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ABSTRACT

Photonic Core Switch

Internal switches in all-photonic networks do not per-
form data conversion into the electronic domain, thereby
eliminating a potential capacity bottleneck, but the in-
ability to perform efficient optical buffering introduces

on the problem of scheduling fixed-length frames in all-
photonic star-topology networks with the goal of min-
imizing rejected demand. We formulate the task as an
optimization problem and characterize its complexity.
We describe the Minimum Rejection Algorithm (MRA), Selector/Multiplexer ~ 09¢ SWiteh

which minimizes total rejection, and demonstrate that

the Fair Matching Algorithm (FMA) minimizes the max- Fig- 1. Architecture of the Agile All-Photonic Network de-
imum percentage rejection of any connection. We ana- scribed in [3, 4]. Edge nodes perform electronic-to-optical

lyze through OPNET simulation the rejection and delay conversion and transmit scheduling requests to the core pho-
performance tonic node(s). Selectors/multiplexor devices are used to merge

traffic from multiple sources onto single fibres and to extract
traffic targetted to a specific destination.

1. INTRODUCTION

Electronic switches in high-speed networks are increas-network (AAPN) architecture of [3,4]. This architec-

ingly proving to be a capacity bottleneck. Replacement tre (see Figure 1) consists of edge nodes, where the
with all-photonic switches is attractive, particularly as gptical electronic conversion takes place, connected via
photonic devices with sub-microsecond switching capa- selector/multiplexor devices to photonic core crossbar
bility become available. The inability of the photonic  swjtches. The core switches act independently, so the
switches to perform queuing introduces network design control problem is reduced to the task of scheduling the

challenges. Control functionality is required to reduce switch configurations to achieve a good match with the
or eliminate the potential of contention for egress ports. rffic arrival pattern at the edge nodes.

Burst switching, just-in-time reservation, and routinglan
wavelength assignment are some of the many approacheéur
that have been used in general mesh topologies [1,2]. An
alternative approach is to focus on a simpler architecture

that redgces the complexity of the control F:hallenge. and switch capacity. A source edge-node must be aware
In this paper, we focus on the overlaid star topol- ¢ \yhen it has ownership of a given time-slot and is al-

ogy, as specified in the design for the agile all-photonic |56 to transmit to a specific destination edge node.
This work was supported by the Natural Sciences and Enginger The slot allocation can be fixed and deterministic, or it

Research Council (NSERC) and industrial and governmenheart can adapt to the traffic arrivals thrOUgh_Signa”ing be-
through the Agile All-Photonic Networks (AAPN) Researchtierk. tween the edge nodes and the core switch. In the lat-

The star topology facilitates the introduction of ac-
ate network-wide synchronization [5], and this en-
ables the application of a range of Optical Time Divi-
sion Multiplexing (OTDM) techniques for sharing link




ter case, adaptation can be performed on a per framepresents results concerning problem complexity. Sec-
basis (a block of slots) or per time-slot basis. Frame- tion 5 details our proposed frame-based scheduling al-
based scheduling is more appropriate for wide-area net-gorithms and examines their properties. Sectoe-
works since the impact of propagation delay is reduced scribes the simulation experiments we have executed to
(bandwidth is reserved fquredictedtraffic demand in assess the performance of the scheduling approach and
advance of the traffic arrivals) [6]. We focus on fixed- discusses the results. Finally, Sectidondraws conclu-
length frames, because this simplifies protocol design sions and indicates intended extensions of our work. The

and implementation of control functions. Appendix (Sectior8) contains proofs.
The general objectives of bandwidth sharing are to
minimize rejected requests and end-to-end delay, whilst 2. PROBLEM STATEMENT

