
Deterministic Packet Marking for Congestion Price
Estimation

R.W. Thommes and M.J. Coates
Department of Electrical and Computer Engineering

McGill University
3480 University St

Montreal, QC, Canada H3A 2A7
Email: rthomm@tsp.ece.mcgill.ca, coates@ece.mcgill.ca

Abstract— Several recent price-based congestion control
schemes require relatively accurate path price estimates for suc-
cessful operation. The proposed addition of the two-bit Explicit
Congestion Notification (ECN) field in the IP header provides
routers with a mechanism for conveying price information.
Recently, two proposals have emerged for probabilistic packet
marking at the routers; the proposals allow receivers to estimate
path price from the fraction of marked packets. In this paper
we introduce an alternative deterministic marking scheme for
encoding path price. Under our approach, each router quantizes
the price of its outgoing link to a fixed number of bits. We
then make use of the IP identification (IPid) field to map data
packets to different probe types, and each probe type calculates
a partial sum of the path price bits. A router deduces its
marking behaviour according to the IPid and the TTL (Time
To Live) field of each packet. We evaluate the performance of
our algorithm in terms of its error in representing the end-to-
end price, and compare it to probabilistic marking. We show that
based on empirical Internet traffic characteristics, our algorithm
performs better when estimating path price using small blocks of
packets. We also derive the probability distribution of the error
for our scheme, and provide a relatively simple bound on its
maximum mean-squared error.

Keywords: statistics, network measurements, packet marking,
congestion control

I. INTRODUCTION

In recent years, a variety of optimization-based network
congestion control strategies have been proposed [1]–[7]. The
majority of these are price-based congestion control protocols.
They require that each router maintain a congestion price
that is dependent on the flow into and out of its buffer.
The routers must convey information about these prices back
to the source so that its rate can be adjusted accordingly.
The proposed addition of the two-bit Explicit Congestion
Notification (ECN) field in the IP header provides routers with
a mechanism for conveying price information [8]. In several
of the proposals [2], [6], [7], the task of calculating link price
is separable from the communication task (or packet marking
exercise). Two probabilistic marking proposals have emerged
for this case [2], [9]; the proposals allow receivers to estimate
path price (the sum of link prices) from the fraction of marked
packets. In this paper we introduce and evaluate an alternative
deterministic marking scheme for encoding and estimating
path price.

A. The Marking Problem

The problem we examine in this paper is that of determining
the sum of the prices of a set of links constituting a path be-
tween a source and a receiver. We now formalize the problem
as in [9], slightly deviating occasionally. Consider a set of
links 1, . . . , n forming an end-to-end path from a source to a
receiver. Associated with each link i is a non-negative price si.
Let zn =

∑n
i=1 si denote the sum of the prices along the path.

The routers convey congestion information to the receiver by
encoding this information in the data packets that traverse the
path. For each packet, the current IP standard provides a router
with access to two congestion notification (CN) bits in the IP
header. We denote the state of these bits after the marking
action of link/router i by Xi. Xi can take on four possible
values 00, 01, 10, 11, but one state (00) must be reserved to
communicate the inability to use ECN, so three states are
available for information passing (although implementation of
RFC 3540 [10] would effectively reduce this to two). Upon
receipt of the marked data packets, the receiver must be able
to form an estimate of zn, and feed this estimate back to the
sender. In this paper, we focus primarily upon the problem
of routers conveying congestion information to the receiver.
Our goal is to design a marking algorithm that the routers can
apply to all the packets that traverse them, with the algorithm
potentially modifying the IP congestion notification header bits
and thus providing congestion information to the receiver.

As discussed in [9], a marking algorithm must obey some
design constraints. The algorithm must be fully distributed,
so that in making a marking decision, each router makes
use of only local information – specifically, the current link
price and the information contained in the IP header of the
packet. The algorithm should not retain per-flow state nor
retain any memory of how previous packets were marked.
Adler et al. [9] claim that “there is no deterministic marking
algorithm under these conditions”. They derive a probabilistic
algorithm, Random Additive Marking (RAM) and compare
its behaviour to that of Random Exponential Marking (REM)
which was proposed by Athuraliya et al. [2]. Significant
variance in price estimates persists in the probabilistic schemes
despite the use of a substantial number of data packets. Such a
property is unavoidable, because a binomial probability lurks

beneath any probabilistic scheme, and one can at best achieve
a linear decay in variance or mean-squared error. Packet prices
are dynamic, so accurate estimates must be obtained with a
relatively small number of packets. Moreover, the estimation
error is highly dependent on the actual value of the link prices;
the garnering of accurate estimates in RAM requires that the
mean link price be close to 0.5 (assuming that prices are bound
between zero and one) [9]. The performance of REM is heavily
contingent on the setting of its parameters and how well they
match the proffered prices and path lengths [9].

We beg to differ with Adler’s claim, and our paper fo-
cuses on outlining a deterministic quantized marking (DQM)
algorithm and exploring its performance. In developing the
deterministic scheme, we have attempted to introduce as few
changes to the current protocols as possible, in order to make
deployment a more attainable objective. The scheme does not
demand changes to the TCP or IP headers, but it does require
that the available congestion notification bits are used in a
different manner. The major change is that a completely dif-
ferent, but simple and computationally inexpensive, marking
algorithm must be implemented at the routers constituting a
path. The majority of the paper focuses on developing and
analysing a method for conveying congestion information on
the forward path from sender to receiver.

