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ABSTRACT

Internal switches in all-photonic networks do not per-
form data conversion into the electronic domain, thereby
eliminating a potential capacity bottleneck, but the in-
ability to perform efficient optical buffering introduces
network scheduling challenges. In this paper we focus
on the problem of scheduling fixed-length frames in all-
photonic star-topology networks with the goal of min-
imizing rejected demand. We formulate the task as an
optimization problem and characterize its complexity.
We describe the Minimum Rejection Algorithm (MRA),
which minimizes total rejection, and demonstrate that
the Fair Matching Algorithm (FMA) minimizes the max-
imum percentage rejection of any connection. We ana-
lyze through OPNET simulation the rejection and delay
performance.

1. INTRODUCTION

Electronic switches in high-speed networks are increas-
ingly proving to be a capacity bottleneck. Replacement
with all-photonic switches is attractive, particularly as
photonic devices with sub-microsecond switching capa-
bility become available. The inability of the photonic
switches to perform queuing introduces network design
challenges. Control functionality is required to reduce
or eliminate the potential of contention for egress ports.
Burst switching, just-in-time reservation, and routing and
wavelength assignment are some of the many approaches
that have been used in general mesh topologies [1,2]. An
alternative approach is to focus on a simpler architecture
that reduces the complexity of the control challenge.

In this paper, we focus on the overlaid star topol-
ogy, as specified in the design for the agile all-photonic
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Fig. 1. Architecture of the Agile All-Photonic Network de-
scribed in [3, 4]. Edge nodes perform electronic-to-optical
conversion and transmit scheduling requests to the core pho-
tonic node(s). Selectors/multiplexor devices are used to merge
traffic from multiple sources onto single fibres and to extract
traffic targetted to a specific destination.

network (AAPN) architecture of [3, 4]. This architec-
ture (see Figure 1) consists of edge nodes, where the
optical electronic conversion takes place, connected via
selector/multiplexor devices to photonic core crossbar
switches. The core switches act independently, so the
control problem is reduced to the task of scheduling the
switch configurations to achieve a good match with the
traffic arrival pattern at the edge nodes.

The star topology facilitates the introduction of ac-
curate network-wide synchronization [5], and this en-
ables the application of a range of Optical Time Divi-
sion Multiplexing (OTDM) techniques for sharing link
and switch capacity. A source edge-node must be aware
of when it has ownership of a given time-slot and is al-
lowed to transmit to a specific destination edge node.
The slot allocation can be fixed and deterministic, or it
can adapt to the traffic arrivals through signalling be-
tween the edge nodes and the core switch. In the lat-
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ter case, adaptation can be performed on a per frame
basis (a block of slots) or per time-slot basis. Frame-
based scheduling is more appropriate for wide-area net-
works since the impact of propagation delay is reduced
(bandwidth is reserved forpredictedtraffic demand in
advance of the traffic arrivals) [6]. We focus on fixed-
length frames, because this simplifies protocol design
and implementation of control functions.

The general objectives of bandwidth sharing are to
minimize rejected requests and end-to-end delay, whilst
maximizing throughput and maintaining fairness in the
network. In this paper, we consider that minimization
of the number of rejected requests has highest prior-
ity. A secondary objective is to minimize the number
of switching operations in a frame in order to reduce the
power consumed by the core switch.

Related Work: Scheduling in star-topology networks
has been investigated in depth for the past thirty years,
so there is naturally much work that is related to what we
present here. The majority of the frame-scheduling algo-
rithms proposed for star topologies in optical and satel-
lite networks have focussed onvariable-lengthframes
(for example, [7–11] and the references therein). We
discuss the relationship between our task and the variable-
length problem in Section3. The authors of [12–15]
have considered the problem of scheduling a frame of
fixed length for star-coupled networks with tunable trans-
mitters/receivers, but do not address the allocation of un-
used time slots or rejection of inadmissible demand.

Contribution : The combination of a fixed-length
frame and a side constraint (the number of switching
operations) conspires to introduce some unique aspects
to the bandwidth allocation problem. This paper offers
the following important contributions: (i) we formulate
the AAPN bandwidth allocation task as a scheduling
problem, identifying the cost function that must be op-
timized; (ii) we assess the complexity of this problem,
determining the conditions under which the problem is
NP-hard and to what extent it can be approximated by a
polynomial algorithm, and we outline the parallels with
other scheduling problems; (iii) we prove that the Fair
Matching Algorithm (FMA), proposed in [16], minimizes
the maximum percentage rejection experienced by any
connection; and (iv) we propose a novel scheduling al-
gorithm that minimizes total rejection. We analyse the
performance of the algorithms through OPNET simula-
tions.

Structure of the paper: Section2 provides a state-
ment of the scheduling problem that we address. Sec-
tion 3 identifies the parallels with variable-length frame
scheduling problems for star topologies, and Section4

presents results concerning problem complexity. Sec-
tion 5 details our proposed frame-based scheduling al-
gorithms and examines their properties. Section6 de-
scribes the simulation experiments we have executed to
assess the performance of the scheduling approach and
discusses the results. Finally, Section7 draws conclu-
sions and indicates intended extensions of our work. The
Appendix (Section8) contains proofs.