maximizing throughput and maintaining fairness in the

network. In this paper, we consider that minimization The AAPN architecture is an overlaid star-topology of
of the number of rejected requests has highest prior- ;7 edge nodes that operates over multiple wavelengths [4].
ity. A secondary objective is to minimize the number |t permits each node to transmit to one destination node
of switching operations in a frame in order to reduce the gng receive from one source node simultaneowsly
power consumed by the core switch. each wavelength We consider that (flow-based) load
Related Work: Scheduling in star-topology networks balancing has been conducted to divide incoming traf-
has been investigated in depth for the past thirty years,fic amongst the various stars. The remaining task is to
so there is naturally much work that is related to what we schedule the traffic for each star. We are presented with
present here. The majority of the frame-scheduling algo- a demand matrixXD, whereD;; is the number of slots
rithms proposed for star topologies in optical and satel- requested by source nodéor destination; during the
lite networks have focussed aariable-lengthframes next fixed-length frame. We consider a frame of length
(for example, [7—-11] and the references therein). We F' time slots withW available wavelengths, such that
discuss the relationship between our task and the variabléhere arel, = F'W slots for each destination node avail-
length problem in SectioB. The authors of [12-15]  able for allocation. Herein we focus on the case where
have considered the problem of scheduling a frame of W = 1 for clarity, but the algorithms and results are
fixed length for star-coupled networks with tunable trans- easily extended.
mitters/receivers, but do not address the allocation of un-  Our aim is to devise a schedufesuch that the el-
used time slots or rejection of inadmissible demand. ementS;;, identifies the source node allocated to khe
Contribution : The combination of a fixed-length  th time slot associated with destinatigrnin the frame.
frame and a side constraint (the number of Switching The schedule should minimize the number of rejections
operations) conspires to introduce some unique aspectgt£J (S, D, L) whilst also attempting to minimize the
to the bandwidth allocation problem. This paper offers number of times that the switch must reconfiguvg(5).
the following important contributions: (i) we formulate A switch reconfiguration occurs between two consecu-
the AAPN bandwidth allocation task as a scheduling tive time slotsk andk + 1 if the allocated source node
problem, identifying the cost function that must be op- to any destination is altered;N,(S) counts the num-
timized; (||) we assess the Comp|exity of this prob|em, ber of switch reconfigurations in the entire schedule, not
determining the conditions under which the problem is merely those within the frame.
NP-hard and to what extent it can be approximated by a ~ The number of rejections is defined as:
polynomial algorithm, and we outline the parallels with

other scheduling problems; (iii) we prove that the Fair L .
Matching Algorithm (FMA), proposed in [16], minimizes REJ(S,D,L) = Z Z max(0, Diﬁ*zl[sﬂf = i),
the maximum percentage rejection experienced by any v =1 L
connection; and (iv) we propose a novel scheduling al-
gorithm that minimizes total rejection. We analyse the
performance of the algorithms through OPNET simula-
tions. C(S,D,L) = REJ(S,D,L) + g.N.(S), (2
Structure of the paper: Section2 provides a state-
ment of the scheduling problem that we address. Sec-whereg is a constant that determines the relative impor-
tion 3 identifies the parallels with variable-length frame tance of reducing the number of switch reconfigurations.
scheduling problems for star topologies, and Section

wherel is the indicator function. We can define an ob-
jective function (the cost of transmission) as:



PROBLEM 1:Solve the following optimization prob-
lem for a frame of fixed lengti. with C(S, D, L) de-
fined by @) to identify a frame schedule.

ST = argmsinC(&D,L) 3

2.1. Terminology and Definitions

Definition 3. Weighted max-min fairness Letw,,(v,,)

be an increasing function representing the weights as-
signed to connection at ratev,,. An allocation

{v1,v9,--- ,v¢} is weighted max-min faiif for each
connection: any increase in,, would cause a decrease
in transmission rate of connectiarsatisfyingu, (v, ) <
wy(vy). The special case of max-min fairness is ob-
tained byw,, (v,,) = vy.

We now define some terminology that will be used through-
out the paper and recall some definitions. We denote 3. RELATIONSHIP TO VARIABLE-LENGTH

the line sum of line’ of the demand matrixD by LS,.

Note that line/ consists of a set of source-destination
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demands (connections). Each of these connections beThe most closely related work to the optimization em-

longs to two lines (a row and a column). Thi¢h row
represents a link from souraeto the optical switch at
the core, and thg-th column represents the link from
the core to destination node Therow-sum r;(D) =
Zj.vzl D;;, is the total demand at sourgend thecolumn-
sum ¢;(D) = S°N | D,;, is the total demand for desti-
nationj.

Definition 1. A demand matrixD is admissiblaf

max{max{ry(D)} max{c;(D)}} < L. (4)

whereL is the frame-length, and;(D) andc;(D) are
the i-th row-sum andj-th column-sum of the demand
matrix, respectively.

bodied inPROBLEM 1is the problem of finding an op-
timum schedule for a variable-length frame, which has
been extensively studied in WDM and satellite systems [7—
11]. The goal is to minimize the overall transmission
timeT"

T(S)= T,(S) + 7.N4(9), (6)
whereN; is the number of switch reconfigurationsis
the switching time, and’,, is the time spent transmitting
the traffic [8, 10]. All times are measured in slots.

