
Deterministic Packet Marking for Time-Varying
Congestion Price Estimation

R.W. Thommes and M.J. Coates
Department of Electrical and Computer Engineering

McGill University
3480 University St

Montreal, QC, Canada H3A 2A7
Email: rthomm@tsp.ece.mcgill.ca, coates@ece.mcgill.ca

Abstract— The addition of the two-bit Explicit Conges-
tion Notification (ECN) field to the IP header provides
routers with a mechanism for conveying link price infor-
mation necessary for the successful operation of a number
of congestion control schemes. Two recent proposals for
probabilistic packet marking at the routers allow receivers
to estimate path price from the fraction of marked packets.
In this paper we introduce an alternative deterministic
marking scheme for encoding path price. Each router
quantizes the price of its outgoing link to a fixed number
of bits. Every data packet sent along the path encodes
a partial sum of the quantized link prices in its ECN
field, allowing the receiver to estimate the path price.
We evaluate the performance of our algorithm in terms
of its error in representing prices, and compare it to
probabilistic marking. We show that based on empirical
Internet traffic characteristics, our algorithm performs
better when estimating time-varying prices and static path
price using small blocks of packets.

Keywords: statistics, network measurements, packet
marking, congestion control

I. I NTRODUCTION

Recently, a number of optimization-based network
congestion schemes have been proposed [1]–[7]. Most of
these areprice-based congestion control protocols: they
require routers to maintain a congestion price which is a
function of the arrival rate of incoming traffic and the ca-
pacity of the outgoing link. Each router must (indirectly)
convey information about its calculated congestion price

This research was sponsored by the Natural Sciences and Engineering

Research Council of Canada (NSERC) through the Discovery Grants

Program.

This paper expands on material [8] we presented at IEEE Infocom

2004.

to the source so that its rate can be changed as required.
The proposed two-bit Explicit Congestion Notification
(ECN) field addition to the IP header facilitates a mech-
anism for conveying price information [9]. Several of
the proposed congestion control protocols separate the
tasks of calculating the link price and communicating it
(through packet marking) [2], [6], [7]. Two probabilistic
marking proposals have emerged to carry out the latter
task [2], [10]. Both allow receivers to estimate the path
price – the sum of the link prices – by examining the
proportion of marked packets. In this paper we present
and evaluate a novel deterministic marking scheme for
encoding and estimating path prices.

A. The Marking Problem

The problem we consider in this paper is that of
determining the sum of the prices of a set of links
making up a path between a source and receiver. We
now formalize the problem as in [10], slightly deviating
occasionally. Consider a set of links1, . . . , n constituting
an end-to-end path from a source to a receiver. Each link
i has a non-negative pricesi. Define zn =

∑n
i=1 si as

the sum of the prices along the path. The routers pass
price information to the receiver by encoding it in data
packets traversing the path. Routers may modify the two
congestion notification (CN) bits present in the header
of every packet. We denote the value of these bits after
undergoing the marking action of link/routeri by Xi.
Xi can take on four possible values:00, 01, 10, 11. As
per the the proposal of RFC 3168 [9], the (00) state is
reserved to communicate that ECN is not being used.
This leaves three codepoints for passing information.

After calculatingzn based on the receipt of marked
data packets, the receiver must communicate its estimate
to the sender. Our primary focus in this paper is on the
problem of routers conveying congestion price informa-

tion to the receiver. Our objective is to design amarking
algorithm that routers apply to the IP ECN field of all
packets traversing the path in order to provide congestion
information to the receiver.

According to the authors of [10], a marking algorithm
must obey some design constraints. It has to be fully
distributed, meaning that a router may only use local
information – the current link price and the value of
the ECN field in the IP packet header – when making
a marking decision. Furthermore, the marking algorithm
should not keep any per-flow state information, or retain
a history of how previous packets were marked. Adler
et al. [10] make the claim that “there is no determin-
istic marking algorithm under these conditions”. They
present Random Additive Marking (RAM), a probabilis-
tic algorithm, and compare it to Random Exponential
Marking (REM). REM is another probabilistic algorithm,
proposed by Athuraliya et al. [2].

A binomial distribution lurks beneath any probabilistic
marking scheme, meaning one can at best achieve a
linear decay in variance and mean-squared error with
respect to the size of the block of data packets upon
which the estimate is based. Thus, substantial variance
in price estimates may persist even when estimates are
based on a significant number of data packets. Due to
the fact that path prices are dynamic, accurate estimates
have to be obtained using a relatively small number of
packets. Furthermore, the actual value of link prices has a
significant impact on estimation error: in order to garner
an accurate estimate with RAM, link prices must be close
to 0.5 (assuming they are bound between zero and one).
In the case of REM, performance is heavily affected by
the choice of its parameters and how well they match
the given path lengths and prices.

We believe that Adler’s design constraints are unnec-
essarily restrictive. Since these constraints allow routers
to read a packet’s ECN field, it seems there is no increase
in the fundamental difficulty of practically implement-
ing a marking algorithm which allows routers to read
additional fields in the IP header. Specifically, if we
expand the list of locally available information to include
the value of the time-to-live (TTL) and IP Identification
(IPid) fields in each packet’s IP header, it is possible to
define a deterministic marking algorithm1. In this paper
we outline a deterministic quantized marking (DQM)
algorithm and evaluate its performance. In order to make

1Adler also assumes only one bit in the packet header is available
for marking. While our algorithm makes use of both bits in the ECN
field, it could be simply modified to function using only one bit.

deployment of our algorithm more attainable, we have
endeavoured to introduce as few changes to the current
protocols as possible. The scheme does not require any
modification to the TCP or IP headers.

The paper is organized as follows. In Section II,
we review the current IP standard for packet marking
and examine in more detail the probabilistic marking
algorithms, REM and RAM. In Section III we propose
a new deterministic marking algorithm and describe its
structure. In Section IV, we analyse the performance of
the deterministic algorithm in terms of mean-squared
error and make comparison with RAM. In Section V,
we examine the performance of our algorithm based on
Internet trace-driven simulations. Finally, in Section VI
we present what we consider to be the most significant
results in our paper: we consider several scenarios with
time-varying link prices and explore how well our algo-
rithm and RAM track the path price.