The paper is organized as follows. In Section II we review
the current IP standard for packet marking and examine in
more detail the probabilistic marking algorithms, REM and
RAM. In Section III we propose a new deterministic marking
algorithm and describe its structure. In Section IV we analyse
the performance of the deterministic algorithm in terms of
mean-squared error and make comparison with RAM and
REM. In Section V we examine the performance of our
algorithm based on Internet trace-driven simulations.

II. PACKET MARKING AND PROBABILISTIC TECHNIQUES

A. IP Standard

RFC 3168 proposes the addition of Explicit Congestion
Notification (ECN) to the IP protocol [8]. ECN provides
an alternative to the current method by which intermediate
network routers signal congestion to end systems by dropping
packets. Under the new proposal, a two bit ECN field in the
IP header may be used to indicate the presence of congestion.
In the proposal, the two bits are considered to comprise four
codepoints. For backwards-compatibility, RFC 3168 specifies
that one codepoint (00) be used to indicate that the packet is
not using ECN.

When ECN is used, the sender initially sets the ECN
bits to either one of the two codepoints (01,10) to indicate
ECT (ECN-Capable Transport), which implies that it and the
intended receiver support the use of ECN. When an interme-
diate node experiences congestion and receives a packet with
an ECT codepoint, it sets the ECN field to the Congestion
Experienced (CE) codepoint (11) to signal the congestion
to the receiver. The RFC requires that when an end system
receives a single packet with the CE codepoint set, its transport

layer protocol must respond in essentially the same manner as
when a dropped packet is detected.

The RFC does not specify the metric used by a router to
calculate its level of congestion nor how it should determine
whether to mark a given packet.

B. REM

Athuraliya and Low proposed the Random Exponential
Marking (REM) scheme in [2]. The price of each link is
constrained to be non-negative, but is unbounded. Initially the
ECN codepoint X0 is set to 01 (10 could also be used). At
the i-th router, if Xi−1 = 01, REM sets the ECN codepoint
to 11 with probability 1 − φ−si . Here φ > 1 is a parameter
chosen by the designer. If an incoming packet already has its
ECN codepoint set to 11, the router passes it on unchanged.
At the receiver, the value of the codepoint is Xn. Xn = 01
with probability φ−∑ n

i=1 si and Xn = 11 otherwise. The
expectation of the indicator function I[Xn = 11] is 1 − φzn .
An estimate can be formed of the total price by collecting
N packets, computing X =

∑N
j=1 Ij [Xn = 11] and forming

the estimate ẑn = − logφ(1 − X). As pointed out in [9], this
estimate is biased, but does converge to zn almost everywhere,
almost surely. The local computation requires no information
aside from the link price, but the choice of φ is difficult. Adler
et al. analyse the performance of REM [9], demonstrating that
it is highly dependent on the value of φ. The optimal choice
of φ depends on the path length and the end-to-end price,
which means that it generally cannot be deduced. Suboptimal
choices of φ can lead to very poor estimation performance,
arising primarily when link marking probabilities hover near
the extreme values of 0 or 1 [9].

C. RAM

Adler et al. propose an alternative scheme, Random Additive
Marking (RAM) [9]. RAM imposes the additional requirement
that the price of each link can be bounded between 0 and 1,
and that each router knows its position i within the path. The
authors describe a method for estimating this position based on
the time-to-live (TTL) field of the IP header and demonstrate
that price estimation performance does not substantially de-
grade through its application. The RAM algorithm is described
in terms of a single bit, but here, for consistency with our
notation, we provide an equivalent four state description.
Initially X0 = 01. The i-th router in the path leaves the
ECN field Xi−1 unchanged with probability (i − 1)/i, sets
it to 11 with probability si/i, and sets it to 01 otherwise. The
expectation of the binary random variable I[Xn = 11] is equal
to

∑n
i=1 si/n. Collecting N data packets and computing the

average of the indicator function (multiplied by the path length
n) produces an unbiased estimate of the path price.

Adler et al. conduct a performance comparison between
RAM and REM under the assumption of independent, uni-
formly distributed link prices that are normalized so that
the mean link price is approximately 0.5. In terms of error
probability, RAM always outperforms REM even when the
optimal value of φ is used. Furthermore, unlike REM, the

performance of RAM is independent of the path length.
However, the performance of RAM suffers severely when
average link price strays substantially away from 0.5.

D. Potential REM and RAM Extensions

Our deterministic algorithm makes use of three ECN code-
points to encode path price information, whereas REM and
RAM only use two unique codepoints. It should be possible
to modify REM and/or RAM to take advantage of a third
codepoint in order to provide better price estimation. However,
this would require substantial changes to the algorithms and
we do not explore the issue further in this paper.

III. DETERMINISTIC PACKET MARKING

A. Preliminaries

We now outline a marking mechanism that allows the
routers lying on a path between host and client to convey
the sum of their quantized prices to the host. The algorithm
we propose makes use of only the two existing ECN bits
in the IP header, but modifies both the manner in which
routers perform marking and also the manner in which the
client interprets the marking information. In contrast to the
probabilistic marking schemes discussed above, the marking
scheme we now outline is deterministic in the sense that every
packet is marked and the nature of the mark is derived via a
deterministic function applied to quantized link prices. Our
proposed marking procedure retains the RFC 3168 allocation
of the 00-codepoint as an indication that a packet belongs to
a stream that does not support ECN [8].

Our scheme requires (in the same fashion as RAM) that
every link price si is bounded 0 ≤ si ≤ 1. Every router
applies a uniform quantizer to its price, making use of b bits.
In the examples we provide in this paper and in the empirical
analysis, we make use of b = 4, because this value provides
a good balance between quantization error and the number of
bits needed to describe the price estimates.