PROBLEM 2:Solve the following optimization prob-
lem for a frame of variable length with total transmission
time T'(S) defined by 6), observing the constraint that
S € S, the set of schedules that satisfy the demand ma-

For an inadmissible demand matrix, we denote the trix, i.e., REJ(S, D, T..(S)) = 0.

set of overflowing rows of the demand matrix (rows with
r;(D) > L) asO,, and the set of overflowing columns
(¢;(D) > L) asO,. The set of overflowing lineg), =
{¢: LS, > L} is the union ofO, andO.. We de-
fine acritical connection or critical demand element,
as any demand entr,, such thath € O, andp €
O.. The remaining entries constituten-critical con-
nections/demands.

We now recall the definitions dieasibility of rate
allocation andveighted max-min fairne$&7, 18].

Definition 2. Feasibility: Consider an arbitrary net-
work as a set of linkg where each linkk € £ has a
capacityCy, > 0. Let{1,---,(} be the set of connec-
tions in the network, and{, the set of all connections
passing through link. Let D,, be the demand (request)
of connection: andv,, be its assigned rate. We call a
rate allocation{vi, vs,--- , v} feasible when for ev-
ery link ¢ we have:

Y vn<Cp VlEL (5)

u€EHy

Sy = arg gnel‘rng(S) )]

PROBLEM 2is N P-hard for non-negligible values
of 7 [10,19]. Crescenzi et al. demonstrate that it can-
not be approximated by a polynomial algorithm within
a factor less thaé [19]. For small values of the prob-
lem can be closely approximated by the minimization of
T,., which is solvable in polynomial time [20-22]. The
minimum traffic transmission time is [23]:

T = max{max{r;}, max{c; }}.
T J

We can then establish:

Claim 1. A schedule5,, that minimizes the traffic trans-
mission time, i.eT,,(S,) = T, solves PROBLEM 2 to
within an approximation factor of + .

Proof. The number of switch reconfiguration (S) <
T,(S) andT'(S5) = T,(S2) + TNs(S2) > Tx. Hence
if S, minimizes the traffic transmission time, it satisfies
T(Sy) <Tr(1+7)<T(S5)(1+7). O



For the special case of smal|l approximate algo- 5. AAPN SCHEDULING ALGORITHMS
rithms that attempt to minimiz&/, subject to the con-
straint thatT, is minimum have been proposed in [7,8, In a practical scenario, although it is desirable to reduce
11, 19]. The algorithms achieve minimum traffic trans- power expenditure by minimizing the number of switch-
mission time, 77, but do not guarantee minimutotal ings, minimizing the number of rejections is far more
transmission time7'(S;), unless the switching over- important. Hence we address the scheduling problem
head is completely neglected. TEXACT algorithm, (PROBLEM 1) wheng is small. In this case, we can
presented in [11, 19], achieves a minimum traffic trans- rewrite the problem as:
mission time,T;* and the derived schedule has at most MINREJ(D,L): For a frame of fixed lengtti, with de-
N, = N? — 2N + 2 switch configurations [11]. Inthe mand matrixD identify a frame schedul8? that satis-

case of an admissible demand matrix, EACTalgo- fies:

rithm generates a schedutethat has length less than ST =argmin REJ(S,D, L) (8)

L and therefore zero rejection. TEEXACT algorithm s

is an iterative procedure that repeatedly performs max-  In this section, we describe two algorithms for band-

imum cardinality bipartite matching (MCBM) to obtain ~ width reservation in the AAPN architecture that address
the schedule. It lies at the heart of the algorithms we fixed-length frame scheduling. The Fair Matching Al-
present in this paper for the case of fixed-length frames. gorithm minimizes the maximum percentage rejection
When 7 is very large (on the order of maximum experienced by any demand, while the Minimum Rejec-
transmission time), the problem is reduced to minimiz- tion Algorithm minimizes the total rejection (that is, it
ing T» subject to the constraint tha, is minimum. provides a solution tMINREJ(D,L).
Approximate algorithms for this special case have been
proposed in[8,10]. The intermediate scenario, whenitis 5.1, Fair Matching Algorithm (FMA)
desirable to obtain near minimum solutions for both the
number of switchings and the traffic transmission time, The EXACT algorithm can be applied directly to the
has been addressed in [11]. case of fixed length frames (Claim 2 states that it pro-
vides a solution foPROBLEM 1wheng is small and
demand admissible). When the demand matrix is inad-
missible, the schedule determined by the EXACT algo-
We establish two results concerning the complexity of "lthm must be truncated aftértime slots. This can lead
PROBLEM 1 to starvation of some source-destination traffic, and re-
sult in unfairness (such as substantially different averag
Claim 2. If the demand matrix is admissible and con-  service times for traffic arriving at different nodes). The
tains no zero entries (for aiv x N switch and frame of  Fair Matching Algorithm (FMA) was described in [16],
length L) then the EXACT algorithm provides a solu- but therein the emphasis was on achieving fair allocation
tion Sg to PROBLEM 1 such that'(Sg) < C(S7) + of extra capacity. Here we concentrate on how FMA be-