II. PACKET MARKING AND PROBABILISTIC

TECHNIQUES

A. IP Standard

ECN provides intermediate network routers with an
alternative to dropping packets in order to signal conges-
tion to end systems. RFC 3168 provides details of the
proposed ECN addition to the IP protocol [9]. It specifies
that the two-bit ECN field, comprising fourcodepoints,
may be used to indicate the presence of congestion. In
order to ensure backwards-compatibility, one codepoint
(00) is used to indicate that a sent packet does not support
ECN marking.

RFC 3168 indicates that when ECN is used, the
sender initializes the ECN field to one of two codepoints
(01,10). This indicates ECT (ECN-Capable Transport),
implying the sender and receiver support the use of
ECN. An intermediate node experiencing congestion
will set the ECN field of a received packet with an
ECT codepoint to to the Congestion Experienced (CE)
codepoint (11) to indicate its congestion to the receiver.
When an end system receives a single packet with the
CE codepoint set, the RFC requires that the end system
transport layer protocol respond in essentially the same
manner as when it detects a dropped packet.

RFC 3168 does not specify how routers are to cal-
culate congestion nor how they shall decide whether to
mark a given packet.

B. REM

We now provide a brief summary of the Random
Exponential Marking (REM) scheme proposed by Athu-

raliya and Low in [2]. Prices are unbounded, but must
be non-negative. The ECN codepointX0 is initialized to
01 (10 could also be used). IfXi−1 = 01, thei-th router
sets the ECN codepoint to11 with probability 1−φ−si .
φ > 1 is a parameter chosen by the designer. IfXi−1 is
already11, thei-th router makes no change. The value of
the codepoint at the receiver isXn. Xn = 01 with prob-
ability φ−

∑
n

i=1
si andXn = 11 otherwise. The indicator

function I[Xn = 11] has an expected value of1 − φzn .
After collectingN packets the receiver may estimate the
total price by computingX =

∑n
i=1 I[Xn = 11] and

forming the estimatêzn = − logφ(1−X). This estimate
is biased, but does converge tozn almost everywhere,
almost surely [10].

The local computation requires no information aside
from the link price, but the choice ofφ is difficult. The
performance of REM is highly dependent on the value
of φ, as demonstrated by Adler et al. [10]. The optimal
choice ofφ requires knowing the path length and end-
to-end price, which means that it generally cannot be
deduced in a practical setting. A suboptimal choice ofφ
can result in poor estimation performance.

C. RAM

Random Additive Marking (RAM), proposed by Adler
et al. [10], is an alternative probabilistic marking scheme.
It requires that each link’s price fall in the range bounded
by 0 and 1, and that each router be aware of its
position i within the path. Routers may estimate their
position using a method based on the TTL field in the
IP header [10]. The authors demonstrate that price esti-
mation performance does not significantly decline when
applying this method. Although the RAM algorithm is
described in terms of a single bit, for consistency with
our notation we provide an equivalent 2-bit description.
Initially X0 = 01, and the i-th router in the path
leaves the ECN fieldXi−1 unchanged with probability
(i−1)/i,sets it to11 with probabilitysi/i, and sets it to
01 otherwise.The expectation of the indicator function
I[Xn = 11] is equal to the expectation of

∑n
i=1 si/n.

Upon receivingN data packets, the receiver may pro-
duce an unbiased estimate of the path price by computing
the average of the indicator function and multiplying it
by the path lengthn.

Adler et al. compare RAM and REM under the
assumption of independent, uniformly distributed link
prices normalized to have a mean price of approximately
0.5. They show that RAM always exhibits a lower error
probability than REM even when the optimal value of
φ is used. In addition, the performance of RAM, unlike

Link
 Quantized Price

3

4

5

6

0 1 0 1

0 1 1 0

1 0 0 0

0 0 1 1

Probe Type 7

Probe Type 11

(a) Probe examples

Sum

0

1

2

01

10

11

X(n)

(b) Output

Fig. 1. Example of the operation of Deterministic Marking Algo-
rithm I. (a) The nature of the probe types – each performs a sum of
two bits, as indicated by the boxes. (b) The state output of the sum.

REM, is not affected by path length. However, it suffers
severely when the average link price strays significantly
from 0.5.

III. D ETERMINISTIC PACKET MARKING

A. Preliminaries

We now specify a marking mechanism which allows
the routers on a path between transmitter and receiver to
convey the sum of theirquantizedprices to the receiver.
Our proposed algorithm makes use of only the two
existing ECN bits in the IP header, and retains the RFC
allocation of the 00-codepoint [9]. However, we modify
both the router marking algorithm and the manner in
which the receiver interprets the marking information.
Unlike REM and RAM, our marking scheme is deter-
ministic in the sense thatevery packet is marked, and
the marking is performed according to a deterministic
function applied to quantized link prices.

As with RAM, our scheme requires that every link
price si is bounded:0 ≤ si ≤ 1. Every router calculates
a b-bit uniform quantization of its congestion price. We
useb = 4 for our empirical analysis and examples in this
paper, as this value provides a good trade-off between
quantization error and the number of bits needed to
describe the price estimates.

The key idea behind our scheme is that each data
packet encodes the sum of a small subset of link
price bits. The receiver can reconstruct the sum of the
quantized prices (and hence form an estimate of the
path price) by combining all the partial sums. All data
packets are mapped into so-calledprobe types, and each
probe type may be modified by two routers so that it
carries the sum of two bits of equal significance of the
quantized prices of the two links outgoing from the
routers. Figure 1(a) provides an example: probe type
7 carries the sum of the most significant bits (MSBs)
of the quantized price of links 3 and 4. Figure 1(b)
indicates the output of the sum. In order to initialize

the summation procedure,X0 is set to 01. Subsequently,
only designated routers can change the ECN field; in
this example routers 3 and 4. These routers modify the
ECN field if the price bit of their outgoing link to which
the probe type corresponds (the MSB in our example)
is equal to 1. In this case, the ECN field is updated
according to table 1(b); i.e. state 01 is changed to 10,
and 10 to 11. Thus, the data packet indicates the sum of
the two bits when it arrives at the receiver.