2. PROBLEM STATEMENT

The AAPN architecture is an overlaid star-topology of
N edge nodes that operates over multiple wavelengths [4].
It permits each node to transmit to one destination node
and receive from one source node simultaneouslyon
each wavelength. We consider that (flow-based) load
balancing has been conducted to divide incoming traf-
fic amongst the various stars. The remaining task is to
schedule the traffic for each star. We are presented with
a demand matrixD, whereDij is the number of slots
requested by source nodei for destinationj during the
next fixed-length frame. We consider a frame of length
F time slots withW available wavelengths, such that
there areL = FW slots for each destination node avail-
able for allocation. Herein we focus on the case where
W = 1 for clarity, but the algorithms and results are
easily extended.

Our aim is to devise a scheduleS such that the el-
ementSjk identifies the source node allocated to thek-
th time slot associated with destinationj in the frame.
The schedule should minimize the number of rejections
REJ(S,D,L) whilst also attempting to minimize the
number of times that the switch must reconfigure,Ns(S).
A switch reconfiguration occurs between two consecu-
tive time slotsk andk + 1 if the allocated source node
to any destinationj is altered;Ns(S) counts the num-
ber of switch reconfigurations in the entire schedule, not
merely those within the frame.

The number of rejections is defined as:

REJ(S,D,L) =
∑

i

∑

j

max(0,Dij−

L∑

k=1

I[Sjk = i]),

(1)
whereI is the indicator function. We can define an ob-
jective function (the cost of transmission) as:

C(S,D,L) = REJ(S,D,L) + g . Ns(S) , (2)

whereg is a constant that determines the relative impor-
tance of reducing the number of switch reconfigurations.
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PROBLEM 1:Solve the following optimization prob-
lem for a frame of fixed lengthL with C(S,D,L) de-
fined by (2) to identify a frame schedule.

S∗
1 = arg min

S
C(S,D,L) (3)

2.1. Terminology and Definitions

We now define some terminology that will be used through-
out the paper and recall some definitions. We denote
the line sum of linè of the demand matrixD by LS`.
Note that line` consists of a set of source-destination
demands (connections). Each of these connections be-
longs to two lines (a row and a column). Thei-th row
represents a link from sourcei to the optical switch at
the core, and thej-th column represents the link from
the core to destination nodej. The row-sum, ri(D) =∑N

j=1 Dij , is the total demand at sourcei, and thecolumn-

sum, cj(D) =
∑N

i=1 Dij , is the total demand for desti-
nationj.

Definition 1. A demand matrixD is admissibleif

max{max
i
{ri(D)},max

j
{cj(D)}} ≤ L, (4)

whereL is the frame-length, andri(D) and cj(D) are
the i-th row-sum andj-th column-sum of the demand
matrix, respectively.

For an inadmissible demand matrix, we denote the
set of overflowing rows of the demand matrix (rows with
ri(D) > L) asOr, and the set of overflowing columns
(cj(D) > L) asOc. The set of overflowing lines,O` =
{` : LS` > L} is the union ofOr andOc. We de-
fine a critical connection, or critical demand element,
as any demand entryDhp such thath ∈ Or andp ∈
Oc. The remaining entries constitutenon-critical con-
nections/demands.

We now recall the definitions offeasibility of rate
allocation andweighted max-min fairness[17,18].

Definition 2. Feasibility: Consider an arbitrary net-
work as a set of linksL where each link̀ ∈ L has a
capacityC` > 0. Let {1, · · · , ζ} be the set of connec-
tions in the network, andH` the set of all connections
passing through link̀. LetDu be the demand (request)
of connectionu andυu be its assigned rate. We call a
rate allocation{υ1, υ2, · · · , υζ} feasible, when for ev-
ery link ` we have:

∑

u∈H`

υu ≤ C` ∀` ∈ £. (5)

Definition 3. Weighted max-min fairness: Let ωu(υu)
be an increasing function representing the weights as-
signed to connectionu at rateυu. An allocation
{υ1, υ2, · · · , υζ} is weighted max-min fairif for each
connectionu any increase inυu would cause a decrease
in transmission rate of connectionz satisfyingωz(υz) ≤
ωu(υu). The special case of max-min fairness is ob-
tained byωu(υu) = υu.

3. RELATIONSHIP TO VARIABLE-LENGTH
FRAME SCHEDULING

The most closely related work to the optimization em-
bodied inPROBLEM 1is the problem of finding an op-
timum schedule for a variable-length frame, which has
been extensively studied in WDM and satellite systems [7–
11]. The goal is to minimize the overall transmission
timeT :

T (S) = Tx(S) + τ . Ns(S), (6)

whereNs is the number of switch reconfigurations,τ is
the switching time, andTx is the time spent transmitting
the traffic [8,10]. All times are measured in slots.

PROBLEM 2:Solve the following optimization prob-
lem for a frame of variable length with total transmission
time T (S) defined by (6), observing the constraint that
S ∈ S, the set of schedules that satisfy the demand ma-
trix, i.e.,REJ(S,D, Tx(S)) = 0.

S∗
2 = arg min

S∈S
T (S) (7)

PROBLEM 2is NP -hard for non-negligible values
of τ [10, 19]. Crescenzi et al. demonstrate that it can-
not be approximated by a polynomial algorithm within
a factor less than76 [19]. For small values ofτ the prob-
lem can be closely approximated by the minimization of
Tx, which is solvable in polynomial time [20–22]. The
minimum traffic transmission time is [23]:

T ∗
x = max{max

i
{ri},max

j
{cj}}.

We can then establish:

Claim 1. A scheduleSx that minimizes the traffic trans-
mission time, i.e.,Tx(Sx) = T ∗

x , solves PROBLEM 2 to
within an approximation factor of1 + τ .

