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Abstract
Internal switches in all-photonic networks do not
perform data conversion into the electronic domain,
thereby eliminating a potential capacity bottleneck, but
they introduce network scheduling challenges. In this
paper we focus on scheduling fixed-length frames in
all-photonic star-topology networks. We describe the
Fair Matching (FMA) and Equal Share (ESA) algo-
rithms, novel scheduling procedures that result in max-
min fair allocation of extra demand and achieve zero
rejection for admissible demands. We analyze through
simulation the delay and throughput performance.
KEY WORDS
scheduling, star topology, max-min fairness, matching
algorithms, optical networks.

1 Introduction
In high speed optical networks, opto-electronic con-
version has the potential to be a capacity bottleneck, so
the insertion of all-photonic switches becomes attrac-
tive. All-photonic switches are currently incapable of
performing queuing, so packet transmissions at edge
switches must be carefully controlled. Burst switch-
ing and just-in-time reservation approaches, and rout-
ing and wavelength assignment techniques have been
proposed to address this challenge in general mesh
topologies [1, 2]. Simpler network architectures allow
simpler, more efficient schemes. The authors of [3, 4]
advocate an agile all-photonic network (AAPN) archi-
tecture, an overlaid star topology consisting of edge
nodes, where the opto-electronic conversion takes
place, connected via selector/multiplexor devices to
independent photonic core crossbar switches.

Two tasks must be addressed in the process of
scheduling traffic. First, the traffic arriving at an edge
node must be divided among the stars. We assume that
this task has been accomplished using a flow-based
load balancing approach. We focus on the second task:
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Figure 1. Architecture of the Agile All-Photonic Network
described in [3,4]. Edge nodes perform electronic-to-optical
conversion and transmit scheduling requests to the core pho-
tonic node(s). Selectors/multiplexor devices are used to
merge traffic from multiple sources onto single fibres and
to extract traffic targeted to a specific destination.

designing (and adapting) schedules for the traffic allo-
cated to a single star. In wide-area networks with sub-
stantial signaling delay, scheduling must be performed
based on predictions of traffic demand in advance of
traffic arrivals. It is more efficient to schedule frames,
or blocks of slots, rather than allocate capacity on a
slot-by-slot basis [5]. In this paper, we address frames
of fixed length, because this simplifies protocol design.

Related Work: Scheduling in star-topology net-
works has been investigated in depth for the past
thirty years, so there is naturally much work that
is related to what we present here. The majority
of the frame-scheduling algorithms have focused on
variable-length frames (for example, [6–9] and the ref-
erences therein). The authors of [10–12] have con-
sidered the problem of scheduling a frame of fixed
length for star-coupled networks with tunable trans-



mitters/receivers, but do not address the allocation of
unused time slots or rejection of inadmissible demand.
Finally, algorithms achieving max-min fairness prop-
erties have been proposed in other networking contexts
such as priority service allocation [13].

Contribution: We formulate the AAPN band-
width allocation task as a scheduling problem. We then
propose novel scheduling algorithms that explicitly ad-
dress inadmissible demands and small offered loads,
achieving zero rejection if the demand is admissible
and providing fair allocation of free time-slots. We
discuss the fairness properties of the derived schedules
and analyze performance through simulations.

Structure of the paper: Section 2 provides a
statement of the scheduling problem that we address.
Section 3 details our proposed frame-based schedul-
ing algorithms and examines their properties. Sec-
tion 4 describes the simulation experiments we have
executed to assess the performance of the scheduling
approaches and discusses the results. Section 5 draws
conclusions and indicates intended extensions.