It it important to restrict the number of probe types to
a reasonable value. If we limit the maximum path length
to a valuenmax, the number of probe types required is
b⌈nmax/2⌉. We usenmax = 30 in this paper, to facilitate
a concrete description of our technique. This implies a
need for 60 probe types. We choosenmax = 30 due to
the results of Begtavesic et al. [11], which indicate that
paths of lengths greater than 30 are exceptionally rare in
the Internet. In the unlikely event that a path does contain
n > 30 (but less than 60) links,2(n − 30) of the probe
types are susceptible to overflow error because their ECN
field may be incremented by three routers. An overflow
will only occur if all three routers attempt to encode a
price bit of 1. Therefore, the resulting estimation error
is unlikely to be catastrophic unless the path length is
significantly longer than 30 links.

In order for our marking procedure to function cor-
rectly, we must define a mapping that labels each data
packet as a certain probe type. This mapping makes use
of the IP identification field. In addition, the routers must
have a way to determine whether to modify a given probe
type. They make this decision by comparing the time-
to-live (TTL) field with the probe type label.

B. The IP identification field and Probe Types

The IPid field provides a mechanism for fragment
reassembly. According to RFC 791 [12] it “is used to
distinguish the fragments of one datagram from another”
and for each datagram, the identification field must be set
to “a value that must be unique for the source-destination
pair and protocol for the time the datagram will be
active in the internet system.” There are no additional
requirements placed on the actual value of theIPid
field.

A technique for counting NATted hosts, introduced by
Bellovin [13], exploits the manner in which many hosts
implement theIPid. Bellovin makes the observation,
also noted in [14], that many hosts implement the IP
field using a simple counter. This means successive
data packets emitted by a host carry sequentialIPid
values. However, there are other, less common, ap-

proaches. Some hosts use pseudo-random number gen-
erators, while others use byte-swapped counters [13].
Some versions of the Solaris operating system imple-
ment separate sequence number spaces for each (source,
destination, protocol) triple [13].

Since the 16-bitIPid field can take on significantly
more unique values than the requiredb⌈nmax/2⌉ (60
in our example) probe types, we require a mapping
function. The function we choose sets the probe type
identifier to IPid modm, wherem is a prime number
slightly larger than our required number of probe types.
The majority of the resultingm probe types carry
price information, while the remaining probe types are
reserved for other forms of communication. One of the
major goals of this mapping function is that each probe
type appears as regularly as possible (ideally once every
60 packets). The counter implementation and the Solaris
mechanism are of substantial benefit here.

In the case where the host implements theIPid
field as a counter, the sequence of data packets sent
between a given host and receiver cycles through the
probe types, skipping some values whenever packets
belonging to other streams intervene. Each probe type
appears regularly with this implementation. In the ideal
scenario – where a separate space is dedicated to each
(source, destination, protocol) triple, theIPid field is
generated by a counter, and every data packet belonging
to that triple is used to calculate the path price – each
probe type appears once everym data packets.

In the next section, we analyse the performance of our
marking algorithm assuming randomIPid generation.
The empirical survival function of the spacing between
probe types of the same kind using data collected from
the Internet is shown in Figure 2(a) in Section V. It
illustrates that in most cases the spacing is slightly
larger thanm, which suggests the prevalence of counting
implementations in the Internet. A strictly randomIPid
generation results in a substantially heavier tail.

C. The router marking algorithm

When a data packet arrives at a router, the router calcu-
lates itsLink ID asLinkID = TTL modnmax. Secondly,
the router calculates the probe type asProbeType =
IPid modm. The router then uses the pair (Link ID,
Probe Type) to determine whether it should perform any
action and, if so, what price bit it should encode. The
router makes its decision by consulting anmax × m
lookup-table in its memory. This table, which is static
and identical in all routers, returns an entry of“perform
no action”, or “increment ECN field if bitj=1” , where

j ∈ (1, 2, ..b). Every column of the table contains two
entries of the latter variety, corresponding to the two
routers which may modify a given probe type. Each
row of the table contains b such entries, one for each
quantization bit. If the table informs a router to modify
an incoming data packet, and the indicated price bit is
1, the router increments the stateXi−1, from 01 to 10
or from 10 to 11. In order for this marking algorithm
to work properly, we must make two mild assumptions.
First, to ensure that at most two routers modify the ECN
field of a probe type, every router must decrement the
TTL field by 1. Second, to ensure that disparate data
packets corresponding to the same probe type are marked
by the same routers, the TTL field for every data packet
of a given stream must be initialized to a constant value
by the sender.

We summarize the marking procedure with
the the following pseudocode. The procedure
MarkingDecision takes, as its parameters, pointers to
three fields in the header of the currently buffered IP
packet. Each router is aware of the constantsnmax,
m, and MarkingTable, the lookup table described
above.MarkingTable has entries of zero to indicate
no marking action is to be performed, or positive
integers corresponding to the price bit on which to
base the marking decision. Routers store their current
price estimate in the bit-arrayCurrentPrice of lengthb.

procedure MarkingDecision(&ttl, &ipid,&ecn)

1: LinkId ← ∗ttl mod nmax
2: ProbeType ← ∗ipidmod m
3: BitToMark =

MarkingTable(LinkId, ProbeType)
4: if BitToMark 6= 0 then
5: PriceBitV alue =

CurrentPrice(BitToMark)
6: end if
7: if PriceBitV alue == 1 then
8: if ∗ecn == 01 then
9: ∗ecn = 10

10: else
11: if ∗ecn == 10 then
12: ∗ecn = 11
13: end if
14: end if
15: end if

D. Path Price Estimation

When every probe type has arrived at the receiver at
least once, it can determine the sum of quantized prices
exactly and the estimation error will be equal to the
quantization error (as detailed in the following section).
However, in any practical scenario, the path price can
only be assumed to remain fixed for short durations. We
specify two procedures for estimation in such a scenario:

1) Block-based estimation: After receiving a block of
K data packets, form the path price estimate based
on the available probe types. If one or more probe
types are missing, insert values that minimize the
expected error under the assumption of a uniform
link price distribution.