Proof. The number of switch reconfigurationsNs(S) <
Tx(S) andT (S∗

2 ) = Tx(S2) + τNs(S2) > T ∗
x . Hence

if Sx minimizes the traffic transmission time, it satisfies
T (Sx) < T ∗

x (1 + τ) < T (S∗
2 )(1 + τ).
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For the special case of smallτ , approximate algo-
rithms that attempt to minimizeNs subject to the con-
straint thatTx is minimum have been proposed in [7, 8,
11, 19]. The algorithms achieve minimum traffic trans-
mission time,T ∗

x , but do not guarantee minimumtotal
transmission time,T (S∗

2 ), unless the switching over-
head is completely neglected. TheEXACTalgorithm,
presented in [11, 19], achieves a minimum traffic trans-
mission time,T ∗

x and the derived schedule has at most
Ns = N2 − 2N + 2 switch configurations [11]. In the
case of an admissible demand matrix, theEXACTalgo-
rithm generates a scheduleS that has length less than
L and therefore zero rejection. TheEXACTalgorithm
is an iterative procedure that repeatedly performs max-
imum cardinality bipartite matching (MCBM) to obtain
the schedule. It lies at the heart of the algorithms we
present in this paper for the case of fixed-length frames.

When τ is very large (on the order of maximum
transmission time), the problem is reduced to minimiz-
ing TD subject to the constraint thatNs is minimum.
Approximate algorithms for this special case have been
proposed in [8,10]. The intermediate scenario, when it is
desirable to obtain near minimum solutions for both the
number of switchings and the traffic transmission time,
has been addressed in [11].

4. COMPLEXITY RESULTS

We establish two results concerning the complexity of
PROBLEM 1:

Claim 2. If the demand matrixD is admissible and con-
tains no zero entries (for anN ×N switch and frame of
length L) then the EXACT algorithm provides a solu-
tion SE to PROBLEM 1 such thatC(SE) < C(S∗

1 ) +
g(N2 − 3N + 2).

Proof. Since the demand matrix is admissible,T ∗
x < L.

Hence the schedule devised byEXACTresults in zero
rejections,REJ(S,D,L) = 0. EXACTensures that the
number of switch reconfigurations in this solution is less
thanN2 − 2N + 2. The minimum number of switch
reconfigurations for any schedule under the constraint of
no zero-entries in the demand matrix isN [24]. Hence
the maximum discrepancy isN2 − 3N + 2.

Theorem 1. For large g, such thatg > max(||D||1 −
L, 0), where||D||1 =

∑
i

∑
j Dij , PROBLEM 1 is re-

duced to the problem of minimizingREJ(S,D,L) sub-
ject to the constraint thatNs(S) is minimized. For this
range ofg, PROBLEM 1 isNP -hard.

See the Appendix (Section8.1) for a proof.

5. AAPN SCHEDULING ALGORITHMS

In a practical scenario, although it is desirable to reduce
power expenditure by minimizing the number of switch-
ings, minimizing the number of rejections is far more
important. Hence we address the scheduling problem
(PROBLEM 1) when g is small. In this case, we can
rewrite the problem as:
MINREJ(D,L): For a frame of fixed lengthL with de-
mand matrixD identify a frame scheduleS∗

1 that satis-
fies:

S∗
1 = arg min

S
REJ(S,D,L) (8)

In this section, we describe two algorithms for band-
width reservation in the AAPN architecture that address
fixed-length frame scheduling. The Fair Matching Al-
gorithm minimizes the maximum percentage rejection
experienced by any demand, while the Minimum Rejec-
tion Algorithm minimizes the total rejection (that is, it
provides a solution toMINREJ(D,L)).

5.1. Fair Matching Algorithm (FMA)

The EXACT algorithm can be applied directly to the
case of fixed length frames (Claim 2 states that it pro-
vides a solution forPROBLEM 1wheng is small and
demand admissible). When the demand matrix is inad-
missible, the schedule determined by the EXACT algo-
rithm must be truncated afterL time slots. This can lead
to starvation of some source-destination traffic, and re-
sult in unfairness (such as substantially different average
service times for traffic arriving at different nodes). The
Fair Matching Algorithm (FMA) was described in [16],
but therein the emphasis was on achieving fair allocation
of extra capacity. Here we concentrate on how FMA be-
haves in the case of inadmissible demands, and specifi-
cally how it treats the connections competing for capac-
ity on overloaded lines.

FMA processes lines one at a time. It identifies the
most overloaded line and reduces the demands on that
line such that they sum to capacity (L). The nature of
this reduction is important: FMA reduces demand pro-
portional to the original demand, i.e. each adjusted de-
mand experiences the samepercentage reduction. In
subsequent iterations, FMA identifies the next most con-
strained line, taking into account the effect of any previ-
ous adjustments, and clamps its demand to capacity. It
repeats the process until no lines exceed capacity.

Here we describe how FMA treats demands belong-
ing to the overloaded lines in the setO` (FMA also ad-
justs small loads to form a complete schedule [16]). We
defineAD ⊆ O` as the set of unmodified overloaded
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lines andBD ⊆ O` as the set of modified overloaded
lines. Initially AD contains all lines inO` andBD is
empty. Similarly, we defineb` as the set of modified
connection (i.e. the connections whose demands are mod-
ified) in line ` anda` as the set of unmodified connec-
tions. Initially, a` contains all the connections passing
line ` andb` is empty. DefineSa`

,
∑

(i,j)∈a`
Dij and

Sb`
,

∑
(i,j)∈b`

D
′

ij , whereD
′

ij is the modified demand
of connection(i, j). Define for each of line inAD the
valueG` , L−LS`

Sa`

.