2 Problem Definition

The AAPN architecture is an overlaid star-topology
of N edge nodes that operates over multiple wave-
lengths [4]. It permits each node to transmit to one
destination node and receive from one source node si-
multaneously on each wavelength. We are presented
with a demand matrix D, where Dij is the number
of slots requested by source node i for destination j
during the next fixed-length frame. We define the fol-
lowing line sums of the demand matrix. The row sum,
ri =

∑N
j=1 Dij , is the total demand at source i, and

the column sum, cj =
∑N

i=1 Dij , is the total demand
for destination j. It is important to achieve zero rejec-
tion if the demand is admissible; a demand matrix D
is admissible for a frame of length L if

max{max
i
{ri},max

j
{cj}} ≤ L, (1)

Our aim is to devise a schedule S such that the el-
ement Sjk identifies the source node allocated to the k-
th time slot associated with destination j in the frame.
The number of rejections achieved by such a schedule,
for a demand matrix D and frame of length L, is:

REJ(S, D, L) =
∑

i

∑
j

max(0, Dij−
L∑

k=1

I[Sjk = i]),

(2)
where I is the indicator function. The schedule should
achieve zero rejection, REJ(S, D, L) = 0, when the

demand matrix is admissible, and provide fair alloca-
tion of extra time slots to the competing connections.
We focus on achieving the property of (weighted)
max-min fairness (see Section 3 for a definition). We
can thus state our design problem as follows.

PROBLEM 1: For an admissible demand matrix
D and frame of length L, generate a schedule S that
achieves zero rejection, REJ(S, D, L) = 0, and allo-
cates spare capacity in the network to the connections
in a (weighted) max-min fair manner.

Closely related to PROBLEM 1 is the task of
finding an optimum schedule for a variable-length
frame [6–9]. The goal is to minimize the overall trans-
mission time T :

T (S) = Tx(S) + τ Ns(S), (3)

where Ns is the number of switch reconfigurations, τ
is the switching time, and Tx is the time spent transmit-
ting the traffic [6,8]. The minimum traffic transmission
time T ∗

x = max{maxi{ri},maxj{cj}} [14].
The EXACT algorithm, presented in [9, 15], ad-

dresses primarily the case of negligible τ , and achieves
a minimum traffic transmission time, T ∗

x . Thus in the
case of admissible demand matrices, the EXACT al-
gorithm generates a schedule S that has length less
than L and therefore satisfies the first requirement of
PROBLEM 1. The EXACT algorithm is an iterative
procedure that repeatedly performs maximum cardi-
nality bipartite matching (MCBM) to obtain the sched-
ule.

3 AAPN Scheduling Algorithms

In this section, we describe two algorithms for band-
width reservation in the AAPN architecture that ad-
dress fixed-length frame scheduling and provide solu-
tions to PROBLEM 1. If all of the line-sums in the
demand matrix are equal to L, then the schedule ob-
tained using EXACT is a full schedule (in each time
slot, every source and every destination are serving re-
quests). However, when the load is not enough to fill
the schedule completely, we need a fair policy to di-
vide the extra time slots amongst active connections.
We now recall the definitions of feasibility of rate al-
location, (weighted) max-min fairness, and bottleneck
link [16, 17].

Definition 1. Feasibility: Consider an arbitrary
network as a set of links L where each link ` ∈ L
has a capacity C` > 0. Let {1, · · · , ζ} be the set of
connections in the network. Let Du be the demand
(request) of connection u and υu be its assigned rate.
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We call a rate allocation {υ1, υ2, · · · , υζ} feasible,
when for every link ` we have:∑

u∈H`

υu ≤ C` ∀` ∈ £. (4)

Under the (weighted) max-min fairness condi-
tion, the objective is to maximize the minimum rate
vu, subject to network capacity constraints.

Definition 2. Weighted max-min fairness: Let
ωu(υu) be an increasing function representing the
weights assigned to connection u at rate υu. A feasi-
ble allocation {υ1, υ2, · · · , υζ} is weighted max-min
fair if for each connection u any increase in υu would
cause a decrease in transmission rate of connection z
satisfying ωz(υz) ≤ ωu(υu). The special case of max-
min fairness is obtained by ωu(υu) = υu.

Definition 3. Bottleneck Link: Given a feasible rate
vector υ and a weight vector ω, we say that link ` is a
bottleneck link with respect to (υ , ω) for a connection
u crossing `, if C` =

∑
k υk , F` and ωu ≥ ωk for

all connections k crossing `.

The following lemma from [18] relates weighted
max-min fairness to the presence of bottleneck links.

