algorithm.

R̂0(G) =
∑

misclassifiedi

|yi − U |

We now consider the case of the empirical set-average
constraintĈ1 :

∑n
i=1 1Y <L,X∈G/

∑n
i=1 1X∈G < 1 − p.

This poses a greater challenge due to the inherent self-
normalization in the constraint. Developing a correct map-
ping to labels and costs for this constraint is difficult, so we
first consider an alternative constraintĈ

′

1 :
∑n

i=1 1Y <L,X∈G <
P ∗(1− p) for a selected constantP ∗. This constraint is now
a bound on the joint probability of membership in G and
Y < L, rather than on the conditional probability as in the
original constraint. It is easier to identify a suitable mapping
for this constraint. This can be achieved by assigning a label
Zi,1 = 1Yi>L and a costγi,1 = 1. The important observation
is that constraintŝC1 and Ĉ

′

1 coincide whenP ∗ = 1X∈G∗
1
,

where we denote byG∗
1 the maximum probability set that

satisfies constraintC1.
The second step involves the combination of the labels

and costs associated withC0 andC1. Using the procedure
outlined above, this leads to the following set of costs. If
Yi ≥ U , thenZi = 1, whereas ifYi ≤ L, thenZi = 0. If
L < Yi < U , thenZi = 1 and, but we also construct a point
(Xĩ, Zĩ, γĩ) with Xĩ = Xi andZĩ = 0. For all points with
Zi = 1, γi = r+

i (risk of exclusion) and for points labeled as
Zi = 0, γi = r−i (risk of inclusion).

r+
i = |yi − U |1yi>U + λ1 (2)

r−i = |yi − U |+ λ11yi<L (3)

With this set of points, class labels and costs, we itera-
tively apply 2ν-SVM, jointly maximizing overP ∗, ν+, ν−

andλ1 to identify the largest probability set that minimizes
the empirical riskR̂0(G) subject to satisfying the empiri-
cal constraints

∑n
i=1 1X∈G ≥ P ∗ and

∑n
i=1 1Y <L,X∈G <

P ∗(1−p). Note that it is not necessary to explicitly maximize
P ∗ in (1), because maximizing overν+ andν− achieves this
maximization implicitly.

Table 1. Values forλ1, ν+, ν−, σ (kernel parameter)
Variable name Values

λ1 [0.01, 0.1, 1, 10]
ν+, ν− [0.1, 0.28, 0.46, 0.64, 0.82, 1.00]

σ [10−4, 10−2.4, 10−0.8, 100.8, 102.4, 104]

4. EXPERIMENTS

To test our approach, we attempt to solve the problem in-
troduced in Sect. 3.3 by using a synthetically generated data
set. The set is composed of three easily identifiable clouds of
points. All the points in the first cloud havey > U , all points
in the second cloud havey < L and the last one mainly in-
cludes point withy > U , but also a few withy < L such
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Fig. 1. Synthetic data set. Fraction of included points violating
C0 (TOP), mass (MIDDLE) and probability of avoiding small return
(BOTTOM) of G as a function of number of points used for training.
Testing was performed using 2000 data points.

that C1 for this group of points. We compare our approach
(LSAT) to a regular weighted SVM (WSVM) approach that
only tries to identify the largest U-level set. In both cases, we
perform a grid search on the parameters shown in Tab. 1 to
obtain the best solution (λ1 only applies to LSAT).

We compare the performance of the algorithm for differ-
ent training set sizesNtrain ([100, 200, 300, 400, 500, 1000]).
For each value ofNtrain, we average results over five training
sets generated by randomly selecting points out of the train-
ing data set of size 1500 and reserve 2000 points for testing.
We plot the fraction of points violatingC0, the mass of the se-
lected sets as a fraction of the entire set and an estimate ofp̂.
From Fig. 1, we can see that the LSAT approach is succesful
in satisfying the set-average constraintC1 at the expense of
generating a level-set with smaller mass. On the other hand,
the standard WSVM includes more points in sets, hence the
higher mass, but fails to satisfyC1 and also has a higher frac-
tion of points violating the point-wise constraintC0. The
trade-off is shown explicitly in Fig. 2, WSVM includes points
from the top-left cloud whereas LSAT disregards them in or-
der to satisfyC1.

5. CONCLUSIONS

This paper introduced a new learning framework for handling
LSAT problems and an algorithm based on weighted SVM
to solve them. Using a simple synthetic data set, we showed
the trade-off between the competing constraints of risk and
return; by reducing risk, the LSAT approach selected a set
G with smaller mass than the weighted SVM approach. The
future work will be directed at testing our approach and al-

LSAT

WSVM

 

 

Included
Excluded

Fig. 2. Points included by LSAT and WSVM (synthetic data set).

gorithm on real-life data as well as developing a bilevel opti-
mization framework to replace the current grid search on the
various optimization parameters.
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