The key idea behind the scheme is that each data packet
calculates the sum of a small subset of the link price bits. By
combining all of the partial sums, the receiver can reconstruct
the sum of quantized prices and form an estimate of the path
price. Figure 1 illustrates the idea; data packets are mapped
into probe types, and each probe type adds two bits together;
the bits occupy the same degree of significance and occur
in different routers. As an example from Figure 1(a), probe
type 7 adds the most significant bits (MSBs) of the quantized
prices of links 3 and 4. The output of the sum is indicated in
Figure 1(b). The summation procedure is initialized by setting
X0 to 01. After that, only designated links can make a change
to the state; in this example, the designated links are 3 and
4. These links change the state if the link price bit to which
the probe type corresponds (the most significant bit in our
example) is equal to 1. If that is the case, the state is updated
according to the sum table; i.e., state 01 is changed to state 10,
and state 10 is changed to 11. When the data packet arrives at
the receiver, it indicates the sum of the two bits, as depicted
in Figure 1(b).

Link Quantized Price

3
4
5
6

0 1 0 1
0 1 1 0
1 0 0 0
0 0 1 1

Probe Type 7
Probe Type 11

(a) Probe examples

Sum

0
1
2

01
10
11

X(n)

(b) Output

Fig. 1. Example of the operation of Deterministic Marking Algorithm I. (a)
The nature of the probe types – each performs a sum of two bits, as indicated
by the boxes. (b) The state output of the sum.

In order for such a procedure to work, we need a means of
labelling each data packet as a certain probe type. The routers
must also be able to determine how to react when encountering
a particular probe type. We perform the packet labelling
exercise by utilising the IP identifier field. The decision to
mark at the routers is based on the time-to-live (TTL) field
of the packet and its probe type label. The number of probes
we need is equal to b�n/2�, where n is the number of links
and b is the number of quantization bits. It is important that
we restrict the number of probe types to a reasonable number.
For this reason, our algorithm imposes the restriction that n is
bounded, n ≤ nmax. For the purpose of a concrete description
of our technique, we use nmax = 30 in this paper, which
implies a need for 60 probe types. Later in this section, we
will demonstrate how this requirement can be reduced to 40
probe types. The results of Begtavesic et al. [11] indicate that
paths of length greater than 30 are very rare in the Internet. In
the rare event that a path does contain more than 30 links, the
results are not catastrophic, but there is a small probability of
overflow error.

B. The IP identification field and Probe Types

The purpose of the IP identification (IPid) field is to
provide a mechanism for fragment reassembly. RFC 791 [12]
states that it “is used to distinguish the fragments of one
datagram from another” and that for each datagram, the
identification field must be set to “a value that must be unique
for the source-destination pair and protocol for the time the
datagram will be active in the Internet system.” Beyond this,
there are no requirements placed on the actual value of the
IPid field.

Bellovin [13] describes a technique for counting NATted
hosts that exploits the manner in which many hosts implement
the IPid field. He makes the observation, also noted in [14],
that many hosts implement the IPid field using a simple
counter. That is, successive data packets emitted by a host
carry sequential IPid fields. There are exceptions; some
hosts use byte-swapped counters, and others use pseudo-
random number generators [13]. Some versions of Solaris use
separate sequence number spaces for each (source, destination,
protocol) triple [13].

The uniqueness of the IPid field makes it a natural
candidate for use as a probe type identifier. The field is 16
bits, and we only require b�n/2� (set to 60 in our example)

probe types, so we need to develop a mapping function. In
constructing the mapping function, one of our major goals is
that each probe type appears as regularly as possible: ideally
once every 60 packets. (In fact, estimation performance can be
improved by enforcing a concentration on the more significant
bits.) Here the counter implementation, and particularly the
Solaris mechanism of separate sequence number spaces, is
of substantial benefit. We choose a prime number m slightly
larger than our required number of probe types, and set
the probe-type identifier to IPid mod m. This produces m
probe types; the majority are used for price inquiries, and the
remainder are reserved for other forms of communication.

If the host implements the IPid field as a counter, a
sequence of data packets between a given host and receiver cy-
cles through the probe types, skipping some values whenever
packets belonging to alternative streams intervene. With this
implementation, each probe type appears very regularly. The
use of a prime number m addresses the scenarios of pseudo-
random IPid generation and byte-swapped counters. In the
following section, we analyse the performance of our marking
algorithm assuming random IPid generation. Figure 3(a)
in Section V displays an empirical survival function of the
spacing between probe types of the same kind using data
collected from the Internet. The figure illustrates that in most
cases, the spacing is slightly larger than m, indicating the
prevalence of counting implementations in the Internet. A
strict random generation results in a substantially heavier tail.

In the ideal scenario, a separate space is dedicated to each
(source, destination, protocol) triple. The IPid field is then
generated by a counter, and every data packet belonging to
that triple is used to calculate the path price. This ensures that
(in the absence of lost packets) each probe type appears once
every m data packets.

C. The router marking algorithm

We now outline the marking mechanism used by each
router. We outline two algorithms. The first, Algorithm I, uses
a simple bit summation strategy and allows us to focus on
the marking technique. The second, Algorithm II, uses a more
complicated technique to generate price bit summations, but
results in a substantial saving in the number of required probe
types.