Lemma 1. A feasible rate vector υ with weight vector
ω = { υu

Ru
} is weighted max-min fair if and only if each

connection has a bottleneck link with respect to (υ , ω).

3.1 Fair Matching Algorithm (FMA) and
Equal Share Algorithm (ESA)

We now describe two novel algorithms for adjusting
the demand matrix (prior to application of the EXACT
algorithm) to address incomplete or inadmissible de-
mand. The two algorithms modify the demand matrix
so that all of its lines sum to L, the frame length.

FMA and ESA are examples of water-filling al-
gorithms. If the demand matrix is admissible, they in-
crementally assign additional demand to all elements
until one of the links reaches capacity (its line-sum
is equal to L). At that point, the demand elements
contributing to that line are clamped. Extra demand
is then gradually added to the remaining elements in
the matrix until another link (line) reaches its capacity
and it too is clamped. The procedure repeats until all
lines have reached capacity. The difference between
the two algorithms is simply the manner in which ex-
tra demand is assigned. In the case of FMA, extra de-
mand is assigned in proportion to the original demand,
whereas in ESA, extra demand is assigned equally.

The algorithms can be implemented by process-
ing one line at a time. We first choose the most con-
strained line (the line that would reach its capacity first
under the water-filling procedure) and increase its de-
mand to capacity. Then we choose the next most con-
strained line and increase its demand to capacity. We
repeat until all lines have reached capacity.

We denote the line sum of line ` by LS`. Note
that line ` consists of a set of source-destination de-
mands (connections). Each of these connections be-
longs to two lines (a row and a column). The i-th row
represents a link from source i to the optical switch at
the core, and the j-th column represents the link from
the core to destination node j. We define AD as the
set of unmodified lines and BD as the set of modi-
fied lines. Initially AD contains all lines and BD is
empty. We define a` as the set of unmodified demands
in line ` and b` as the set of modified demands. Ini-
tially, a` contains all the demands and b` is empty. De-
fine Sa`

,
∑

(i,j)∈a`
Di,j and Sb`

,
∑

(i,j)∈b`
Di,j .

We define for each line the values H` , L−LS`

|a`| and

G` , L−LS`

Sa`
, where |a`| is the cardinality of a`.

For the ESA algorithm, the line with minimum
H` is the most constrained line, whereas for FMA, it
is the line with minimum G`. The demand adjustment
we perform on each line for ESA is:

D
′

ij = Dij +
L− LS`

|a`|
∀ (i, j) ∈ a` (5)

In the case of FMA, we perform the line adjustment:

D
′

ij = Dij ×
L− Sb`

Sa`

∀ (i, j) ∈ a` (6)

Thus far, we have focused on the case where the
demand is admissible. However (5) and (6) can also be
applied when the demand on a link exceeds capacity.
In this case, (5) reduces the demand equally amongst
all contending connections, whereas (6) reduces de-
mand in proportion to the original request. Algorithm
1 jointly describes ESA and FMA.

The following theorem states that prior to round-
ing, ESA achieves max-min fair allocation of extra ca-
pacity and FMA achieves weighted max-min fair allo-
cation of extra capacity (weighted relative to the orig-
inal demand). See the Appendix for the proof.

Theorem 1. If the demand matrix is admissible then
ESA generates an adjusted demand matrix D′ with
max-min fair allocation of extra-capacity. FMA gen-
erates a D′ with weighted max-min fair allocation of
extra-capacity, where the weight of the connection be-

tween source i and destination j is ωij = D′
ij−Dij

Dij
.
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Algorithm 1 FMA or ESA
while LS` 6= L for some ` do

if ESA then
Identify the line `∗ = arg min`∈AD

H`

Apply (5) to line `∗.
else if FMA then

Identify the line `∗ = arg min`∈AD
G`.

Apply (6) to line `∗.
end if
Transfer `∗ from AD to BD.
Update a` and b` for all lines ` ∈ AD.

end while
Apply EXACT to bD′c to generate S.

We now present properties of the demand matrix
D

′
= {D′

ij} obtained by Alg. 1 prior to rounding.