4. COMPLEXITY RESULTS

g(N? — 3N +2). haves in the case of inadmissible demands, and specifi-
) o o cally how it treats the connections competing for capac-
Proof. Since the demand matrix is admissitilg, < L. ity on overloaded lines.

Hence the schedule devised BXACTresults in zero FMA processes lines one at a time. It identifies the
rejections,REJ(S, D, L) = 0. EXACTensures thatthe 45t overloaded line and reduces the demands on that
number of switch reconfigurations in this solution is I1eSS |ine such that they sum to capacitg)( The nature of

2 . .
than N — 2N + 2. The minimum number of SWitch s reduction is important: FMA reduces demand pro-
reconfigurations for any schedule under the constraint of portional to the original demand, i.e. each adjusted de-

no zero—.entries.in the deman2d matrixNs[24]. Hence mand experiences the samercentage reduction In
the maximum discrepancy i$* — 3N + 2. subsequent iterations, FMA identifies the next most con-

Theorem 1. For large g, such thaty > max(||D||; — strained line, taking into account the effect of any previ-
L,0), where||D||; = Z S D,;, PROBLEM 1 is re- ous adjustments, and clamps its demand to capacity. It
i 1 - i i 171

duced to the problem of minimizidg.J (S, D, L) sub- repeats the process until no lines exceed capacity.

ject to the constraint thalV, (S) is minimized. For this ~_Here we describe how FMA treats demands belong-

range ofg, PROBLEM 1 isV P-hard. ing to the overloaded lines in the 38t (FMA also ad-
justs small loads to form a complete schedule [16]). We

See the Appendix (Sectidhl) for a proof. defineAp C Oy, as the set of unmodified overloaded



lines andBp C O, as the set of modified overloaded 5.2. Minimum Rejection Algorithm

lines. Initially Ap contains all lines inD, and By, is . . . .
empty. Similarly, we defing, as the set of modified In this section we describe an algorithm that generates a

connection (i.e. the connections whose demands are moachedule that minimizes total rejection. We first develop
ified) in line ¢ anda, as the set of unmodified connec- a theorem that helps to identify a procedure for solving
tions. Initially, a, contains all the connections passing MINRE‘](D L) W? commence by defining a max-flow
line ¢ andb, is empty. Defines,, 2 E(- Jeus Dis and linear programming problem calléddAXFLOW(D,X,L)

a 1,j)€Eap L

Spe & Z(i,g)ebe Dm,whereD is the modified demand  proplem Y = MAXFLOW(D,X,L) : D is a demand ma-
of connection(i, j). Define for each of line indp the  trix, X is a non-negative matrix that specifies capacity

valueG, = Lg—ff" bounds, and. is the frame-length (available capacity
FMA performs the following line adjustment when on each row/column). Matrice®, X andY are all of
it reduces demand: size N x N. ldentify a nonnegative matriX such that
I >_heo, 2_peo. Ynp IS maximized, subject to the follow-
Dy =Dy x =g V(ij)ea (9 ngconstants

Yip = 0 ifh¢O,orpé¢ O,

Yip < Xnp V(h,p)st.heO,andpe O,
Algorithm 1 FMA for overloaded lines Z Yip < m(D)—L Yhe O,
while LS, > L for somel € Ap do pE O,
Identify the linel* = arg minge 4, Gy.
Apply (9) to line ¢*. ’ Y. Y < D)L Vpe O
Transfer¢* from Ap to Bp. he Or
Updatea, andb, for all lines/ € Ap. The second, third and fourth constraints apply upper
Re-evaluatd.S, for all lines in Ap. bounds on the elements, ttmv-suns andcolumn-sura
Remove any lines froml ; that havelL.S, < L. of matrix Y respectively. The following theorem estab-
end while lishes a relationship between a solution to the problem
Apply EXACT to | D’| to generates. MAXFLOW(D,D,L)and a solution to the minimum re-

jection problemMINREJ(D,L) The proof is in the Ap-

The following theorem states that prior to rounding, Pendix (Sectior8.3).