When a data packet arrives at a router, the router calcu-
lates its Link ID, which is a packet-specific value. This is
determined as LinkID = TTL mod nmax. The router also
determines the probe type of the packet: ProbeType =
IPid mod m. The pair (Link ID, Probe Type) determines
whether router i should perform any action and, if so, which
price bit it should focus on. If the indicated price bit is 1,
router i increments the state Xi−1, from 01 to 10 or from
10 to 11. In Algorithm I, each probe type requires an action
for only two Link IDs and is associated with a specific bit
significance. Figure 1 depicts example probes and the nature
of the output.

Algorithm II performs the bit summation in a different
manner. Figure 2 depicts its operation. Each probe focuses

Link ID Quantized Price

3
4
5
6
7
8

0 1 0 1
0 1 1 0
1 0 0 0
0 0 1 1
1 1 0 1
1 0 1 1

Probe Type 7 = 01
Probe Type 8 = 10

01

10

11

1

1

1

01

10

11

1

11

a) Probe category A b) Probe category B

Sum A

0
1
2
3
4
5
6

01
10
11
01
10
11
01

c) Output

B

01
10
11
10
11
10
11

d) Probe Examples

Fig. 2. Algorithm II operation. (a) and (b): State transition diagrams for
probe categories A and B, respectively. (c) The output of probe categories A
and B depending on the sum of the bits. (d) Examples of probe types.

on six bits of the same significance (examples are shown
in Figure 2(d)). However, in this case the mechanism for
determining a state transition is slightly more complicated.
Each probe type is associated with one of two categories, A
or B. If the (Link ID, Probe Type) pair indicates that router
i should participate, it checks the indicated price bit. If the
price bit is zero, it takes no action, setting Xi = Xi−1. If the
price bit is one, the router sets a new value of Xi. This value
is determined by the category of the probe and the associated
state transition diagrams, eiher that of Figure 2(a) or that of
Figure 2(b). Two probe types of different categories focus on
the same six bits. The output state of the two probe types
uniquely determines the sum of the six bits, as depicted in
Figure 2(c). As two probe types are sufficient to identify the
sum of six bits, the number of probe types required to cover all
bits is reduced by a factor of 2/3 to 2b�n/6�. In our example
of b = 4 and nmax = 30, we require 40 probe types and use
m = 43 as the generator of the probe type.

D. Path Price Estimation

When all of the probes have been collected, the sum of
quantized prices can be determined exactly, and the estimation
error is equal to the quantization error (as detailed in the
following section). However, in any practical scenario, the
price can only be assumed to remain fixed for a short period
of time. We specify two procedures for estimation in such a
scenario:

1) Block-based estimation: For each block of K data pack-
ets, form an estimate based on the set of available probe
types. If probe types are missing, insert the values that

minimize the expected error under the assumption of a
uniform distribution on link price values.

2) Time-varying estimation: A new estimate is formed upon
the reception of every data packet based on the current
set of values for all probe types.

In the following section, we provide bounds on the mean-
squared error under the block-based estimation approach. In
Section V we analyse performance empirically using probe
type sequences derived from Internet traces.

IV. ERROR ANALYSIS

In this section, we analyse the performance of our marking
algorithm based on fixed block lengths, with probe types
generated independently and uniformly over the possible m
values. Under the assumption that the quantization error is
uniformly distributed between its positive and negative ex-
trema (note that this is the case when link prices are uniformly
distributed over [0, 1]), we develop an expression for the
probability density of the path-price estimation error in the
deterministic marking algorithm and bound the mean-squared
error. In Section V we perform an empirical analysis of mean-
squared error for comparison.

We wish to emphasize that our above assumption of the
distribution of quantization error is important to determining
the performance of our algorithm, since one can identify sce-
narios where our algorithm will perform poorly. A pathological
example is the case where each link price is very slightly
smaller than the midpoint of two arbitrary representation
points, such that the quantization error is consistently negative.
Such a scenario is highly unlikely, but a more important
scenario in practice is the situation where the majority of
link prices are extremely small. The latter case is likely to
arise if TCP is used as the congestion control algorithm and
there is a straightforward mapping of path price to marking
probability [2]. We do not analyse such a scenario in this
paper, but suspect that REM, suitably parameterized, is better
tailored to the situation because of the exponential aspect of
its marking behaviour.

There are two potential sources of error when a receiver
calculates the end-to-end price using the deterministic marking
algorithm. One is due to the quantization, and the other is due
to the possibility of one or more unique probes types not being
observed. This section of the paper derives the distribution of
the error. We assume that the path is of length n links, that
each link’s price is quantized using b bits, that a block size of
K packets is examined by the receiver to determine the end-
to-end price, and that the encoding scheme uses 1 packet to
encode 2 bits, meaning that the number of unique probe types
m is

⌈
nb
2

⌉
. We commence with some background discussion.

1) Quantization Error: Our deterministic algorithm scheme
adopts a uniform b-bit quantizer for link prices normalized to
fall in the interval [0, 1). That is to say, its representation points
will of the form{

1
2b+1

,
3

2b+1
,

5
2b+1

, ...,
2b+1 − 1

2b+1

}
(1)

The quantization error eq is uniformly distributed between
the two extrema: f(eq) ∼ U

(−1
2b+1 , 1

2b+1

)
and has a variance

of V ar(eq) = 1
12·22b .