FMA performs the following line adjustment when
it reduces demand:

D
′

ij = Dij ×
L− Sb`

Sa`

∀ (i, j) ∈ a` (9)

Algorithm 1 FMA for overloaded lines
while LS` > L for somè ∈ AD do

Identify the line`∗ = arg min`∈AD
G`.

Apply (9) to line `∗.
Transfer̀ ∗ fromAD toBD.
Updatea` andb` for all lines` ∈ AD.
Re-evaluateLS` for all lines inAD.
Remove any lines fromAD that haveLS` ≤ L.

end while
Apply EXACT to bD′c to generateS.

The following theorem states that prior to rounding,
FMA achieves weighted max-min fair allocation of ca-
pacity for the set of connections on the overloaded links.
For the proof of the theorem, see the Appendix (Sec-
tion 8.3).

Theorem 2. FMA generates a demand matrixD′ with
weighted max-min fair allocation, where the weight is

ω(D′
ij) =

D′

ij

Dij
.

Define thepercentage rejectionas 1 −
D′

ij

Dij
. Con-

sider the set of demands that experience the highest per-
centage rejection. Since the weightω is a monotonically
increasing function of allocated rateD′

ij , weighted max-
min fairness implies that it is impossible to increase the
rate allocated to these demands (or decrease the maxi-
mum percentage rejection) without violating feasibility.
We thus have the following corollary:

Corollary 1. Subject to the capacity constraints, FMA
generates a schedule that minimizes the maximum per-
centage rejection experienced by any connection.

5.2. Minimum Rejection Algorithm

In this section we describe an algorithm that generates a
schedule that minimizes total rejection. We first develop
a theorem that helps to identify a procedure for solving
MINREJ(D,L). We commence by defining a max-flow
linear programming problem calledMAXFLOW(D,X,L).

Problem Y = MAXFLOW(D,X,L) : D is a demand ma-
trix, X is a non-negative matrix that specifies capacity
bounds, andL is the frame-length (available capacity
on each row/column). MatricesD, X andY are all of
sizeN ×N . Identify a nonnegative matrixY such that∑

h∈Or

∑
p∈Oc

Yhp is maximized, subject to the follow-
ing constraints:

Yhp = 0 if h /∈ Or or p /∈ Oc

Yhp ≤ Xhp ∀ (h, p) s.t. h ∈ Or and p ∈ Oc∑

p∈ Oc

Yhp ≤ rh(D)− L ∀ h ∈ Or

∑

h∈ Or

Yhp ≤ cp(D)− L ∀ p ∈ Oc

The second, third and fourth constraints apply upper
bounds on the elements, therow-sums andcolumn-sums
of matrix Y respectively. The following theorem estab-
lishes a relationship between a solution to the problem
MAXFLOW(D,D,L)and a solution to the minimum re-
jection problemMINREJ(D,L). The proof is in the Ap-
pendix (Section8.3).

Theorem 3. Set A = MAXFLOW(D,D,L). Construct a
rejection matrixD

′′

= A + Q, whereQ is an arbitrary
non-negative matrix such thatQhp ≤ D − A ∀ (h, p),
rh(Q) = rh(D)− L− rh(A) ∀ h ∈ Or, andcp(Q) =
cp(D)− L− cp(A) ∀ p ∈ Oc. Then ifS is a schedule
that generates the decompositionD = D′ + D

′′

, it is a
solution to the problem MINREJ(S,D,L).

We now describe an algorithm to identify a solution
A to MAXFLOW(D,D,L). The corresponding maximum
flow problem is depicted in Figure2. We define a net-
work with a sources and a sinkt and try to maximize the
flow between them. A network flow is a vectorf = (fij)
where eachfij is a positive real number representing the
flow on arc(i, j), i.e., the flow fromi to j. A flow f is
feasible if it satisfies the capacity constraints and it is
conserved at all nodes (total flow out of a node equals
total flow in). In our problem, the total amount of flow
emitted from sources (and therefore arriving at sinkt)
is equal to the total amount of rejection contributed by
A at the critical connections. The rejection at any spe-
cific critical connection (Ahp) is equal to the flow on arc
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Fig. 2. s → t network: In this example the input vertices cor-
respond to the overflowing rows of an arbitrary demand ma-
trix D (i, k, m ∈ Or), and the output vertices correspond to
the overflowing columns ofD (l, o, j ∈ Oc). The numbers
over the edges show the edge capacities which correspond to
the upper bounds of flows in our maximization problem. The
capacity of each edge (not connected to the source or sink) is
equal to the upper bound of the amount of the rejection ob-
tained for the corresponding critical connection.

(h, p). The capacities of the edges (upper bounds) are
dictated by the constraints inMAXFLOW(D,D,L). We
denote the upper bound on arc(i, j) by κ(i, j). So we
have:

κ(s, h) = LSh − L ∀ h ∈ Or

κ(p, t) = LSp − L ∀ p ∈ Oc

For a feasible flow vectorf , anaugmenting pathis
a simple path froms to t that can be used to increase
flow from s to t. Note that this path is not necessarily
directed. On forward arcs in this path ((i, j) points in
the directions→ t) the flowfij must satisfy0 ≤ fij <
κ(i, j), and on backward arcs, i.e.(i, j) is reverse, the
flow must satisfy0 < fij ≤ κ(i, j).

