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ABSTRACT The rest of the paper is organized as follows. In Sect. 2,
e mathematically define LSAT problems, and we present
a methodology and algorithm to solve them in Sect. 3. In

learn a set in the input (feature) space that satisfies a numbgFCt' 4, we compare our algonthm to standard welghted Sup-
of desired output (label/response) constraints. LSAT Iorobport vector machine (SVM) techniques on a synthetic data set.

lems naturally arise in many applications in which one is in_We conclude and propose future research avenues in Sect. 5.

terested in the class of inputs that produce desirable outputs,
rather than simply a single optimum. A distinctive aspect of
LSAT problems is that the output behavior is assessed only ofy 1 Related Work

the solution set, whereas in most statistical learning problem : . . L
W&n example of learning with multiple criteria is the Neyman-

output behavior is evaluated over the entire input space. Ig . X .
. . earson (NP) learning problem, in which one seeks a clas-
present a novel support vector machine (SVM) algorithm for

. . . sifier that minimizes the false negative rate subject to a con-
solving LSAT problems and apply it to a synthetic data set. straint on the false positive rate [2, 3]. An important dis-

Index Terms— Machine Learning, Satisfiability, SVM, tinction between NP learning and LSAT problems is that in

This paper investigates a class of learning problems call
learning satisfiability(LSAT) problems, where the goal is to

Minimum Volume Sets, One-class Neighbor Machines. LSAT problems output behavior is assessed on the solution
set, whereas in NP learning (as well as most other standard
1. INTRODUCTION learning problems) one is concerned with output behavior

over the entire input space. Thus, LSAT criteria generally

In most statistical learning problems, one is interested ifnvolve conditional probabilities/expectations that are func-
minimizing a risk function such as expected squared error diions of the target set, i.e. conditioning is on membership in
probability of error. However, in many applications, one istheoutputset. In contrast, the conditioning in the constraints
interested in a solution to the learning problem that satisfiedsed in Neyman-Pearson learning (and in the performance
several criteria simultaneously, rather than simply optimizingnetrics used in many standard classification approaches) is
one. In this paper, we introduce and studgrning satisfia-  0on theinputclass label. This difference leads to requirements
bility (LSAT) problems, a class of learning problems wherefor new theory and learning methods.
the goal is to learn a set in the input (feature) space that sat- LSAT problems are also related to classical satisfiabil-
isfies a number of desired properties expressed in terms @¥ (SAT) problems, most closely perhaps to stochastic SAT
expectations and/or event probabilities. (SSAT) problems [4, 5]. SSAT problems involve criteria that
LSAT problems arise in a number of important applica-depend on a mixture of controllable decision variables and
tions in classification and statistics. An example is an extenstochastic variables, and the main objective is to determine
sion of the false discovery rate approach for controlling thavhether there exist values for the decision variables such that
number of false positives in multiple hypothesis tests [1]. Anthe probability that the criteria are satisfied exceeds a cer-
other example is the portfolio selection problem where ongain threshold. A major difference between SSAT and LSAT
is interested in identifying a set of stocks based on historiproblems is that the randomness in SSAT problems is typi-
cal data such that not only is the expected return above sonoally known and therefore learning from data is not involved.
threshold but large losses are rare. We seek the largest s&so, LSAT does not involve decision variables, but focuses
G in the input space such that: (i) the expected output valuen identification of the (possibly empty) set of inputs that sat-
at every point inG is non-negative; and (ii) the probability isfy stochastic criteria. Finally, since LSAT involves the iden-
that the output stays above a lower limit is guarenteed to b#fication of maximum volume sets, there are relationships
large. Both criteria are in the form of constraints and expreswith one-class neighbor (and support vector) machines and
different measures afonfidencen a favorable output. methods for learning minimum volume sets [6, 7, 8].



2. LSAT PROBLEM FORMULATION 3. SOLUTIONS TO LSAT PROBLEMS

To formally define our problem, let us first introduce the fol-3.1. Methodology
lowing notation. FeatureX are elements in the input space
X. AnoutputY € Y is associated with each input. LBtde-
note a collection of probability measures&nk ). Each pair

(X,Y) is distributed independently and identically accordlngaim to learn this set from a training samgl&;, Y;}7_,. Sup-

to an unknown probability measufe € P on X x ). We that we f irical - f th traint f
are interested in identifying a set in the input space where ceP0S€ thal we form empirica versions of the constraint tunc-

tain output constraints are met. L@tdenote a collection of tpns@-(@ P)and ”‘f'k,R(G’ P), based on the em_pmcal dis-
candidate sets and I6t: G xP — RF+1 be a constraint func- tribution P of the training sample. For the remainder of the
tion mapping each set and probability measure (6 a 1)- paper we Wi|| no longer explic?tly indicatg 'the dependgnce of
dimensional vector of real numbers. For a given probabilit€ constraints on the underlying probability meastrsim-
measureP, we are interested in the largest €éte G that PIY writing C(G) = C(G, P), C(G) = C(G, P), R(G) =
satisfies the constrai®(G, P) > 0, where the inequality (G, P), andR(G) = R(G, P). Define the optimal set

is applied element-by-element. LetG) denote a positive
measure of choice, then

bject t P) >
max u(@) subjecttoC(G,P) >0

We are interested in identifying the s&te G that satisfies the
constraintsC'(G, P) > 0 and has minimum riskR(G, P).
However, since the probability measufeis unknown, we