2) Time-varying estimation: Upon the reception of a
data packet, form a new estimate based on the
values of the most recently received instances of
each probe type.

In the following section, we provide bounds on the mean-
squared error under the block-based estimation approach.
In Section V we analyse performance empirically using
probe type sequences derived from Internet traces.

IV. ERRORANALYSIS

In this section, we analyse the performance of our
marking algorithm based on fixed block lengths, with
probe types generated independently and uniformly over
the possiblem values. Under the assumption of uni-
formly distributed link prices over the range[0, 1], we
derive a bound on the mean-squared error. In Section V
we perform an empirical analysis of mean-squared error
for comparison.

There are two potential sources of error when a re-
ceiver calculates the end-to-end price using the determin-
istic marking algorithm. One is due to the quantization,
and the other is due to the possibility of one or more
unique probes types not being observed. We assume that
the path is of lengthn links, each link price is quantized
using b bits, a block size ofK packets is examined by
the receiver to determine the end-to-end price,and the
number of unique probe typesm is

⌈
nb
2

⌉
. We commence

with some background discussion.
1) Quantization Error:Under the assumption that the

price of each link is uniformly distributed and normal-
ized to fall in the interval [0,1), an idealb-bit quantizer is
obviously also uniform. That is to say, its representation
points will of the form

{
1

2b+1
,

3

2b+1
,

5

2b+1
, ...,

2b+1 − 1

2b+1

}
(1)

The quantization erroreq is uniformly distributed be-
tween the two extremes:f(eq) ∼ U

(
−1
2b+1 ,

1
2b+1

)
and has

a variance ofV ar(eq) = 1
12·22b .

2) Error due to Missing Bits: In order to examine
the error in representing the price of a link due to
missing one or more of theb bits, we consider the
decimal representationqd of a binary quantization value
(a0, a1, ..., ab−1) wherea0 is the MSB (most significant
bit). It is given by:

qd =
1

2b+1
+

(
1 −

1

2b

) (
a02

b−1 + ... + ab−12
0

2b

)
(2)

For the purposes of estimatingqd we adapt the ap-
proach of replacing a missing bitai by its expected value
under the assumption of a uniform distribution. Since any
bit is equally likely to be0 or 1, a missing bit will always
be replaced by a value of1/2. Clearly this results in a
lower error variance than if a missing bit is randomly
chosen to be 0 or 1. The error due to a missing bitai

is a discrete uniform random variable (denoted by UD)
taking on one of two values with equal probability:

eai
∼ UD

{
−

(
1 −

1

2b

)
1

22+i
,

(
1 −

1

2b

)
1

22+i

}
(3)

The expected value of the erroreai
is 0, and its variance

is given by:V ar(eai
) =

(1− 1

2b
)2

12·22i+2

A. Distribution of Missing Probe Types

The distribution of the number of probes not observed
in a block of sizeK is strongly dependent on how
the IP identifier field increments between contiguously
transmitted packets. Ideally, the identifier increases by
one every time, in which case any block ofK > m
is guaranteed to include at least one packet mapping to
every probe type. However, it is known (and verified by
empirical data) that some hosts on the Internet generate
IP identifiers that change in a random manner. In this
section, we consider the case where identifiers and hence
probe types are randomly selected based on a uniform
distribution. We note that there exist theoretical cases
worse than randomly distributed identifiers. For instance,
if all identifiers equivalent to a certain valuesmod m are
skipped by the host, then the probe type corresponding
to this value will never be observed for any sequence
length. However, our observation of Internet traffic does
not provide evidence that such pathological behaviour is
likely to occur.

Due to our assumption of all probe types being equally
likely, the analysis of the number of missing probes is an
instance of the classical occupancy problem [15], [16].

Briefly, this problem considers the number of empty bins
resulting from a random allocation ofK balls into m
different bins.

B. A Bound on the Expected Mean-Squared Error

We now derive a bound on the expected mean-squared
error of the end-to-end price estimate assuming uniform
generation of probe types. We make use of another
result related to the Occupancy Problem – an upper
bound H(K, m, W) on the probabilityp(W |m, K) of
missing W probe types whenK probes are generated
and there arem unique types (from Theorem III in [17]):

H(K, m, W) =






exp−
(
W ln

(
W

E[W]

)
+ E[W] − W

)
, W ≥ E[W]

exp−
(

W 2

2E[W] + E[W]
2 − W

)
, W < E[W]

(4)

whereE[W] = m
(
1 − 1

m

)K
.

Now, given thatW probe types are not observed,
the scenario that maximizes the contribution to the total
error is if all missing probes are of the types measuring
the MSB of the quantized price. Thus, we will assume
that 2W MSBs are unobserved. If2W exceedsn, some
of the missing probes must correspond to non-MSB
bits. However, we will model all missing probes as
contributing an error equal to the maximum. This is
in keeping with deriving an upper bound on total error
variance.

Each unobserved probe results in two MSBs being
replaced by their expected value of1/2 for purposes of
calculating the quantized price for a given link. Given
that an MSBa0 contributes

(
1 − 1

2b

) (
a02b−1

2b

)
to the

quantized price, a missing MSB results in a discrete
error taking on the values±

(
1 − 1

2b

) (
1
22

)
with equal

probability. We can thus upper-bound the error due to
a missing MSB (and hence any bit) at±1/4 and the
variance at1/16.