2) Error due to Missing Bits: In order to examine the error
in representing the price of a link due to missing one or more
of the b bits, we consider the decimal representation qd of
a binary quantization value (a0, a1, ..., ab−1) where a0 is the
MSB (most significant bit). It is given by:

qd =
1

2b+1
+

(
1 − 1

2b

)(
a02b−1 + ... + ab−120

2b

)
(2)

For the purposes of estimating qd we adapt the approach
of replacing a missing bit ai by its expected value under the
assumption of a uniform distribution. Since any bit is equally
likely to be 0 or 1, a missing bit will always be replaced by
a value of 1/2. Clearly this results in a lower error variance
than if a missing bit is randomly chosen to be 0 or 1. The
error due to a missing bit ai is a discrete uniform random
variable (denoted by UD) taking on one of two values with
equal probability:

eai
∼ UD

{
−

(
1 − 1

2b

)
1

22+i
,

(
1 − 1

2b

)
1

22+i

}
(3)

The expected value of the error eai
is 0, and its variance is

given by: V ar(eai
) =

(1− 1
2b)2

12·22i+2

A. Distribution of Missing Probe Types

The distribution of the number of probes not observed in a
block of size K is strongly dependent on how the IP identifier
field increments between contiguously transmitted packets.
Ideally, the identifier increases by one every time, in which
case any block of K > m is guaranteed to include at least
one packet mapping to every probe type. However, it is known
(and verified by empirical data) that some hosts on the Internet
generate IP identifiers that change in a random manner. In this
section, we consider the case where identifiers and hence probe
types are randomly selected based on a uniform distribution.
We note that strictly speaking it is not difficult to identify cases
worse than randomly distributed identifiers. For instance, if
all identifiers corresponding to a certain value smod m are
skipped by the host, then the probe type corresponding to
this value will never be observed for any sequence length.
However, our observation of Internet traffic does not provide
evidence that such pathological behaviour is likely to occur.

Due to our assumption of all probe types being equally
likely, the analysis of the number of missing probes is an
instance of the classical occupancy problem [15], [16]. Briefly,
this problem considers the number of empty bins resulting
from a random allocation of K balls into m different bins.

B. Representing the End-to-End Error

Consider an estimation block of K packets in a scenario
where there are m unique probe types. Define the random
variable W : min(1,K) ≤ W ≤ m as the number of probe
types not observed in the block, and let w be a vector of the
form (w0, w1, ..., wb−1) where wi : 0 ≤ wi ≤ n/2 is how

many probe types encoding information about the ith price
bit-column have not been observed.

Theorem 1: If quantization is performed on each link price
using b bits and there are n links, a block of K probes
uniformly generated from m possible probe types is used to
perform path-price estimation, and the quantization error is
uniformly distributed between extrema, then the probability
density of the estimation error et is:

p(et|n, b,m,K) =
∑m−1

W=max(0,m−K)
p(W |m,K) ×∑

w:
∑

wi=W

p(w|W,n, b) · p(et|w, n, b) (4)

Here p(W |m,K) is defined below by (5), p(w|W,n, b)
by (6), and p(et|w, n, b) by (7).

The decomposition of (4) is readily verifiable using the Law
of Total Probability. We complete our derivation of the density
function for the end-to-end error by considering each of the
three component conditional distributions defined in Theorem
1 in turn.

The result of interest arising from the Occupancy Problem
is the distribution of the number of missing entities when
drawing a certain sample size [15]. This result may be directly
applied to establish the distribution for W :

p(W |m,K) =(
m

W

) m−W∑
i=0

(−1)i

(
m − W

i

)(
1 − W + i

m

)K

(5)

Our next objective is to determine the distribution of the
components of the vector w given that W total probes are
not observed. Each of the b price bit-columns has an equal
proportion of the total number of probes m assigned to encode
it, so a missing probe is equally likely to be from any one
of the b columns. Thus, the distribution of the vector w is

multivariate hypergeometric with wi ≤ n
2 and

b−1∑
i=0

wi = W :

p(w|W,n, b) =

b−1∏
i=0

(
n/2
wi

)
(

m
W

) (6)

Finally, we consider the distribution of the error in the
end-to-end price given w. The error is the combined sum of
quantization errors of the price of each link and the errors due
to missing bits. The distribution is comprised of a discrete
component due to missing bits, and a continuous component
arising from the quantization errors. The distribution of the
total quantization error is the n-fold convolution over n IID
uniform random variables. It has a mean of 0, is distributed in
the interval

[− n
2b+1 , n

2b+1

]
, and has a variance of n

12·22b . We
will denote a shifted version of this distribution centered at µ
as gµ.

The distribution due to the 2W missing bits may be obtained
by evaluating the error arising from every one of the 22W

cases. Each case has probability 1
22W , meaning that it is

simply a matter of identifying all the possible error values and
determining how many different cases map to each value. Let
the total number of possible error values be v, and construct
a (2 × v) probability matrix P in which entry P1,i identifies
the i-th error value and P2,i is its probability. The distribution
of the total error due to quantization and missing bits is then
given by the following sum:

p(et|w, n, b) =
v∑

i=1

P2,i · gP1,i
(et) (7)

C. A Mean-Squared Error Bound

We now derive a bound on the mean-squared error of
the end-to-end price estimate assuming uniform generation
of probe types. We make use of another result related to
the Occupancy Problem – an upper bound H(K,m,W) on
the probability p(W |m,K) of missing W probe types when
K probes are generated and there are m unique types (from
Theorem III in [17]). Specifically:

H(K,m,W) =

exp
[
−

(
W ln

(
W

E[W]

)
− W − E[W]

)]
(8)

where E[W] = m
(
1 − 1

m

)K
.

Now, given that W probe types are not observed, the
scenario that maximizes the contribution to the total error is
if all missing probes are of the types measuring the MSB of
the quantized price. Thus, we will assume that 2W MSBs
are unobserved. If 2W exceeds n, some of the missing probes
must correspond to non-MSB bits. However, we will model all
missing probes as contributing an error equal to the maximum.
This is in keeping with deriving an upper bound on total error
variance.