Ford and Fulkerson presented a solution to the max-
flow problem in 1954 [25]. The algorithm starts from
an arbitrary feasible flow. In subsequent iterations, the
Ford-Fulkerson algorithm identifies an augmenting path,
and augments the flow. If the augmenting path is de-
noted as a set of arcs{a1, a2, ..., ak}, then the flow aug-
mentation possible isδ = min1≤i≤k δ(ai), whereδ(ai) =
κai
−fai

for forward arcs andδ(ai) = fai
for backward

arcs. The flow is adjusted usingfai
← fai

+ δ on for-
ward arcs and on backward arcs usingfai

← fai
− δ.

The algorithm iterates until no augmenting path exists,
upon which the maximum flow is obtained, as specified
by the following theorem:

Theorem 4. Ford-Fulkerson [25]: Flowf is maximum

in graphG if and only if there is no augmenting path in
G bearing flowf .

When there are no lower bounds on capacity, the
flow f defined byfij = 0 ∀(i, j) ∈ A (the set of arcs
in the network) is feasible and can be used to initial-
ize the Ford-Fulkerson algorithm. There are numerous
methods for searching for augmenting paths; techniques
include shortest path (fewest number of edges) and fat-
test path (maximum bottleneck capacity along the path)
algorithms [26]. Note that the solution to the maximum
flow problem (and hence alsoMAXFLOW(D,D,L)) is in
general not unique.

To form a Minimum Rejection Algorithm, we first
use the Ford-Fulkerson algorithm to identifyA. Sub-
sequently we setD ← D − A and apply FMA to the
resultantD. As described in Section5.1, FMA pro-
cesses overflowing lines sequentially, adjusting the de-
mand on the line so that it sums toL (thereby identify a
line of the rejection matrix). Since we have constructed
A so that after modificationD(h, p) = 0 at any inter-
section point of overflowing linesh andp, when FMA
adjusts one of the overflowing line it does not affect any
other overflowing line. This means that after FMA has
been applied, it has generated aQ that satisfies the re-
quirements of Theorem 1. In the process, FMA has de-
veloped a scheduleS that performs the decomposition
D = D′ + D

′′

, whereD
′′

= A + Q. The combined
Minimum Rejection Algorithm is specified in Algorithm
2.

Algorithm 2 Minimum Rejection Algorithm
1: Apply the Ford-Fulkerson algorithm to solve

A =MAXFLOW(D,D,L).
2: SetD ← D −A.
3: Apply FMA to D to generateQ and a scheduleS.

6. SIMULATION PERFORMANCE

In this section we report the results of simulations of the
scheduling approaches performed using OPNET Mod-
eler [27]. We performed simulations on a 16 edge-node
star topology network. The links in the network have ca-
pacity 10 Gbps and the distance between each edge node
and the optical switch is 5 msec. A time slot is of length
10µsec, and a frame has a fixed length of 1 msec (or 100
slots). Each experiment was run for a duration of 0.2 sec
(equal to 200 frame durations) and the results were av-
eraged over 5 repetitions of the simulations. The virtual
output queues in the simulations have fixed buffer size
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Fig. 3. Comparison between the rejection obtained by FMA
and MRA under varying offered load for different factors of
imbalanced load (z). Traffic is bursty (generated by on-off
sources) and has uniform distribution, aside from the impact
of z.

(90000 packets). Whenever the buffer is full, arriving
packets are dropped.

We performed simulations with bursty traffic using
on/off traffic sources. Every edge node is equipped with
6 on/off sources. The “on” and “off” periods have Pareto
distributions withα = 1.9. The mean of the “off” peri-
ods is 5 times greater than the mean of the “on” periods.
During “on” periods the sources generate packets with
an average rate up to the full link capacity (10 Gbps).
The rate distribution is exponential. The demand matrix
has a non-uniform distribution; each destination receives
on average the same amount of traffic, but each source
sends five times as much traffic to one specific destina-
tion as compared to the others.

Since the behaviour ofMRA andFMA only dif-
fers when there are critical elements in the demand ma-
trix, we investigate scenarios where critical demands are
likely to exist. In order to do this, in each frame we
choose one arbitrary sourcei and one arbitrary destina-
tion j. Each source generatesz times as many packets
for destinationj compared to other destinations. Simi-
larly sourcei generatesz times as many packets (to all
destinations) as any other source. Asz increases, the el-
ements of the demand matrix corresponding to these two
edge nodes are more likely to be critical connections; the
demand elementDij has even higher likelihood of being
critical.

Figure3compares the percentage of rejected demand
achieved by FMA and MRA as the offered load changes
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Fig. 4. Comparison between the maximum percentage rejec-
tion experienced by any demand after scheduling by MRA and
FMA for different values ofz and varying offered load.

for various values ofz. At high load (greater than 70%)
with z = 2, there are numerous critical elements and
MRA begins to achieve less rejection than FMA. The
discrepancy is still only 2 percent at 90% load. Fig-
ure 4 compares the maximum percentage rejection ex-
perienced by any demand when scheduling is performed
by FMA and MRA. As the offered load increases, MRA
concentrates rejection on the critical elements; the max-
imum percentage rejection is thus much (up to 25 per-
cent) higher than that achieved by FMA, which distributes
rejection fairly amongst all competing connections. Fig-
ure 5 compares the average queuing delay experienced
by packets when scheduling is performed using FMA
and MRA; the approaches yield similar average delay.