Property 1 Algorithm 1 guarantees full allocation of
all links provided D contains no zero elements.

Property 2 If there is no natural blocking the maxi-
mum total throughput of the network is obtained:∑

i

∑
j

D
′

ij = N.L. (7)

Property 3 The while-loop in Algorithm 1 has O(N2)
computational complexity. The EXACT algo-
rithm has complexity O(N

5
2 ), and hence this is

also the complexity of Algorithm 1.

Property 4 Algorithm 1 guarantees minimum rejec-
tion if the set O of overloaded links contains only
rows (input links) or only columns (output links)
of D. In this case:

min(REJ) =
∑

`

(LS` − L) ∀` ∈ O, (8)

4 Simulation Performance

In this section we report the results of simulations of
the scheduling approaches performed using OPNET
Modeler [19]. We performed simulations on a 16 edge-
node star topology network. The links in the network
have capacity 10 Gbps and the distance between each
edge node and the optical switch is 5 msec. A time slot
is of length 10 µsec, and a frame has a fixed length of
1 msec (or 100 slots). Every experiment was run for a
duration of 0.5 sec (equal to 500 frame durations) and
the results were averaged over 5 repetitions of the sim-
ulations. The virtual output queues in the simulations
have fixed buffer size (90000 packets). Whenever the
buffer is full, arriving packets are dropped.

Figure 2. Average queuing delay performance achieved by
FMA1, FMA2 , ESA (Equal Share Matching), Slot-by-Slot
and MCS under non-uniform, Poisson traffic.

In the simulations, traffic sources inject traffic
at rates up to 10 Gbps into the edge nodes. The ar-
rival distribution of the data packets is Poisson and
the size distribution is exponential with mean size of
1000 bits. Multiple (approximately 100) packets are
wrapped into one optical slot. We investigated two
cases of destination distributions: (i) a uniform case,
where sources send equal amounts of traffic to each
destination, and (ii) a non-uniform case, where all des-
tinations receive an equal amount of traffic on average,
but each source sends 5 times as much traffic to one
destination. The frame-based scheduling algorithms
compute the schedule ahead of time based on the pre-
dicted traffic of 10 msec (round-trip delay) in future.
In the first set of simulations we used the average of
the traffic arrivals over the past 10 frame durations to
form the prediction of the demand matrix D.

In our simulations FMA1 collocates similar
matchings (applying EXACT in a standard fashion)
and FMA2 and ESA separate them into two batches,
one placed towards the start of the frame and one to-
wards the end. This reduces average waiting time.
We compare performance to two previous algorithms:
Minimum Cost Search (MCS) [20] and a slot-by-slot
scheduling approach based on PIM (Parallel Iterative
Matching) [5].

Figure 2 shows the queuing delays over a wide
range of offered load, from 10% to 90% link capacity
under nonuniform traffic (uniform traffic gives simi-
lar results). The slot-by-slot algorithm has large av-
erage queuing delays, since it is more appropriate for
metro and local-area networks [5]. FMA1 generates
additional average delay compared to FMA2, which is
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Figure 3. Average queuing delay and packet loss perfor-
mance for FMA2, ESA and MCS under bursty traffic and
non-uniform distribution of the destinations.

due to the collocation of matchings. ESA, FMA2 and
MCS exhibit similar performance, achieving low aver-
age delays under all but the highest load. Under higher
loads, the performance of MCS deteriorates due to the
additional blocking it induces. On average the per-
centage of blocking generated by MCS is 0.9%. The
matching algorithms (FMA and ESA) generate 0.02%
blocking (due to natural blocking in the demand ma-
trices). When the load is high, FMA2 assigns more
time slots to the heavier connections, which can use
the extra time slots more efficiently. ESA assigns the
same number of extra time slots to each connection
irrespective of its load. In this scenario only the slot-
by-slot scheduling algorithm experiences packet loss
(up to 0.31% for loads exceeding 70% of capacity).