Finally, due to independence, the variance in the error
of the path price estimate is just the sum of the individual
variances, given by n

12·22b + W
8 .

Multiplying this variance by (4) and summing over
all possible values of W then gives the following result:

Theorem 1:For an estimation block ofK probes
uniformly drawn fromm unique probes, withn links in

the path andb bits used to quantize each link price, the
expected mean-squared error in the path-price estimation
is bounded as:

MSE(m, b, K, n) ≤
K−1∑

W=0

min(H(K, m, W), 1)
W

8
+

n

12 · 22b
(5)

whereH(K, m, W) is determined from (4).

V. SIMULATION PERFORMANCE

In this section of the paper, we analyse the perfor-
mance of the estimation algorithm using trace-driven
simulations. During the last week of June, 2003, we col-
lected 100 traces of 2000 packets with the program TCP-
Dump by downloading files from 100 different servers.
Of these servers, 50 were based in USA/Canada, 25 in
Europe, 15 in Asia and Oceania and the remaining ten
in other locations worldwide including South America
and Africa. Using a simple script, we extracted the IP
identifier field for each packet. Next, we mapped the
field into a probe type usingm = 63. We perform
our analyses assuming a maximum path length of30
(the TTL is taken modulo 30) and 4 bit quantization.
These settings imply that the algorithm requires 60 probe
types for estimation. The remaining three are reserved
for protocol communication.

Since the performance of the algorithm is dependent
on the properties of the sequence of IP identifiers in
received packets, a closer examination of the traces is
in order. 44 of the traces exhibited a consistent increase
of 1 in the IP identifier of successive packets . This is
the ideal case for our algorithm, as it ensures that any
block of sizem contains all probe types. 53 of the traces
exhibited a general sequentially increasing trend, but on
occasion the IP identifiers of contiguous packets did not
increase by 1 (i.e. there were ”skips”). The behaviour of
all servers with sequentially increasing IP identifiers is
summarized in Table I.

The remaining three traces had randomly changing IP
identifiers. We conducted a simple statistical autocorrela-
tion test on each sequence that suggested the sequences
were truly random.

For most servers, we were able to determine the
operating system being used. The distribution is given
in Table II.

A. Missing Probe Types

First, we examined the nature of the distribution
of probe types in the empirical data sequences. It is

Percentage of Received Number of Servers
Packets with IP Identifier Displaying this Behaviour

Increasing by 1

100 44
99+ 16

90-98 18
80-89 5
70-79 3
60-69 1
50-59 6

less than 50 4

TABLE I. The breakdown of observed serverIPid behaviour

Operating System Number of Servers

Linux 53
FreeBSD 23
Solaris 15

Windows 6
Unknown 3

TABLE II. The breakdown of observed Server Operating Systems.

important that every probe type appears regularly. Fig-
ure 2(a) shows the survival function of the spacing
between probes of the same type over the 100 traces.
The function generated from a uniform allocation of
probe types is shown for comparison. If the IP identifier
were implemented as a strict counter, with no intervening
packets from the host, probe types of the same kind
would always be 63 packets apart. The empirical survival
function indicates that the counter implementation is
widespread; more than 90 percent of the time, the spac-
ing is 63 packets. Sometimes the probe types are spaced
much further apart; this occurs due to pseudorandom
implementations and busy servers where the counter
frequently skips. 99 percent of the time, the spacing
between probes of the same type is less than 150 packets.
Clearly, the uniform generation of probe types results
in a substantially heavier tail in the spacing distribution
(although the decay rate is approximately the same).

The second feature that interests us for the purposes
of block-based path price estimation is the number of
probe types missing from a block of sizeK. Figure 2(b)
shows the mean number of missing probes as a function
of block length for the empirical traces and for uniform
random allocation. For a block length of 63, the mean
number of missing probe types is slightly less than 4
in the empirical case (as compared to 24 for uniform
allocation). The effects of the IP identifier counter im-
plementation are again evident. The mean number of
missing probe types is substantially less than 1 when
the block size is 140.

0 50 100 150 200 250 300
10

−4

10
−3

10
−2

10
−1

10
0

Probe spacing

E
m

pi
ric

al
 p

ro
ba

bi
lit

y

(a) The survival function of the spacing between probes of
the same type.

63 100 140 180 220 260 300
0

2

4

8

12

16

20

24

Block length

M
ea

n
no

. m
is

si
ng

 p
ro

be
s

(b) The mean number of missing probes as a function of
block length.

Fig. 2. Analysis of the distribution of probe types. In each plot, the solid curve corresponds to the Internet traces and the dashed curve to
uniform random allocation of probe type.

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

No. Missing Probes

E
m

pi
ric

al
 P

ro
ba

bi
lit

y

Fig. 3. The survival function for the number of missing probe types.
Dashed line corresponds to uniform random probe type allocation
for a block length of 100. Solid lines correspond to Internet traces;
diamond marker is block length 80, no marker block length 100, *
marker block length 120.

Figure 3 show the empirical survival functions for the
number of missing probes in a block for the Internet
traces. In the case of a block size of 100 packets, 80
percent of the time there are no missing types, and
approximately 95 percent of the time there are less than
10 missing types.

B. Error Analysis

We performed an examination of the error probability
of the deterministic estimation to enable comparison
with RAM [10] probabilistic price estimation. The error
probability err(ǫ) is defined as the probability that the
path-price estimate falls outside of a range (defined by

ǫ) about the true price:

err(ǫ) = 1 − Pr[(1 − ǫ)z ≤ ẑ ≤ (1 + ǫ)z] (6)

We examined two cases, each with a path consisting
of 10 links. In case 1, all link prices were uniformly
distributed over[0, 0.2]. In case 2, all link prices were
uniformly distributed over[0.4, 0.6]. For both cases, one
hundred realizations of link prices were generated, and
the error probability was evaluated for each realization
using the Internet traces to generate probe types. The
results were averaged to determine an average error
probability.