Each unobserved probe results in two MSBs being replaced
by their expected value of 1/2 for purposes of calculating
the quantized price for a given link. Given that an MSB
a0 contributes

(
1 − 1

2b

) (
a02

b−1

2b

)
to the quantized price, a

missing MSB results in a discrete error taking on the values
± (

1 − 1
2b

) (
1
22

)
with equal probability. We can thus upper-

bound the error due to a missing MSB (and hence any bit) at
±1/4 and the variance at 1/16.

Finally, due to independence, the variance in the error of the
path price estimate is just the sum of the individual variances,
given by n

12·22b + W
8 .

Multiplying this variance by (8) and summing over all
possible values of W then gives the following result:

Theorem 2: For an estimation block of K probes uniformly
drawn from m unique probes, with n links in the path, b bits
used to quantize each link price, and a uniform distribution
of the price quantization error, the mean-squared error in the
path-price estimation is bounded as:

MSE(m, b,K, n) ≤
K−1∑
W=0

H(K,m,W)
W

8
+

n

12 · 22b
(9)

0 50 100 150 200
10

−4

10
−3

10
−2

10
−1

10
0

Probe spacing

E
m

pi
ric

al
 p

ro
ba

bi
lit

y

(a) The survival function of the spacing between probes of the same
type.

43 80 120 160 200
0

2

4

8

12

16

Block length

M
ea

n
no

. m
is

si
ng

 p
ro

be
s

(b) The mean number of missing probes as a function of block
length.

Fig. 3. Analysis of the distribution of probe types (when 43 probe types are defined). In each plot, the solid curve corresponds to the Internet traces and the
dashed curve to uniform random allocation of probe type.

where H(K,m,W) is determined from (8).

V. SIMULATION PERFORMANCE

In this section of the paper, we analyse the performance of
the estimation algorithm using trace-driven simulations. We
collected 100 traces of 2000 packets by downloading files
from 100 different servers. Of these servers, 50 were based
in USA/Canada, 25 in Europe, 15 in Asia and the remaining
10 scattered across the globe. We extracted the IP identifier
field for each packet, and mapped the field into a probe type
using m = 43 probes. We perform our analyses assuming a
maximum path length of 30 (the TTL is taken modulo 30) and
4 bit quantization. These settings imply that 40 probe types are
needed for estimation, if Algorithm II is used. The remaining
three are reserved for protocol communication.

A. Missing Probe Types

First, we examined the nature of the distribution of probe
types in the empirical data sequences. It is important that
every probe type appears regularly. Figure 3(a) shows the
survival function of the spacing between probes of the same
type over the 100 traces. The function generated from a
uniform allocation of probe types is shown for comparison.
If the IP identifier were implemented as a strict counter,
with no intervening packets from the host, probe types of the
same kind would always be 43 packets apart. The empirical
survival function indicates that the counter implementation is
widespread; more than 90 percent of the time, the spacing is 43
packets. Sometimes the probe types are spaced much further
apart; this occurs due to pseudorandom implementations and
busy servers where the counter frequently skips. Ninety-nine
percent of the time, the spacing between probes of the same
type is less than 100 packets. Clearly, the uniform generation
of probe types results in a substantially heavier tail in the
spacing distribution.

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

No. Missing Probes

E
m

pi
ric

al
 P

ro
ba

bi
lit

y

Fig. 4. The survival function for the number of missing probe types. Dashed
line corresponds to uniform random probe type allocation for a block length of
80. Solid lines correspond to Internet traces; diamond marker is block length
60, no marker block length 80, * marker block length 100.

The second feature that interests us for the purposes of
block-based path price estimation is the number of probe types
missing from a block of size K. Figure 3(b) shows the mean
number of missing probes as a function of block length for
the empirical traces and for uniform random allocation. For a
block length of 43, the mean number of missing probe types
is slightly larger than 2 in the empirical case (as compared
to 16 for uniform allocation). The effects of the IP identifier
counter implementation are again evident. The mean number
of missing probe types is substantially less than 1 when the
block size is 80.

Figure 4 show the empirical survival functions for the
number of missing probes in a block for the Internet traces. In
the case of a block size of 80 packets, 80 percent of the time
there are no missing types, and approximately 95 percent of

the time there are less than 5 missing types.

B. Error Analysis

We performed an examination of the error probability of the
deterministic estimation to enable comparison with RAM [9]
probabilistic price estimation. The error probability err(ε) is
defined as the probability that the path-price estimate falls
outside of a range (defined by ε) about the true price:

err(ε) = 1 − Pr[(1 − ε)z ≤ ẑ ≤ (1 + ε)z] (10)

We examined two cases. In each case, the path consisted of
10 links. We modeled the link prices as mutually independent
and dynamically varying. In case 1, the link prices were
uniformly distributed over [0, 0.2]. In case 2, the link prices
were uniformly distributed over [0.4, 0.6]. For each case, one
hundred realizations of link prices were generated, and the
error probability was evaluated for each realization using
the Internet traces to generate probe types. The results were
averaged to determine an average error probability.

Figure 5 displays the resulting averages for ε = 0.1 as
a function of block length. The performance of RAM is
shown for comparison (with results derived from expressions
in [9]). Both algorithms show improved performance when
the marking range is centred around 0.5. Note, however, that
the performance differential for the deterministic algorithm is
due solely to the presence of the normalizing term in the
error probability bounds. The intrinsic estimation accuracy,
in raw terms, is identical in the two cases. The deterministic
algorithm outperforms RAM in both cases for small block
lengths when the Internet traces are used to generate probe
types. However, RAM outperforms the deterministic algorithm
for block sizes below 120 when probe types are generated from
a uniform distribution. Figure 6(a) shows the error probability
as a function of ε for a block-length of 100.