G* = arg gelrgl R(G) subjecttoC;(G) >0, j=1,...,k.

Letey,..., e, > 0 be fixed and define
A solution may not exist, depending on the nature of the_, Lo~ ) ~ )

constraints and® (in such cases, we consider the empty sef” = argmin R(G) subjecttoC;(G) > —e1, j = 1,.... k.

to be a default solution). An alternate expression of the LSAT

problem, which also lends itself naturally to the identificationBY allowing constraints to be violated by the small tolerances

of the y-largest feasible set, is to express one of the constrairft. We are can relate the performancecofo that of G*.

criteria as a risk function to be minimized subject to the othe 5
. : : fs - < 5 H(G)—
constraints. LeR(G, P) be a risk function chosen such that E_Aemmal Ifsupgeg [R(G)—R(G)| < co andsupgeg [C5(C)

it is minimized by the largest set satisfyiag (G, P) > 0. Ci(G) = ¢forj=1,.. kthen
min R(G, P) subject toC;(G, P) 20, j =1,....k R(G) < R(G*) +2¢ and C;(G) > —2¢;, j=1,....,k

We wish to stress that any such risk function must satisfyoygof. Under the assumed deviation bounds(G*) >
two important properties with respect to the other constraintsy (=) — ¢; > —e;, which implies thatG* is in the empirical

s . . J
(i) if there exists a non-empty solution to the standard LSAT;qqiaint set. Thué’ minimizes R subject to the empirical

formulation, the (constrained) risk minimizer must COinCideconstraints:R(@) < fz(é) Te < }A%(G*) + . Applying

with this solution, and (||) if there is no sc_)l_utlon, the empty the assumed deviation bound againf?t(JG*) produces the
set must have smaller risk than any set failing to satigfy result L

2.1. Two Types of Constraints 3.2. Support Vector Machine (SVM) algorithm

One of the distinctive features of LSAT problems is that theWe describe an SVM algorithm for solving the empirical con-

output behavior is assessed only on the solution set, wheregtsfained optimization oroblem in some common LSAT sce
in most statistical learning problems output behavior is eval="_". P P ) N
rios. We focus on the case where there is one pointwise

uated over the entire input space. We consider two types 0 . L : . .
put sp yp constraintCy, and we assume that it is possible to identify an
set-based output constraints.

associated empirical risﬁo that satisfies the properties iden-

1. Point-wise Constraint: C(G,P) = C(z,G,P) is a tifiedin Sect. 2.
function of the input variabler, and the constraint Our algorithmic approach is to map the constrained opti-
takes the formC(z, G, P) > 0, Vz € G. mization into a cost-sensitive classification problem. We as-

sociate with each data point a cost of inclusion and a cost of
exclusion. This cost is a Lagrangian sum of the rigkand
individual cost terms for each setwise constraint. We thus
map each data poi;, Y;) to a triple(X;, Z;,v;), whereZ;
Examples of the point-wise type of constraintincludl@”| X = is a class label ang; is the penalty incurred through misclas-
z] > 0andP(Y > LIX =x2)—p > 0,Vz € G. Corre- sification of this point. In the LSAT setting, we have multiple
sponding examples for the set-average constraint type am®nstraints, so we generate a labgl; and a cost; ; for each
EY|X €G] >0andP(Y > LIX € G) —p>0. data point; and constraingj. After this procedure, we have

2. Set-average Constraint:C(G, P) is only a function of
the setG, and the constraint’(G, P) > 0 is only sat-
isfied “on-average” over the sét.



associated with each data point multiple class la#gls In R

order to apply cost-sensitive classification, we must collapse Ry(G) = Z ly; — U

these to a single labél;. We begin by assigning a weight misclassified

to each constraint. The parametagsprovide a mechanism We now consider the case of the empirical set-average

for adjusting th.e relative importance of each kconstramt. |fcor_15traint01 s> Iyenxea/ > Ixea < 1l-p

Z;; = 1forall j, thenwe se; = 1andy; = > ._, A\;v:,;-  This poses a greater challenge due to the inherent self-