Figure 4 displays the resulting averages forǫ = 0.1 as
a function of block length. The performance of RAM
is shown for comparison (with results derived from
expressions in [10]). Both algorithms show improved
performance when the marking range is centered around
0.5. When the Internet traces are used to generate probe
types for these two scenarios, the deterministic algorithm
outperforms RAM for block lengths greater than approx-
imately 60. However, RAM performs better for block
sizes below 240 when probe types are generated from a
uniform random distribution.

We note that as the level of congestion is lowered,
RAM will eventually provide a lower error probability
than the deterministic algorithm for any block length.
Since the expected quantization error inherent to our
algorithm is constant regardless of path price, the relative
error grows as the path price decreases. Thus, if a
network is expected to operate under congestion levels
consistently near zero, RAM may be a better choice for

40 80 120 160 200 240 280 320 360 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Block length

er
r(

ε
=

 0
.1

)

(a) Link prices uniformly distributed over the range 0 to 0.2

40 80 120 160 200 240 280 320 360 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Block length

er
r(

ε
=

 0
.1

)

(b) Link prices uniformly distributed over the range 0.4 to
0.6

Fig. 4. Error probability as a function of block length for a path of 10 links and ǫ = 0.1. The solid line with diamond markers is the
Internet trace deterministic algorithm. The * markers are the RAM algorithm. The dashed line is the deterministic algorithm with uniform
random probe type generation. The thin, solid line in figure (a) represents the lower bound on the error probability due to quantization. The
lower bound is not shown in the other figure, as it is too close to zero be distinguishable.

0.02 0.06 0.1 0.14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

e
rr

o
r

p
ro

b

(a) The error probability as a function ofǫ for
a block length of 100.

40 60 80 100 120 140 160 180 200
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Block length

N
o

rm
a

liz
e

d
 M

e
a

n
 s

q
u

a
re

 e
rr

o
r

(b) Normalized mean-squared error as a func-
tion of block length. Error is normalized by
the number of links (20).

250 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

Block length

M
e

a
n

 s
q

u
a

re
 e

rr
o

r

(c) Comparing the MSE bound to simulated
MSE behaviour. The dashed line is the deter-
ministic algorithm, and the solid line is the
bound.

Fig. 5. Error Analysis – error probability and mean-squared error. The solid line with diamond markers is the deterministic algorithm with
probe types generated from Internet traces. The * markers are the RAM algorithm. The path length is 20 links and prices are uniformly
distributed between 0 and 1.The dashed line is the deterministic algorithm with uniform random probe type generation. The thin, solid line
in figure (a) represents the lower bound on the error probability due to quantization.

estimating path prices. However, in such a situation, one
may consider renormalizing the congestion metric so that
prices are distributed over a wider range of values and
the deterministic algorithm performs better.

C. Mean-Squared Error Analysis

We performed an analysis of the mean-squared error
of the deterministic algorithm for the case of uniformly
distributed link prices over[0, 1]. We generated 100
realizations of link prices for a path of length 20 links,

and then evaluated the mean-squared error for each
realization. The probe types were generated both from
the Internet traces and from a uniform random allocation.
Figure 5(a) shows the error probability as a function
of ǫ. Figure 5(b) shows the normalized mean-squared
error (the error is normalized by the number of links
in the path). The mean-squared error performance of
RAM is shown for comparison. As in error probability,
the deterministic algorithm outperforms RAM for small
block lengths when probe types are generated from

the Internet traces. As the block length becomes large
(> 1000), RAM begins to outperform the deterministic
algorithm; the performance of the latter is bounded by
quantization error.

We also examined the accuracy of the MSE bound
derived in IV-B. Figure 5(c) shows the bound, along
with the simulated MSE for a path length of 20 links
whose price is estimated with randomIPids. The figure
illustrates the range of block lengths over which our
bound is somewhat tight. The bound offers little insight
for block lengths of under 250.

VI. T IME VARYING BEHAVIOUR

We have, to this point, examined the performance of
our algorithm and RAM in static price scenarios. A more
realistic model of a network will include time-varying
levels of congestion and hence time-varying link prices.
In this section we consider how well the algorithms
perform in a time-varying scenario.

The deterministic algorithm is naturally suited to esti-
mating time-varying prices due to the periodic nature in
which instances of a given probe type arrive. At any point
in time, the receiver estimates the current path price by
considering the most recent instance of every probe type
received. When a packet arrives, the ECN value of the
associated probe becomes the new current value stored
by the receiver.

In order to adapt RAM to estimate a time-varying path
price, one must choose an appropriate block length. The
best choice is not apparent. On the one hand, the block
length should be as short as possible, so that the algo-
rithm can accurately detect price variations; if the block
is so long so that the path price varies significantly while
the packets making up the block are sent, the estimate
will be an average path price rather than an instantaneous
value. On the other hand, the expected estimation error of
RAM decays linearly with block length, meaning a long
block length is necessary to avoid significant estimation
errors. The block length that garners the best result is
dependent on the specific dynamics of the link prices.
For each time-varying scenario, we experimentally chose
a block length that minimized the sample mean-squared-
error over all estimates. These block lengths are provided
in Table III.

We consider 4 scenarios. In our first two scenarios
link prices change after every block of 50 packets is
transmitted. While the interval between price changes
is the same for all links, the price transitions are not
synchronized. This is accomplished by having the first
price transition occur after a random number of probes -

MSE: MSE: MSE: RAM
Scenario Determin- Determin- RAM Optimal

istic istic Block
w/ random w/ trace- Length
IPids based

IPids

1 0.630 0.270 1.078 450
2 0.786 0.223 1.314 380
3 1.296 0.904 1.325 500
4 0.845 0.224 1.782 370

TABLE III. Mean-squared error of estimates, and empirically
determined optimal block length for RAM

uniformly distributed between 1 and 50. Each link price
is initialized to a random value uniformly distributed in
the range [0.25, 0.75]. Every price change is normally
distributed with mean 0 and standard deviation 0.1. In
addition, there are reflective boundaries at 0.85 and 0.15
which define the range of values the prices may take on.
The behaviour of each link price may be considered a
random walk bounded in the range [0.15, 0.85]. The two
scenarios model paths with 20 and 30 links.