FMA achieves weighted max-min fair allocation of ca- Theorem 3. Set A = MAXFLOW(D,D,L). Construct a
pacity for the set of connections on the overloaded links. rejection matrixD” = A + Q, whereQ is an arbitrary
For the proof of the theorem, see the Appendix (Sec- non-negative matrix such thel,, <D — AV (h,p),
tion 8.3). rh(Q) = rh(D) — L —r,(A) ¥ h € O,, andc,(Q) =

) cp(D) — L —c,(A) V p €O, ThenifS is a schedule
Theorem 2. FMA generates a demand matrlX’ with that generates the decompositibh= D’ + D", itis a

weighted max-min fair allocation, where the weight is ¢ fion to the problem MINREJ(S,D,L)
D/-‘ ’ 1 .
w(Dy) = B2

Dij* We now describe an algorithm to identify a solution
D A to MAXFLOW(D,D,L) The corresponding maximum
Define thepercentage rejectioms1 — 2. Con-  flow problem is depicted in Figur2 We define a net-

sider the set of demands that experience the highest perwork with a source and a sink and try to maximize the
centage rejection. Since the weighis a monotonically  flow between them. A network flow is a vectbr= (f;;)
increasing function of allocated rafg;, weighted max-  where eacly;; is a positive real number representing the
min fairness implies that it is impossible to increase the flow on arc(i, j), i.e., the flow fromi to j. A flow f is
rate allocated to these demands (or decrease the maxifeasible if it satisfies the capacity constraints and it is
mum percentage rejection) without violating feasibility. conserved at all nodes (total flow out of a node equals
We thus have the following corollary: total flow in). In our problem, the total amount of flow
emitted from source (and therefore arriving at sink
Corollary 1. Subject to the capacity constraints, FMA s equal to the total amount of rejection contributed by
generates a schedule that minimizes the maximum per-4 at the critical connections. The rejection at any spe-
centage rejection experienced by any connection. cific critical connection {,,) is equal to the flow on arc



in graph g if and only if there is no augmenting path in
G bearing flowf.

inputs outputs

When there are no lower bounds on capacity, the

flow f defined byf;; = 0 V(4,j) € A (the set of arcs
in the network) is feasible and can be used to initial-
ize the Ford-Fulkerson algorithm. There are numerous
methods for searching for augmenting paths; techniques
include shortest path (fewest number of edges) and fat-
test path (maximum bottleneck capacity along the path)
algorithms [26]. Note that the solution to the maximum
flow problem (and hence al3dAXFLOW(D,D,L) is in
general not unique.
Fig. 2. s — t network: In this example the input vertices cor- To form a Minimum Rejection Algorithm, we first
respond to the overflowing rows of an arbitrary demand ma- use the Ford-Fulkerson algorithm to identifi, Sub-
trix D (¢, k,m € O,), and the output vertices correspond to sequently we seD «— D — A and apply FMA to the
the overflowing columns oD (1,0, € Oc). The numbers  resultantD. As described in Sectiof.1, FMA pro-
over the edges show the edge capacities which correspond tqzesses overflowing lines sequentially, adjusting the de-
the upper bounds of flows in our maximization problem. .The. mand on the line so that it sums fo(thereby identify a
capacity of each edge (not connected to the source or sink) isjing of the rejection matrix). Since we have constructed
equal to the upper bounql of tl_m_a amount of_ the rejection ob- A so that after modificatio(h, p) = 0 at any inter-
tained for the corresponding critical connection. . . . )

section point of overflowing lined andp, when FMA

adjusts one of the overflowing line it does not affect any
(h,p). The capacities of the edges (upper bounds) areother overflowing line. This means that after FMA has
dictated by the constraints IMAXFLOW(D,D,L) We  been applied, it has generated)ahat satisfies the re-
denote the upper bound on gicj) by (i, j). So we quirements of Theorem 1. In the process, FMA has de-

have: veloped a schedul§ that performs the decomposition
k(s,h)=LS,—L Yhe O, D =D+ D ,whereD = A+ Q. The combined
Minimum Rejection Algorithm is specified in Algorithm
k(p,t)=LS,—L Vpe O 2

For a feasible flow vectof, anaugmenting patlis
a simple path froms to ¢ that can be used to increase
flow from s to t. Note that this path is not necessarily
directed. On forward arcs in this patti,(j) points in
the directions — t) the flow f;; must satisfy0 < f;; <
ki, j), and on backward arcs, i.¢i, j) is reverse, the
flow must satisf0 < f;; < k(4, j).