A similar procedure applies #; ; = 0 for all j. The situation normalization in the constraint. Developing a correct map-

is more complicated iZ; ; differs for various constraints. In ping to labels and costs for this constraint is difficult, so we

this case, we sef; = 1andy; = >_, _; A;7:,;. However, firstconsider an alternative constraifit: S0 1y <1 xeq <

we also construct an auxiliary data poiX;, Z;,v;), with  P*(1 — p) for a selected constaift*. This constraint is now

Z; =0andy; = Ezij:o AjYi - a bound on the joint probability of membership in G and
To solve the cost-sensitive classification, we iterativelyY” < L, rather than on the conditional probability as in the

apply a modified version of the cost-sensitize SVM, as de-  original constraint. It is easier to identify a suitable mapping

scribed in [9, 10]. Performance is dependent on the choice dér this constraint. This can be achieved by assigning a label

kernel, as with any SVM, but we do address that issue hereZ; 1 = ly,~ 1, and a cost;, ; = 1. The important observation

the results we present are derived using a Gaussian kern@l,that constraintél and 51 coincide whenP* = 1xcg:,

and exploring a set of logarithmically-spaced variances. Thevshere we denote by the maximum probability set that

2v-SVM solves the optimization problemin (1), wheveand  satisfies constraind .

b determine the separating hyperplane in the kernel-sgace, The second step involves the combination of the labels

and p are slack variables;; andv_ provide a method for and costs associated withy and C;. Using the procedure

globally adjusting the weight associated with exclusion andutlined above, this leads to the following set of costs. If

inclusion, andn andn_ are the number of points included Y; > U, thenZ; = 1, whereas ifY; < L, thenZ; = 0. If

in, and excluded from, the identified set. L <Y; < U,thenZ; = 1 and, but we also construct a point

(X3, Z;, ;) with X; = X; andZ; = 0. For all points with

2
min [[w]] v pt = Z eivi + 22 Z v () Zi=ly=r} (risk of exclusion) and for points labeled as
wbep 2 ny n- Z; =0,v; = r; (risk of inclusion).
st Zi(k(w,z;))+b) > p—g fori=1,...,n o= |y —Ully,so + M\ 2)
g > 0 fori=1,...,n S 1 3
b > 0. T lyi — Ul + My (3)

I With this set of points, class labels and costs, we itera-
We choose initial values fox; and the SVM parameters. tively apply 2v-SVM. jointly maximizing overP*, v+, v~

After each iteration of the SVM, we check to see if the iden- nd \, to identify the largest probability set that minimizes

tified set satisfies the empirical setwise constraints, and a b rical riskD bi L h o
just the associated, , v_ and); accordingly - increasing the © empirica’ 1S Ro(G) subject o satisfying the empiri-
J U J cal constraintsy ;" | 1xeq > P*and)." | 1y« xeq <

penalty if the set fails to satisfy a constraint, and decreasin “(1—p). Note that it is not necessary to explicitly maximize

it otherwise. This algorithm is limited to constraints whereP* in (1), because maximizing over, andv_ achieves this
one can identify an appropriate mapping to labels and COStﬁﬁaximizétion implicitly -

This can, however, be achieved for a wide range of importan
constraints, including those involving bounds on pointwise or

set-average expectation or tail probabilities. Table 1. Values for\, v, v_, o (kernel parameter)
Variable name| Values
3.3. Example A1 0.01,0.1, 1, 10]
Vi, V_ [0.1,0.28, 0.46, 0.64, 0.82, 1.00]

We are interested in the s6te X of largestP-measure that
satisfiesE[Y|X = z] > U, foral z € G, andP(Y >
L|X € G) > p. The parameter¥, L < U, andp > 0 are
specified by the user. To cast this in the notation above, let

o [10—47 10—2.47 10—0.8, 100.8, 102.4, 104]

4. EXPERIMENTS
mingeg E[Y|X =2]-U
PY>LIXeG)—p To test our approach, we attempt to solve the problem in-
R troduced in Sect. 3.3 by using a synthetically generated data
As discussed in [10], minimizing the risk, can be set. The setis composed of three easily identifiable clouds of
achieved by assigning to each training point a class-labgdoints. All the points in the first cloud haye> U, all points
Z;o = ly,>u and a costy; o = |Y; — U| and then applying a in the second cloud hawge < L and the last one mainly in-
cost-sensitive classification algorithm. cludes point withy > U, but also a few withy < L such

C(G,P) =
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Fig. 2. Points included by LSAT and WSVM (synthetic data set).

Fig. 1. Synthetic data set. Fraction of included points violating
Co (TOP), mass (MIDDLE) and probability of avoiding small return gorithm on real-life data as well as developing a bilevel opti-

(BOTTOM) of - as a function of number of points used for training. mization framework to replace the current grid search on the
Testing was performed using 2000 data points. various optimization parameters.
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