Figure 6(a) depicts the time-varying price behaviour of
a sample link over the interval in which 6000 data pack-
ets are sent. Figure 6(b)-(d) shows a sample path price
for the 30-link scenario, and the instantaneous estimates
generated by RAM and the deterministic algorithm when
exposed to data packets with randomIPids as well as
Internet trace-basedIPids. The sample estimation plots
suggest that RAM tends to experience longer runs of
over/under estimation than the deterministic algorithm.
In order to draw more meaningful conclusions, we
considererr(ǫ) as defined in (6). We ran 100 iterations of
each of the time-varying scenarios. Figures 7(a) and 7(b)
depict the results. For every value ofǫ, both instances of
the deterministic algorithm perform better than RAM.
As with the simulations involving static prices, the
deterministic algorithm performs better when subjected
to Internet trace-basedIPids than to random ones.

Our final two scenarios involve link price that change
less often - once every 100 packets. However, the stan-
dard deviation of each change is 0.2, and the reflec-
tive boundaries are at 0 and 1. The resultingerr(ǫ)
performance is shown in 7(c) and 7(d). The relative
performance of the algorithms remains the same.

Another metric of interest in comparing the algorithms
is the mean-squared error over all estimates. Table III
summarizes this data. The deterministic algorithm ex-
hibits the lowest MSE in all scenarios.

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

Packets Transmitted

Li
nk

 P
ric

e

(a) Sample time-varying link price

1000 2000 3000 4000 5000 6000
12

13

14

15

16

17

18

Packets Sent

P
at

h
P

ric
e

(b) Path price and estimate generated by deterministic algo-
rithm with Internet trace-basedIPids

1000 2000 3000 4000 5000 6000
12

13

14

15

16

17

18

Packets Sent

P
at

h
P

ric
e

(c) Path price and estimate generated by deterministic algo-
rithm with randomIPids

1000 2000 3000 4000 5000 6000
12

13

14

15

16

17

18

Packets Sent

P
at

h
P

ric
e

(d) Path price and estimate generated by RAM

Fig. 6. Estimating a Time-Varying Price. Figure (a) is an example of how theprice of one link varies with time. Figures (b)-(d) illustrate
a sample path price as the heavy curve and the given algorithm’s current estimate as the dashed line

VII. PRACTICAL ISSUES

A. Receiver Feedback

Any price-based congestion control protocol requires
that the source be able to determine the price along its
path to the receiver. As is the case for the REM and
RAM proposals, we have not addressed the mechanism
by which a receiver informs the sender of its path
price estimate (the performance of REM in conjunction
with RFC 3168-style feedback has been explored via
simulation in [2]). RFC 3168 suggests the addition of a
1-bit ECN-echo (ECE) in the TCP header [9]. The RFC
proposes that after a client receives a packet with the
ECN field in the CE state, it set the ECE bit to 1 in
every acknowledgment it sends until it receives a packet
from the sender with the Congestion Window Reduced

(CWR) flag set. The CWR flag, another new TCP flag
suggested in [9], is set by the sender to acknowledge the
receipt of an ECE packet. Unfortunately, this mechanism
cannot be readily adapted to provide explicit feedback of
the path price to the sender. The fundamental problem is
that there is the potential for multiple acknowledgments
to be sent with the ECE field set in response to a single
received packet with the ECN field in the CE state. This
means that the sender is unable to accurately determine
what proportion of its sent packets were marked. Thus,
a novel approach is necessary in order to provide more
informative price feedback.

B. Security

Although the specific method used by the receiver to
convey its path price estimate back to the sender lies

0.01 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

er
ro

r(
ε)

(a) Error probability for Scenario 1: 20 links.

0.01 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

er
ro

r(
ε)

(b) Error probability for Scenario 2: 30 links.

0.01 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

er
ro

r(
ε)

(c) Error probability for Scenario 3: 20 links.

0.01 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

er
ro

r(
ε)

(d) Error probability for Scenario 4: 30 links.

Fig. 7. Error probabilityerr(ǫ). The solid line with diamond markers is the deterministic algorithm with probe types generated from Internet
traces. The * markers are the RAM algorithm. The dashed line is the deterministic algorithm with uniform random probe type generation.

outside of the scope of our paper, we will examine the
associated security concerns. The primary concern is that
a malicious receiver stands to receive a disproportionate
share of a congested link’s capacity if it conceals the
presence of congestion from the sender [18]. Under
our proposed algorithm, the receiver forms an estimate
of the path price based on the received probes. Using
our example of 4-bit quantization and a maximum of
30 links, the estimated path price will fall between 0
and 30 and can be represented – to the full precision
afforded by the chosen quantization – using only 9 bits.
In the simplest possible model of a feedback mechanism,
the receiver periodically sends the 9-bit estimate to
the sender (possibly embedded in TCP acknowledgment
packets). This approach generates the smallest amount of
traffic along the feedback path, but provides no security.
It is trivial for a receiver to send any arbitrary path price

estimate it wishes, and the receiver has no way to detect
any possible deceit.