Ford and Fulkerson presented a solution to the max-
flow problem in 1954 [25]. The algorithm starts from
an arbitrary feasible flow. In subsequent iterations, the 6. SIMULATION PERFORMANCE

Ford-Fulkerson algorithm identifies an augmenting path, i i . ]
and augments the flow. If the augmenting path is de- N this section we report the results of simulations of the

noted as a set of ards, as, ..., ax }, then the flow aug- scheduling approaches performed using OPNET Mod-

Algorithm 2 Minimum Rejection Algorithm
1: Apply the Ford-Fulkerson algorithm to solve
A =MAXFLOW(D,D,L)
2: SetD «— D — A.
3: Apply FMA to D to generate) and a schedul§.

mentation possible i = min; <;<; 6(a;), wheres(a;) = eler [27]. We performed simulations on a 16 edge-node
Ka, — fa, for forward arcs and(a;) = f,, for backward ~ Star topology network. The links in the network have ca-
arcs. The flow is adjusted usinfy, «— J}a_ + § on for- pacity 10 Gbps and the distance between each edge node

ward arcs and on backward arcs usifig « fa. — o. and the optical switch is 5 msec. A time slot is of length
The algorithm iterates until no augmenting path exists, 10#8ec, and aframe has a fixed length of 1 msec (or 100

upon which the maximum flow is obtained, as specified slots). Each experiment was run for a duration of 0.2 sec
by the following theorem: (equal to 200 frame durations) and the results were av-

eraged over 5 repetitions of the simulations. The virtual
Theorem 4. Ford-Fulkerson [25]: Flowf is maximum  output queues in the simulations have fixed buffer size
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Fig. 4. Comparison between the maximum percentage rejec-
tion experienced by any demand after scheduling by MRA and
FMA for different values of: and varying offered load.

Fig. 3. Comparison between the rejection obtained by FMA
and MRA under varying offered load for different factors of
imbalanced load). Traffic is bursty (generated by on-off
sources) and has uniform distribution, aside from the impact

of z.
: for various values of. At high load (greater than 70%)

with z = 2, there are numerous critical elements and
(90000 packets). Whenever the buffer is full, arriving MRA begins to achieve less rejection than FMA. The
packets are dropped. discrepancy is still only 2 percent at 90% load. Fig-
ure 4 compares the maximum percentage rejection ex-
perienced by any demand when scheduling is performed
by FMA and MRA. As the offered load increases, MRA

We performed simulations with bursty traffic using
on/off traffic sources. Every edge node is equipped with

6 on/off sources. The “on” and “off” periods have Pareto o o
distributions witha — 1.9. The mean of the “off” peri- concentrates rejection on the critical elements; the max-

ods is 5 times greater than the mean of the “on” periods. imum percentage rejecti(_)n is thus much (gp tq 25_’ per-
During “on” periods the sources generate packets with ce_nt) _hlgher than that achieved by '.:MA’ wh|ch-d|str|bl_1tes
an average rate up to the full link capacity (10 Gbps). rejection fairly amongst all competl_ng connectlons: Fig-
The rate distribution is exponential. The demand matrix U'€ > compares the average queuing delay experienced
has a non-uniform distribution; each destination receives by packets when schedullng IS per.formed using FMA
on average the same amount of traffic, but each source®"d MRA; the approaches yield similar average delay.

sends five times as much traffic to one specific destina-

tion as compared to the others. 7. CONCLUSION AND FUTURE WORK

Since the behaviour o/ RA and F'M A only dif-
fers when there are critical elements in the demand ma-we have formulated the bandwidth allocation problem
trix, we investigate scenarios where critical demands arejn the AAPN network as a scheduling problem with the
likely to exist. In order to do this, in each frame we qpjective of minimizing rejection whilst reducing the
choose one arbitrary souréand one arbitrary destina-  number of switch reconfigurations. We demonstrated
tion j. Each source generatedimes as many packets that when the demand matrix is inadmissible, the Fair
for deStinationj Compared to other destinations. Simi- Matching A|gor|thm minimizes the maximum percent-
larly source; generates times as many packets (to all  age rejection experienced by any connection. We also
destinations) as any other source. Aiscreases, the el-  proposed a novel algorithm (MRA) that generates a sched-
ements of the demand matrix corresponding to these twoyle that minimizes the total rejection of demand. Sim-
edge nodes are more likely to be critical connections; the yjations indicate that the discrepancy in total rejection
demand elemerid;; has even higher likelihood of being  achieved by MRA and FMA is relatively minor, whereas
critical. there is a major difference in the fairness of the allo-

Figure3 compares the percentage of rejected demandcation of rejection. In addition, MRA appears to be
achieved by FMA and MRA as the offered load changes less robust to demand prediction errors (when traffic ar-
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Fig. 5. Average queuing delay performance achieved by
MRA and FMA for varying offered load and = 2.