7. CONCLUSION AND FUTURE WORK

We have formulated the bandwidth allocation problem
in the AAPN network as a scheduling problem with the
objective of minimizing rejection whilst reducing the
number of switch reconfigurations. We demonstrated
that when the demand matrix is inadmissible, the Fair
Matching Algorithm minimizes the maximum percent-
age rejection experienced by any connection. We also
proposed a novel algorithm (MRA) that generates a sched-
ule that minimizes the total rejection of demand. Sim-
ulations indicate that the discrepancy in total rejection
achieved by MRA and FMA is relatively minor, whereas
there is a major difference in the fairness of the allo-
cation of rejection. In addition, MRA appears to be
less robust to demand prediction errors (when traffic ar-
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Fig. 5. Average queuing delay performance achieved by
MRA and FMA for varying offered load andz = 2.

rivals differ substantially from the demand matrix used
for scheduling). Thus it appears that whilst MRA achieves
minimum rejection schedules, FMA is a better choice
for all-photonic scheduling in practice.

8. APPENDIX

8.1. Proof of Theorem 1

Proof. Consider the set of schedules that achieve min-
imum Ns(S) = N∗

s and label the schedule within this
set that achieves minimum rejectionSa. The minimum
achievable rejection is no larger thanREJ(S,D,L) =
max(||D||1−L, 0), where||D||1 =

∑
i

∑
j Dij (at least

one demand element must be satisfied each time-slot).
ThusC(Sa) ≤ max(||D||1 − L, 0) + gN∗

s . Now con-
sider schedules that increase the number of switch re-
configurations toNs(S) = N∗

s +1 and suppose that one
of these,Sb, achieves zero rejection, so thatC(Sb) =
g(N∗

s + 1). The differential in costC(Sb) − C(Sa) ≥
g − max(||D||1 − L, 0). If g > max(||D||1 − L, 0),
then this difference is strictly positive and any schedule
solvingPROBLEM 1lies within the set of schedules that
achieve minimumNs.

In order to prove that the problem is NP-hard for this
range ofg, we considerPROBLEM 2, which for very
large values ofτ is reduced to minimizing the sched-
ule length subject to the constraint thatNs is minimum.
Gopal et al. prove that this problem, which they refer to
as the MINSWT problem, isNP -complete [10].

Suppose we had a deterministic polynomial algo-
rithm calledsolve-G(D,L) that could solvePROBLEM

1 for the identified range ofg for demand matrixD and
a frame of lengthL. We could then define the algorithm
Solve-MINSWT (Algorithm 2).

Algorithm 3 Solve-MINSWT
L = 1;
S = solve-G(D,L);
while REJ(S,D,L) > 0 do

L = L + 1;
S = solve-G(D,L);

end while

Upon termination of this algorithm, the identified
scheduleS is guaranteed to have the minimum num-
ber of switch reconfigurations (as argued above). Since
it is also the minimum length schedule that achieves
REJ(S,D,L) = 0 it is also a solution toPROBLEM
2 and hence the MINSWT problem. Algorithm 2 is
thus a deterministic polynomial algorithm to solve the
MINSWT problem. Therefore, solvingPROBLEM 1for
the considered range ofg is as hard as solving MIN-
SWT (and any other problem inNP ) and hence isNP -
hard.

8.2. Proof of Theorem 2

We first define abottleneck linkand state a lemma re-
lating weighted max-min fairness and the existence of
bottleneck links; the proof of the lemma appears in [28].

Definition 4. Bottleneck Link: Given a feasible rate
vectorυ and a weight vectorω, we say that link̀ is a
bottleneck linkwith respect to (υ , ω) for a connection
u crossing`, if C` =

∑
k υk , F` andωu ≥ ωk for all

connectionsk crossing̀ .

Lemma 1. A feasible rate vectorυ with weight vector
ω = { υu

Ru
} is weighted max-min fair if and only if each

connection has a bottleneck link with respect to (υ , ω).

Proof of Theorem 2.Let u ∈ {(i, j), 1 ≤ i, j ≤ N} in-
dex the source-destination connections specified by the
demand matrix. We focus on the properties of the mod-
ified demand matrix and associated sets at various iter-
ations of the while loop in Algorithm 1, so we index
entities by iteration number and note that this indicates
the value of the entity at thestartof the iteration. For ex-
ample,AD(h) denotes the set of unmodified overloaded
lines at the start of iterationh of the algorithm.

We prove that FMA achieves weighted max-min fair
allocation of the overloaded demand. During each iter-
ation h of the while-loop, FMA identifies the lineγ ∈
AD(h) such thatGγ(h) = min{G`(h); ` ∈ AD(h)}. It
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alters the demands inaγ(h) according to (9) and after
this modification, there is no subsequent modification of
these demands. Substituting (9) into the definition of the
weight, we haveωu = 1 + Gγ(h) for all u ∈ aγ(h).

We demonstrate that the adjustment at iterationh
leads toγ being a bottleneck link (line) foru ∈ aγ(h),
i.e., after this adjustment it holds thatωz ≤ ωu for
u ∈ aγ(h) andz ∈ bγ(h). Equivalently, we prove that
min{G} is monotonically increasing with respect to the
iteration number, i.e.,min{G(h)} ≤ min{G(h + 1)}.
The equivalence follows since theωz are obtained from
adjustments prior to iterationh.

Suppose that lineβ has minimumG at iterationh +
1. Linesγ andβ have at most one connection (demand)
in common. If there is no common connection, then
Gβ(h + 1) = Gβ(h) ≥ Gγ(h). If there is a common
connectionk, then:

LSβ(h + 1) = LSβ(h) + Dk(ωk − 1) (10)

Saβ
(h + 1) = Saβ

(h)−Dk (11)

and hence

Gβ(h + 1) =
L− LSβ(h)−Dk(ωk − 1)

Saβ
(h)−Dk

=
Saβ

(h)Gβ(h)−Dk(ωk − 1)

Saβ
(h)−Dk

≥ Gγ(h) (12)

where the last inequality follows from substitution based
onGβ(h) ≥ Gγ(h) = ωk − 1.