C. Mean-Squared Error Analysis

We performed an analysis of the mean-squared error of the
deterministic algorithm for the case of uniformly distributed
link prices over [0, 1]. We generated 100 realizations of link
prices for a path of length 20 links, and then evaluated the
mean-squared error for each realization. The probe types were
generated both from the Internet traces and from a uniform
random allocation. Figure 6(b) shows the normalized mean-
squared error (the error is normalized by the number of links
in the path). The mean-squared error performance of RAM
is shown for comparison. As in error probability, the deter-
ministic algorithm outperforms RAM for small block lengths
when probe types are generated from the Internet traces. As
the block length becomes large (> 1000), RAM begins to
outperform the deterministic algorithm; the performance of
the latter is bounded by quantization error.

VI. PRACTICAL CONSIDERATIONS AND FUTURE WORK

A. Receiver Feedback

Any price-based congestion control protocol requires that
the source is able to determine the price along its path to the

receiver. As is the case for the REM and RAM proposals,
we have not addressed the mechanism by which a receiver
informs the sender of its path price estimate (the performance
of REM in conjunction with RFC 3168-style feedback has
been explored via simulation in [2]). RFC 3168 suggests the
addition of a 1-bit ECN-echo (ECE) in the TCP header [8].
The RFC proposes that after a client receives a packet with
the ECN field in the CE state, it set the ECE bit to 1 in every
acknowledgement it sends until it receives a packet from the
sender with the Congestion Window Reduced (CWR) flag set.
The CWR flag, another new TCP flag suggested in [8], is set
by the sender to acknowledge the receipt of an ECE packet.

Unfortunately, this mechanism cannot be readily adapted
to provide explicit feedback of the path price to the sender.
The fundamental problem is that there is the potential for
multiple acknowledgements to be sent with the ECE field set
in response to a single received packet with the ECN field
in the CE state. This means that the the sender is unable
to accurately determine what proportion of its sent packets
were marked. Thus, a novel approach is necessary in order to
provide more informative price feedback.

B. Security

Closely tied to the issue of price feedback is the question of
security. There are a number of scenarios which would result
in a sender receiving erroneous price information if security
concerns are not addressed. First, a malicious receiver stands to
receive a disproportionate share of a congested link’s capacity
if it conceals the presence of congestion from the sender [18].
Second, a misconfigured or malfunctioning router may corrupt
pricing information.

RFC 3540 outlines an addition to the proposed ECN stan-
dard which prevents the malicious or accidental erasure of
congestion information [10]. The proposal exploits the fact
that there are two ECN codepoints that indicate that a packet
supports ECN marking but has not yet been marked. RFC 3540
proposes that, for each packet, a sender encode a randomly-
selected 1-bit nonce using these two codepoints. The RFC
defines a new 1-bit flag in the TCP header – the Nonce
Sum (NS) – that is used by the receiver to carry the 1-bit
sum of the nonces over the range of TCP data bytes being
acknowledged by a given acknowledgement. If a router or the
receiver attempts to clear a marked packet, it will have no
knowledge of the original nonce. Thus, it will only have a
1 in 2 chance of correctly guessing the original nonce. An
incorrect choice will result in an incorrect NS value being
returned to the sender. The sender verifies all NS values, and
thus will quickly detect persistent ECN erasures.

The addition of nonces is fully compatible with REM, and
indeed alleviates security concerns. However, RAM allows
for a router to legitimately “unmark” a packet, and thus will
not function properly with the approach suggested above.
Our deterministic algorithm requires three unique codepoints,
and thus is also not compatible with RFC 3540. However, a
modification to our Algorithm I will provide limited security
against a malicious receiver concealing congestion. Rather

43 80 120 160 200
0

0.2

0.4

0.6

0.8

1

Block length

er
ro

r(
ε

=
 0

.1
)

(a) Link prices uniformly distributed over the range 0 to 0.2

43 80 120 160 200
0

0.2

0.4

0.6

0.8

1

Block length

er
ro

r(
ε

=
 0

.1
)

(b) Link prices uniformly distributed over the range 0.4 to 0.6

Fig. 5. Error probability as a function of block length for a path of 10 links and ε = 0.1. The solid line with diamond markers corresponds to the probe
types generated from the Internet trace and the deterministic algorithm. The * markers correspond to the RAM algorithm. The dashed line is the deterministic
algorithm with uniform random probe type generation.

0.02 0.06 0.1 0.14
0

0.2

0.4

0.6

0.8

1

ε

er
ro

r
pr

ob

(a) The error probability as a function of ε for a block length of
100.

43 80 120 160 200
0

0.002

0.004

0.006

0.008

0.01

0.012

Block length

N
or

m
al

iz
ed

 M
ea

n
sq

ua
re

 e
rr

or

(b) Normalized mean-squared error as a function of block length.
Path length of 20 links and prices uniformly distributed between 0
and 1. Error is normalized by the number of links (20).