1 for the identified range of for demand matrixD and
a frame of lengthL. We could then define the algorithm
Solve-MINSWT (Algorithm 2).

Algorithm 3 Solve-MINSWT
L=1;
S = solve-G(D,L);
while REJ(S,D,L) > 0do

L=L+1,
S = solve-G(D,L);
end while

Upon termination of this algorithm, the identified
scheduleS is guaranteed to have the minimum num-
ber of switch reconfigurations (as argued above). Since
it is also the minimum length schedule that achieves
REJ(S,D,L) = 0 itis also a solution t®"ROBLEM
2 and hence the MINSWT problem. Algorithm 2 is
thus a deterministic polynomial algorithm to solve the

rivals differ substantially from the demand matrix used MINSWT problem. Therefore, solvingROBLEM Ifor
for scheduling). Thus it appears that whilst MRA achievedD® considered range af is as hard as solving MIN-

minimum rejection schedules, FMA is a better choice
for all-photonic scheduling in practice.

8. APPENDIX

8.1. Proof of Theorem 1

Proof. Consider the set of schedules that achieve min-

imum N, (S) = N} and label the schedule within this
set that achieves minimum rejectiéh. The minimum
achievable rejection is no larger th&¥.J(S, D, L) =
max(||D|[1—L,0), where||D[|; = >_, >, D;; (atleast

SWT (and any other problem iN P) and hence isv P-
hard O

8.2. Proof of Theorem 2

We first define aottleneck linkand state a lemma re-
lating weighted max-min fairness and the existence of
bottleneck links; the proof of the lemma appears in [28].

Definition 4. Bottleneck Link: Given a feasible rate
vectorv and a weight vectow, we say that linkd is a
bottleneck linkwith respect to¢ , w) for a connection
u crossingt, if C, = 3", vy = F, andw,, > wy, for all

one demand element must be satisfied each time-slot) connections: crossing?.

ThusC(S,) < max(||D||1 — L,0) + gNF. Now con-

sider schedules that increase the number of switch re-

configurations taV,(S) = N + 1 and suppose that one
of these,S;, achieves zero rejection, so th@ts;)
g(N? 4 1). The differential in cosC(S,) — C(S,) >
g — max(||D||y — L,0). If g > max(||D||; — L,0),

Lemma 1. A feasible rate vectov with weight vector

7~} is weighted max-min fair if and only if each

connection has a bottleneck link with respectiq ¢).

Proof of Theorem 2Letu € {(3,4),1 <i,7 < N}in-
dex the source-destination connections specified by the

then this difference is strictly positive and any schedule demand matrix. We focus on the properties of the mod-

solvingPROBLEM 1lies within the set of schedules that
achieve minimumvs.

In order to prove that the problem is NP-hard for this
range ofg, we consideiPROBLEM 2 which for very
large values ofr is reduced to minimizing the sched-
ule length subject to the constraint tigf is minimum.
Gopal et al. prove that this problem, which they refer to
as the MINSWT problem, iV P-complete [10].

Suppose we had a deterministic polynomial algo-

rithm calledsolve-G(DL) that could solvePROBLEM

ified demand matrix and associated sets at various iter-
ations of the while loop in Algorithm 1, so we index
entities by iteration number and note that this indicates
the value of the entity at thetart of the iteration. For ex-
ample, Ap(h) denotes the set of unmodified overloaded
lines at the start of iteratioh of the algorithm.

We prove that FMA achieves weighted max-min fair
allocation of the overloaded demand. During each iter-
ation h of the while-loop, FMA identifies the ling <
Ap(h) suchthaiG,,(h) = min{G(h); £ € Ap(h)}. It



alters the demands im, (k) according to §) and after
this modification, there is no subsequent modification of
these demands. Substitutirg) (nto the definition of the
weight, we havev,, = 1+ G, (h) for all u € a(h).