We now present a modification to our algorithm
which guards against a malicious receiver falsifying its
path estimate. Rather than always initializing the ECN
field to 01, the sender chooses, while setting up the
connection, a random ECN initialization for all probes
corresponding to each bit-position. For every data packet
subsequently sent, the sender determines the probe type
so that it knows what bit position the probe is encoding.
Based on this information, it initializes the ECN field to
the (now) fixed value it randomly chose during setup.
Routers increment the field as before, but may now also
“wrap-around” from11 to 01. The receiver is not aware
of the b initial ECN fields, rendering it incapable of
calculating the estimated path price itself. For each of the
b categories of probe types, the receiver keeps a tally of

how many of the probe types have their ECN field set to
each of the3 possible codepoints. Once it has seen every
probe type, the sender provides its tally as feedback to
the sender. This is enough information for the sender
to calculate the path price estimate. For example, if the
sender set the initial ECN field of probe types encoding
MSB sums to11, and the receiver informs it that of the
15 MSB probe types it received five were11, four were
01, and six were10, the sender would determine that
five probes encoded a bit-sum of zero, four encoded a
one, and six encoded a two. Thus it would deduce that
16 of the 30 MSBs were 1. With this approach, the total
amount of data the receiver has to transmit to the sender
under our standard assumptions is 32 bits: for each of the
four bit-positions of the quantized link price, a value of
0 to 15 for the number of probe types with an ECN value
of 01 (requiring 4 bits to represent), and a value from 0
to 15 for the number of probe types with an ECN value
of 10 (again, requiring 4 bits). We note that the number
of probe types taking on the remaining possible value of
11 is uniquely determined by the other two values, and
hence does not have to be explicitly encoded.

With this approach, we achieve a level of security
because the receiver does not know the mapping between
codepoints and bit-sums for any of the probes. However,
due to the fact that the codepoint initialization remains
constant for a subsets of the probes, the receiver could
conceivably keep a long term count of how many of
the three codepoints it observes for each of the sets
and attempt to deduce the codepoint initialization. It
would take considerable effort to configure a receiver
to carry out this attack and the results achieved may not
be reliable.

VIII. C ONCLUSION

We have specified a novel deterministic packet mark-
ing algorithm that allows a host to deduce the sum of the
prices over the links traversed to a client. By reading a
packet’sIPid field to uniquely identify the probe type,
and the TTL field to identify the LinkID, every router
is able to determine whether it should modify the ECN
fields based on the quantized price of its outgoing link.
Based on empirical data, the sequential manner in which
the majority of Internet hosts increment theIPid of
transmitted packets is conducive to observing all probe
types in a relatively short block of packets with high
probability. This is vital to the performance of our algo-
rithm, because the chief source of error in estimating the
path price based is failing to observe one or more probe
types in an estimation block. Quantization, the other,

generally less critical source of error is independent of
the block length.

Our results indicate that our algorithm performs better
than RAM up to certain block lengths in estimating static
prices. Since the levels of congestion in networks tend
to vary dynamically, the most significant feature of our
deterministic algorithm is its performance in estimating
time-varying prices. In all the scenarios considered, our
algorithm exhibits a lower mean-squared error than RAM
and has a greater proportion of estimates falling within
any given error bound up to 30%. The improvement
over RAM is especially pronounced when using Internet
trace-basedIPid behaviour.

REFERENCES

[1] S. Athuraliya and S.H. Low, “Optimization flow control II:
Implementation,” Tech. Rep., Netlab, California Institute of
technology, 2000.

[2] S. Athuraliya, V.H. Li, S.H. Low, and Q. Yin, “REM: Active
queue management,”IEEE Network, vol. 15, pp. 48–53, May
2001.

[3] R.J. Gibbens and F.P. Kelly, “Resource pricing and the evolution
of congestion control,” Automatica, vol. 35, pp. 1969–1985,
1999.

[4] D. Katabi, M. Handley, and C. Rohrs, “Internet congestion
control for future high bandwidth-delay product environments,”
in Proc. ACM Sigcomm 2002, Pittsburgh, PA, Aug. 2002.

[5] S. Kunniyur and R. Srikant, “A time scale decomposition
approach to adaptive ECN marking,” inProc. IEEE INFOCOM,
Anchorage, AL, 2001, pp. 1330–1339.

[6] S.H. Low and D.E. Lapsley, “Optimization flow control I: Basic
algorithm and convergence,”IEEE/ACM Trans. Networking,
vol. 7, pp. 861–875, Dec. 1999.

[7] F. Paganini, Z. Wang, S.H. Low, and J.C. Doyle, “A new
TCP/AQM for stable operation in fast networks,” inProc. IEEE
INFOCOM, San Francisco, CA, Apr. 2003.

[8] R.W. Thommes and M.J. Coates, “Determinstic packet marking
for congestion price estimation,” inIEEE Infocom 2004, March
2004.

[9] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of
explicit congestion notification (ECN) to IP,” Sept. 2001, IETF
RFC 3168.

[10] M. Adler, J-Y Cai, J.K. Shapiro, and D. Towsley, “Estimation
of congestion price using probabilitic packet marking,” inProc.
IEEE INFOCOM, San Francisco, CA, Apr. 2003.

[11] F. Begtasevic and P.V. Mieghen, “Measurements of the hop-
count in the Internet,” inProc. Passive and Active Measurement,
Amsterdam, The Netherlands, Apr. 2001.

[12] J. Postel, “Internet protocol,” Sept. 1981, IETF RFC 791.
[13] S. Bellovin, “A technique for counting NATted hosts,” inProc.

Internet Measurement Workshop, Marseille, France, Nov. 2002.
[14] R. Mahajan, N.T. Spring, and D. Wetherall, “Measuring ISP

topologies with Rocketfuel,” inProc. ACM Sigcomm 2002,
Pittsburgh, PA, Aug. 2002.

[15] N.L. Johnson and S. Kotz,Urn Models and their applications,
John Wiley & Sons, 1977.

[16] V.F. Kolchin, B.A. Sevastyanov, and V.P. Chistyakov,Random
allocations, John Wiley & Sons, 1978.

[17] A. Kamath, R. Motwani, K.V. Palem, and P.G. Spirakis, “Tail
bounds for occupancy and the satisfiability threshold conjec-
ture,” Random Structures and Algorithms, vol. 7, no. 1, pp.
59–80, 1995.

[18] D. Wetherall, D. Ely, N. Spring, S. Savage, and T. Anderson,
“Robust congestion signaling,” inIEEE Conference on Network
Protocols, November 2001, pp. 332–341.