Thus the application of FMA upon an inadmissible
demand matrixD leads to the generation of a bottleneck

link for each connectionu with weightωu =
D′

u

Du
. By

Lemma 1, this establishes that FMA achieves weighted
max-min fair allocation of adjusted demandsD′.

8.3. Proof of Theorem 3

Proof. Consider an arbitrary rejection matrixDw and
setB =MAXFLOW(D,Dw, L). Then we can writeDw =
B + Q whereQ is a non-negative matrix. Now consider
the conditions necessary forDw to achieve minimum
rejection. First,Dw

hp = 0 if h /∈ Or andp /∈ Oc (any
non-zero values constitute unnecessary rejection).

Now consider a node pairh ∈ Or, andp ∈ Oc in
Figure2, and the edges(S, h), (h, p) and(p,O). Since
B achieves maximum flow, then the flow of at least one
of these edges is at full capacity. Therefore, at least one
of the following holds:

1. Bhp = Dw
hp

2.
∑

j∈Oc
Bhj = rh(D)− L

3.
∑

i∈Or
Bip = rp(D)− L.

If the first equation is true, thenQhp = 0. The sec-
ond equation implies thatB has provided the necessary
rejection at rowh, but

∑
j∈Oc

Qhj = 0 does not neces-
sarily hold; the other overflowing columns may enforce
additional rejections onDw

hp which causesQhj > 0 for
somej ∈ Oc. We have a similar property for the third
equation. ThereforeQ is composed of two distinct types
of lines which cover all of its nonzero elements:

Type I: The lines composed ofQhp ≥ 0, andQhj ≥
0 or Qip ≥ 0, for h ∈ Or, p ∈ Oc, i /∈ Or, and
j /∈ Oc; these lines correspond to the lines inDw with
rh(Dw) = rh(D)−L, or cp(D

w) = cp(D)−L, which
impose additional rejections to (h,p) elements after ob-
taining B =MAXFLOW(D,Dw, L). Consequently we
haverh(Q) = rh(D)−L−rh(B), orcp(Q) = cp(D)−
L− cp(B).

Type II: The lines composed ofQhp = 0, andQhj ≥ 0
or Qip ≥ 0, for h ∈ Or, p ∈ Oc, i /∈ Or, j /∈ Oc;
for these linesBhp = Dw

hp ∀h ∈ Or, p ∈ Oc holds.
Therefore additional rejection on these lines is calcu-
lated from:rh(Q) = rh(D) − L − rh(B), or cp(Q) =
cp(D)− L− cp(B).

Based on this discussion, we can express the total
number of rejections,|Dw| as:

|Dw| =
∑

h

∑

p

(B + Q)

= |B|+
∑

h∈Or

(rh(D)− L− rh(B))

+
∑

p∈Oc

(cp(D)− L− cp(B))

=
∑

h∈Or

(rh(D)− L) +
∑

p∈Oc

(cp(D)− L)− |B|

(13)

Therefore, in order forDw to achieve minimum re-
jection, |B| must be maximized (the first two terms are
functions solely ofD and L). Compare the solutions
B = MAXFLOW(D,Dw, L) andA = MAXFLOW(D,D,L).
SinceDw

hp ≤ Dhp for any (h, p), the constraints in the
second problem are looser, which implies that|A| ≥
|B|, irrespective of the particular values inDw. Note
thatA is also a solution toMAXFLOW(D,A,L).

Hence if we ensure thatDw
hp ≥ Ahp for all (h, p), we

derive|B| = |A|, which implies that|B| attains its max-
imum value (and hence|Dw| is the minimum rejection).

9



We can thus construct a rejection matrix that achieves
minimum rejection by solving A =MAXFLOW(D,D,L),
and settingD

′′

= A + Q, whereQ satisfies the con-
straints specified in the theorem. If a scheduleS decom-
poses the demand into an allocated matrixD′ and this
rejection matrixD

′′

, then it achieves minimum rejec-
tion.

9. REFERENCES

[1] L. Xu, H.G. Perros, and G. Rouskas, “Techniques for op-
tical packet switching and optical burst switching,”IEEE
Comm. Mag., vol. 39, no. 1, pp. 136–142, Jan. 2001.

[2] R. Ramaswami and K.N. Sivarajan, “Routing and wave-
length assignment in all-optical networks,”IEEE/ACM
Trans. Networking, vol. 3, no. 5, pp. 489–500, Oct. 1995.

[3] G.V. Bochmann, M.J. Coates, T. Hall, L.G. Mason,
R. Vickers, and O. Yang, “The agile all-photonic net-
work: An architectural outline,” inProc. Queens’ Bien-
nial Symp. Comms., Kingston, Canada, June 2004.

[4] L.G. Mason, A. Vinokurov, N. Zhao, and D. Plant,
“Topological design and dimensioning of agile all pho-
tonic networks,”Computer Networks, vol. 50, no. 2, pp.
268–287, Feb. 2006.

[5] I. Keslassy, M. Kodialam, T.V. Lakshman, and D. Stil-
iadis, “Scheduling schemes for delay graphs with appli-
cations to optical packet networks,” inProc. IEEE Work.
High Perf. Switch. and Routing, Phoenix, AZ, Apr. 2003.