We demonstrate that the adjustment at iteration
leads toy being a bottleneck link (line) for € a(h),
i.e., after this adjustment it holds that < w, for
u € ay(h) andz € b,(h). Equivalently, we prove that
min{G} is monotonically increasing with respect to the
iteration number, i.emin{G(h)} < min{G(h + 1)}.
The equivalence follows since the are obtained from
adjustments prior to iteratiofa.

Suppose that lin@ has minimumG at iterationh +
1. Lines~ and 3 have at most one connection (demand)
in common. If there is no common connection, then
Gg(h +1) = Gg(h) > G,(h). If there is a common
connectionk, then:

LSg(h+1) = LSp(h)+ Di(wr —1) (10)
Sas(h+1) = Saz(h) — Dy (11)
and hence
) =
Sas(h)Gp(h) — Di(wp — 1)
Saﬂ (h) - Dk
> Gy(h) 12)

2. ZjGOC th = Th(D) — L

3. Zieor Bip =rp(D) — L.
If the first equation is true, the®;, = 0. The sec-
ond equation implies tha® has provided the necessary
rejection at rowh, but ZjeOc Q»; = 0 does not neces-
sarily hold; the other overflowing columns may enforce
additional rejections o, which causeg); > 0 for
somej € O.. We have a similar property for the third
equation. Therefor€ is composed of two distinct types
of lines which cover all of its nonzero elements:

Type I: The lines composed @, > 0, andQp; >
0OorQy, > 0, forh € O,,p € Ot ¢ O,, and

j ¢ O,; these lines correspond to the lines with
(DY) = (D) — L, or ¢, (DY) = ¢,(D) — L, which
impose additional rejections to (h,p) elements after ob-
taining B =MAXFLOW D, D", L). Consequently we
haver,(Q) = r,(D)—L—rp(B), orc,(Q) = ¢p(D) —

L —¢,(B).

Type II: The lines composed @, = 0, andQ@; > 0
orQip > 0,forh € Or,p € Og,i ¢ O, j ¢ O;

for these linesBy, = Dy, Vh € O,,p € O, holds.
Therefore additional rejection on these lines is calcu-
lated from:r,(Q) = rp(D) — L — rp(B), orc,(Q) =
cp(D) — L — ¢cp(B).

Based on this discussion, we can express the total
where the last inequality follows from substitution based number of rejectiong,D™| as:
onGg(h) > Gy(h) = w, — 1.
Thus the application of FMA upon an inadmissible  |D*|=>_ > (B+Q)
demand matrixD leads to the generation of a bottleneck

link for each connectiom with weightw,, g—;. By

h p
[Bl+ > (ra(D) = L—ru(B))

Lemma 1, this establishes that FMA achievesuweighted heO,
max-min fair allocation of adjusted deman@s. - n Z (cp(D) — L ¢,(B))
PEO.
8.3. Proof of Theorem 3 = > (ra(D)=L)+ > (cy(D) — L) —|B|
heO, p€O.

Proof. Consider an arbitrary rejection matrix* and
setB =MAXFLOWD, D", L). Then we can writé™
B+ @ where( is a non-negative matrix. Now consider
the conditions necessary f@™ to achieve minimum
rejection. First,Dy), = 0if h ¢ O, andp ¢ O, (any
non-zero values constitute unnecessary rejection).

Now consider a node pait € O,, andp € O, in
Figure?2, and the edge§S, h), (h,p) and(p, O). Since
B achieves maximum flow, then the flow of at least one
of these edges is at full capacity. Therefore, at least one
of the following holds:

1. By, = Dy,

(13)

Therefore, in order foD™ to achieve minimum re-
jection, | B| must be maximized (the first two terms are
functions solely ofD and L). Compare the solutions
B =MAXFLOWD, D*, L) andA = MAXFLOWD, D, L).
SinceDj;, < Dy, for any (h, p), the constraints in the
second problem are looser, which implies that >
|B|, irrespective of the particular values . Note
that A is also a solution ttMAXFLOWD, A, L).

Hence if we ensure tha]]zgp > Ay, forall (b, p), we
derive| B| = | A|, which implies that B| attains its max-
imum value (and hendd™| is the minimum rejection).



We can thus construct a rejection matrix that achieves[14] M.A. Marsan, A. Bianco, E. Leonardi, F. Neri, and

minimum rejection by solving A MAXFLOWD, D, L),
and settingD” = A + Q, whereQ satisfies the con-
straints specified in the theorem. If a schedtilgecom-
poses the demand into an allocated mafvixand this

rejection matrixD”, then it achieves minimum rejec-

tion.
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