We also performed simulations with bursty traf-
fic using on/off traffic sources. Every edge node is
equipped with 6 on/off sources. The “on” and “off”
periods have Pareto distributions with α = 1.9. The
mean of the “off” periods is 5 times greater than the
mean of the “on” periods. During “on” periods the
sources generate packets with an average rate equal
to the full link capacity (10 Gbps). The rate distri-
bution is exponential. Figure 3 depicts queuing de-
lays and packet losses for the FMA2, ESA and MCS
algorithms. FMA2 demonstrates marginally superior
average queuing delay performance (0.3-0.9 msec less
when the load exceeds 50%).

We explored the performance of our algorithms
using 50 seconds of packet traces captured from an
OC3 link at Colorado State University [21]. The
flows were divided into 16 components based on

Figure 4. The behaviour of FMA2 and MCS in response to
traffic loads derived from Internet traces. Top: the offered
load averaged over all source-destination pairs. Middle: the
percentage of overflow traffic. Bottom: the overall number
of queued packets at the edge nodes.

IP source/destination addresses, and each component
served as one of the edge nodes. We considered a
frame of length 0.1 seconds (equal to 100 time slots
of 1 msec.). The average offered load was around
40%. The derived traffic is such that the demand is
inadmissible for a duration of 10 seconds (from 2–12
seconds), because one of the edge nodes is overloaded.
Growth in the queue sizes is unavoidable during this
period. Figure 4 shows the total number of queued
packets at the edge nodes. FMA2 and MCS adapt to
the variations of the arrivals in a very similar fashion,
but FMA2 has a lower number of queued packets be-
cause it does not induce blocking.

5 Conclusion and Future Work
We have formulated the bandwidth allocation problem
in the AAPN network as a scheduling problem with
the objective of designing a schedule that achieves
zero rejection for admissible demands and provides
(weighted) max-min fair allocation of free capacity.
We proposed two novel scheduling algorithms that
achieve this task and analyzed their behaviour. In fu-
ture work, we will assess how FMA and ESA behave
when there are errors in the predicted demand matrix.

6 Appendix: Proof of Theorem 2
Proof. Let u ∈ {(i, j), 1 ≤ i, j ≤ N} index the
source-destination connections specified by the de-
mand matrix. We index entities by iteration number
of the while-loop in Alg. 1. For example, AD(h) de-
notes the set of unmodified lines at the start of iteration
h of the algorithm.
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During each iteration h of the while-loop, FMA
identifies the line γ ∈ AD(h) such that Gγ(h) =
min{G`(h); ` ∈ AD(h)}. It alters the demands in
aγ(h) according to (6); there is no subsequent mod-
ification. We have ωu = Gγ(h) for all u ∈ aγ(h).

The adjustment at iteration h leads to γ being a
bottleneck link (line) for u ∈ aγ(h), i.e., ωz ≤ ωu for
u ∈ aγ(h) and z ∈ bγ(h). Equivalently, we prove that
min{G} is monotonically increasing with respect to
the iteration number, i.e., min{G(h)} ≤ min{G(h +
1)}. The equivalence follows since the ωz are obtained
from adjustments prior to iteration h.

Suppose that line β has minimum G` at iteration
h + 1. Lines γ and β have at most one connection
(demand) in common. If there is no common connec-
tion, then Gβ(h + 1) = Gβ(h) ≥ Gγ(h). If there is a
common connection k, then:

LSβ(h + 1) = LSβ(h) + Dkωk (9)
Saβ

(h + 1) = Saβ
(h)−Dk (10)

Gβ(h + 1) =
L− LSβ(h)−Dkωk

Saβ
(h)−Dk

(11)

=
Saβ

(h)Gβ(h)−Dkωk

Saβ
(h)−Dk

(12)

≥ Gγ(h) (13)

where the last inequality follows from substitution
based on Gβ(h) ≥ Gγ(h) = ωk.

Thus the application of FMA upon an admissible
demand matrix D leads to the generation of a bottle-
neck link for each connection u with weight ωu =
D

′
u−Du

Du
. By Lemma 1, this establishes the weighted

max-min fairness property of FMA.
A similar argument, replacing G with H , demon-

strates the max-min fairness achieved by ESA.
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