[6] X. Liu, N. Saberi, M.J. Coates, and L.G. Mason, “A
comparison between time-slot scheduling approaches for
all-photonic networks,” inInt. Conf. on Inf., Comm. and
Sig. Proc (ICICS), Bangkok, Thailand, Dec. 2005.

[7] A. Ganz and Y. Gao, “A time-wavelength assignment
algorithm for a WDM star network,” inProc. IEEE Info-
com, Florence, Italy, 1992.

[8] A.Ganz and Y.Gao, “Efficient algorithms for SS/TDMA
scheduling,” IEEE Trans. Comm., vol. 40, pp. 1367–
1374, August 1992.

[9] C. A. Pomalaza-Raez, “A note on efficient SS/TDMA
assignment algorithms,”IEEE Trans. Comm., vol. 36,
pp. 1078–1082, 1988.

[10] I. S. Gopal and C. K. Wong, “Minimizing the number
of switchings in an SS/TDMA system,”IEEE Trans.
Comm., vol. 33, pp. 1497–1501, June 1985.

[11] B. Towles and W. J. Dally, “Guaranteed scheduling
for switches with configuration overhead,”IEEE/ACM
Trans. Networking, vol. 11, pp. 835–847, October 2003.

[12] K. Bogineni, K. M. Sivalingham, and P. W. Dowd, “Low-
complexity multiple access protocols for wavelength-
division multiplexed photonic networks,”IEEE J. Sel.
Areas Comm., pp. 590–604, May 1993.

[13] G. N. Rouskas and M. H. Ammar, “Analysis and opti-
mization of transmission schedules for single-hop wdm
networks,” inProc. IEEE Infocom, San Francisco, CA,
May 1993, pp. 1342–1349.

[14] M.A. Marsan, A. Bianco, E. Leonardi, F. Neri, and
A. Nucci, “Simple on-line scheduling algorithms for all-
optical broadcast-and select networks,”IEEE European
Trans. Telecom., vol. 11, no. 1, pp. 109–116, Jan. 2000.

[15] A. Bianco, D. Careglio, J.M. Finochietto, G. Galante,
E. Leonardi, F. Neri, J. Sol-Pareta, and S. Spadaro, “Mul-
ticlass scheduling algorithms for the david metro net-
work,” IEEE J. Sel. Areas Comm., Oct. 2004.

[16] N. Saberi and M.J. Coates, “Fair matching algorithm:
Fixed-length frame scheduling in all-photonic networks,”
in IASTED Int. Conf. Optical Comm. Sys. and Networks,
Alberta, Canada, July 2006.

[17] D. Bertsekas and R. Gallager,Data Networks, Prentice
Hall, Englewood Cliffs, NJ, 1992.

[18] P. Marbach, “Priority service and max-min fairness,”
IEEE/ACM Trans. Networking, pp. 733–746, Oct. 2003.

[19] P. Crescenzi, X. Deng, and C. H. Papadimitriou, “On
approximating a scheduling problem,”J. Combinatorial
Optimization, vol. 5, pp. 287–297, 2001.

[20] G. Bongiovanni, D. Coppersmith, and C.K. Wong, “An
optimal time slot assignment algorithm for an SS/TDMA
system with variable number of transponders,”IEEE
Trans. Comm., vol. 29, pp. 721–726, Oct. 1981.

[21] I.S. Gopal, G. Bongiovanni, M. A. Bonuccelli, D. T.
Tang, and C. K. Wang, “An optimal switching algorithm
for multibeam satellite systems with variable bandwidth
beams,” IEEE Trans. Comm., vol. 30, pp. 2475–2481,
Nov. 1982.

[22] T. Inukai, “An efficient SS/TDMA time slot assignment
algorithm,” IEEE Trans. Comm., vol. 27, pp. 1449–1455,
May 1979.

[23] T. Gonzalez and S. Sahni, “Open shop scheduling to
minimize finish time,” J. ACM, vol. 23, pp. 665–679,
Oct. 1976.

[24] R.M. Karp, “Reducibility among combinatorial prob-
lems,” in Proc. Complexity of computer computations,
R.E. Miller and J.W. Thatcher, Eds., New York, NY,
1972, pp. 85–103, Plenum Press.

[25] L. R. Ford, Jr., and D. R. Fulkerson, “Maximal flow
through a network,”Canadian. J. Math., pp. 399–404,
1956.

[26] J. Edmonds and R. M. Karp, “Theoretical improvements
in algorithmic efficiency for network flow problems,”J.
Assoc. Comput. Mach., pp. 248–264, 1972.

[27] “OPNET modeler 10.5,” http://www.opnet.com.

[28] N. Saberi and M.J. Coates, “Fair matching algorithm:
An optimal scheduling algorithm for the AAPN net-
work,” Tech. Rep., McGill University, Montreal, Canada,
Sept. 2005, available athttp://www.tsp.ece.
mcgill.ca/Networks/publications.html.

10

http://www.tsp.ece.mcgill.ca/Networks/publications.html
http://www.tsp.ece.mcgill.ca/Networks/publications.html

	 Introduction
	 Problem Statement
	 Terminology and Definitions

	 Relationship to Variable-Length Frame Scheduling
	 Complexity Results
	 AAPN Scheduling Algorithms
	 Fair Matching Algorithm (FMA)
	 Minimum Rejection Algorithm

	 Simulation Performance
	 Conclusion and Future Work
	 Appendix
	 Proof of Theorem 1
	 Proof of Theorem 2
	 Proof of Theorem 3

	 References