Fig. 6. Error Analysis – error probability and mean-squared error. The solid line with diamond markers is the deterministic algorithm with probe types
generated from Internet traces. The * markers are the RAM algorithm. The dashed line is the deterministic algorithm with uniform random probe type
generation.

than always initializing the ECN field to 01, the sender
randomly initializes it to any one of the 3 codepoints. Routers
increment the field as before, but may now also “wrap-around”
from 11 to 01. When the packet arrives at the receiver, it is
not aware of the initial ECN field value and thus is unable
to reliably (from its point of view) alter pricing information
prior to providing feedback to the sender. This modification
would, however, render receivers incapable of calculating path
prices. They would have to transmit raw ECN field data from
all received packets back to the sender, allowing it to use
this information, along with knowledge of the packets’ initial
codepoints, to calculate the path price.

VII. CONCLUSION

We have specified a novel deterministic packet marking
algorithm that allows a receiver to deduce the sum of the
prices over the links traversed from the sender. By reading a
packet’s IPid field to uniquely identify the probe type, and
the TTL field to identify the LinkID, every router is able to
determine whether it should modify the ECN field based on the
quantized price of its outgoing link. Based on empirical data,
the sequential manner in which the majority of Internet hosts
increment the IPid of transmitted packets is conducive to
observing all probe types in a relatively short block of packets
with high probability. This is vital to the performance of our
algorithm, because the chief source of error in estimating the
path price is failing to observe one or more probe types in an

estimation block. Quantization error is the other, generally less
critical source of error, and is independent of the estimation
block length. We have derived the distribution of the total error,
under what is the worst case scenario one could reasonably
expect to see on the Internet – a host that increments the
IPid field in a random manner. We have also derived a
relatively simple upper bound on the mean-squared error under
the assumption of uniformly distributed quantization error.

Our results – based on empirical data – indicate that our
algorithm performs better than RAM up to certain block
lengths. However, one drawback to our algorithm is the use of
quantization which results in the MSE being bounded above
zero regardless of block length. Thus, the MSE of RAM
will eventually be lower for a sufficiently long block length,
assuming that the price stays constant for the duration of the
block. In future work, we will explore whether it is possible,
for a given rate of price change and probing rate, to determine
an optimal number of quantization bits (and hence number of
unique probe types) to minimize the expected MSE.

VIII. ACKNOWLEDGMENTS

We wish to thank NSERC – the Natural Sciences and
Engineering Research Council of Canada – for sponsoring
this research through their Discovery Grants Program. We
also wish to thank the anonymous reviewers for their valuable
comments.

REFERENCES

[1] S. Athuraliya and S.H. Low, “Optimization flow control II: Implemen-
tation,” Tech. Rep., Netlab, California Institute of technology, 2000.

[2] S. Athuraliya, V.H. Li, S.H. Low, and Q. Yin, “REM: Active queue
management,” IEEE Network, vol. 15, pp. 48–53, May 2001.

[3] R.J. Gibbens and F.P. Kelly, “Resource pricing and the evolution of
congestion control,” Automatica, vol. 35, pp. 1969–1985, 1999.

[4] D. Katabi, M. Handley, and C. Rohrs, “Internet congestion control
for future high bandwidth-delay product environments,” in Proc. ACM
Sigcomm 2002, Pittsburgh, PA, Aug. 2002.

[5] S. Kunniyur and R. Srikant, “A time scale decomposition approach to
adaptive ECN marking,” in Proc. IEEE INFOCOM, Anchorage, AL,
2001, pp. 1330–1339.

[6] S.H. Low and D.E. Lapsley, “Optimization flow control I: Basic
algorithm and convergence,” IEEE/ACM Trans. Networking, vol. 7, pp.
861–875, Dec. 1999.

[7] F. Paganini, Z. Wang, S.H. Low, and J.C. Doyle, “A new TCP/AQM
for stable operation in fast networks,” in Proc. IEEE INFOCOM, San
Francisco, CA, Apr. 2003.

[8] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit
congestion notification (ECN) to IP,” Sept. 2001, IETF RFC 3168.

[9] M. Adler, J-Y Cai, J.K. Shapiro, and D. Towsley, “Estimation of
congestion price using probabilitic packet marking,” in Proc. IEEE
INFOCOM, San Francisco, CA, Apr. 2003.

[10] N. Spring, D. Wetherall, and D. Ely, “Robust explicit congestion
notification (ECN) signaling with nonces,” June 2003, IETF RFC 3540.

[11] F. Begtasevic and P.V. Mieghen, “Measurements of the hopcount in the
Internet,” in Proc. Passive and Active Measurement, Amsterdam, The
Netherlands, Apr. 2001.

[12] J. Postel, “Internet protocol,” Sept. 1981, IETF RFC 791.
[13] S. Bellovin, “A technique for counting NATted hosts,” in Proc. Internet

Measurement Workshop, Marseille, France, Nov. 2002.
[14] R. Mahajan, N.T. Spring, and D. Wetherall, “Measuring ISP topologies

with Rocketfuel,” in Proc. ACM Sigcomm 2002, Pittsburgh, PA, Aug.
2002.

[15] N.L. Johnson and S. Kotz, Urn Models and their applications, John
Wiley & Sons, 1977.

[16] V.F. Kolchin, B.A. Sevastyanov, and V.P. Chistyakov, Random alloca-
tions, John Wiley & Sons, 1978.

[17] A. Kamath, R. Motwani, K.V. Palem, and P.G. Spirakis, “Tail bounds
for occupancy and the satisfiability threshold conjecture,” Random
Structures and Algorithms, vol. 7, no. 1, pp. 59–80, 1995.

[18] D. Wetherall, D. Ely, N. Spring, S. Savage, and T. Anderson, “Robust
congestion signaling,” in IEEE Conference on Network Protocols,
November 2001, pp. 332–341.

