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Abstract—The problem of identifying topology and infer-
ring link-level performance parameters such as packet drop
rate or delay variance using only end-to-end measurements
is commonly referred to as network tomography. This pa-
per describes a collaborative framework for performing
network tomography on topologies with multiple sources
and multiple destinations, without assuming the topology
to be known. Using multiple sources potentially provides
a more accurate and refined characterization of the inter-
nal network. We present a novel multiple source active
measurement procedure using a semi-randomized probing
scheme and packet arrival order measurements which do
not require precise synchronization between the participat-
ing hosts. A decision-theoretic framework is developed en-
abling the joint characterization of topology and internal
performance. We design a statistical test based on the Gen-
eralized Likelihood Ratio Test and Wilks’ Theorem. The
test quantifies the tradeoff between network topology com-
plexity and performance estimation, and identifies when
measurements made by the two sources can be combined to
achieve reduced variance performance estimates. The per-
formance and efficacy of the algorithm are assessed through
ns-2 simulations and experiments over the Internet.

Method Keywords— Statistics, Network measurements,
Simulations, Experimentation with real networks/testbeds.

I. NETWORK TOMOGRAPHY

Assessing and predicting internal network behavior
is of fundamental importance in a variety of problems
such as routing optimization, network management, and
anomaly detection. However, acquiring direct internal
measurements from all parts of the network is not prac-
tical due to the distributed nature of the Internet. Addi-
tionally, one cannot rely on internal network elements to
respond with special purpose messages (i.e. ICMP times-
tamp exceeded) due to growing security concerns. Those
who do have access to internal measurements are nearly
always restricted from sharing the data for proprietary and
privacy reasons.

For the purpose of network management, direct link-
level measurements are critical for the low-level analy-

sis of equipment conditions. However, traditional fault
alarms are only triggered after failures occur, and passive
measurements generate large amounts of data which are
not easily processed online. Ciavattone et al. describe a
practical system using active end-to-end measurements to
augment traditional network operations measurements al-
lowing them to proactively detect impairments and react
quickly to performance degradation [1].

The problem of inferring internal network characteris-
tics using end-to-end measurements is commonly referred
to as network tomography, drawing an analogy to the
medical tomography problem of imaging the internals of
the human body in a non-intrusive manner [2, 3]. Active
measurement techniques have been designed using both
unicast and multicast measurements to estimate link-level
performance parameters such as loss rate and delay vari-
ance [4–6], in addition to identifying topology [7–9].

This paper presents a study of the multiple source,
multiple destination network tomography problem. Us-
ing multiple sources in the context of network tomogra-
phy, it is possible to identify segments within a network
shared by the paths connecting multiple sources and des-
tinations. This information may be useful for identifying
potential bottlenecks. Sharing statistics between sources
may also be useful for optimizing the use of network re-
sources when transferring large amounts of data. Addi-
tionally, in some cases it is possible to fuse information
gleaned from multiple sources to get a more accurate and
refined network characterization.

The majority of work in network tomography has re-
volved on active probing from a single source. Also, it is
typical to focus on either (step 1) identifying the topology,
or (step 2) estimating link-level performance parameters
in which case it is assumed that the topology is known.
This paper presents a multiple source active measurement
procedure and a statistical framework enabling the joint
characterization of topology and link-level performance.
Jointly solving for performance parameters and topology
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leverages on the close coupling between link-level char-
acteristics, routes derived from the network topology, and
end-to-end measurements.

Inference and characterization of network properties
using active end-to-end measurements is a challenging
problem. Because the participating hosts are distributed
across the network it is not practical to assume that they
can be precisely synchronized. Additionally, labels which
apply globally cannot be assigned to internal nodes by
topology identification techniques employing end-to-end
measurements. In general, internal nodes are only inferred
relative to the single source from which measurements are
made. Thus, the problem of identifying a multiple source
topology amounts to more than just matching nodes with
the same label. Finally, because active measurement tech-
niques consume network resources it is desirable to min-
imize the amount of probing traffic required for accurate
inference.

A. Contributions

This paper focuses on the multiple source, multiple des-
tination network tomography problem of characterizing
the topology and performance on links connecting a col-
lection of sources and destinations. The contributions are
as follows.

1) It is shown that the general network tomography
problem can be decomposed into a set of smaller
components, each involving just two sources and
two destinations. We can then focus on this special
case and easily extend our results to more general
multiple source, multiple destination networks.

2) We identify a dichotomy of possible two-source,
two-destination topologies based on the model or-
der of their representations.

3) A novel multiple-source probing algorithm is pre-
sented for determining the model order of an un-
known two-source, two-destination topology.

4) A flexible decision-theoretic framework is devel-
oped enabling the joint characterization of topology
and internal performance.

5) The efficacy and accuracy of the probing algorithm
and statistical framework are evaluated through
simulation. Additionally, as a proof-of-concept, the
algorithm has been implemented and tested in ex-
periments over the Internet and over the LAN of
Rice University’s ECE department.

B. Related Work

In [10], Bu et al. describe a procedure for combining
end-to-end multicast measurements made independently

from multiple sources. They assume that the topology
is known, and then extend techniques previously used
with single-source measurements to infer link-level per-
formance. A closer look at the problem of identifying a
multiple source topology from end-to-end measurements
reveals that this is no trivial task. This paper differs from
previous work in that we formulate the multiple source,
multiple destination network tomography problem with-
out assuming that the topology is known ahead of time,
and we develop new techniques accordingly.

Other related work includes the IDMaps project [11]
and GNP [12]. Although neither of these projects directly
aims to characterize the internal network, they both utilize
active end-to-end measurements to determine the distance
– typically measured in latency – between end-hosts. Dis-
tance maps are useful for growing overlay networks or
multicast trees, for server selection, and in peer-to-peer
file transfer applications. However, the distance maps in-
ferred by these algorithms do not relate path characteris-
tics for different pairs of hosts. On the other hand, the
multiple source characterization described here contains
information which can be used to localize loss or latency
within the network. Additionally, by characterizing the
internal network we are able to identify where paths from
multiple sources to multiple destinations traverse a com-
mon (potential bottleneck) segment within the network.

The remainder of the paper is organized as follows.
Section II describes interesting properties of multiple
source topologies. These properties are the foundation
for the novel probing algorithm aimed at characterizing
the multiple source topology, described in Sections III-V.
Then a statistical framework allowing the joint character-
ization of topology and performance is presented in Sec-
tion VI. Section VII describes the characteristics of net-
work topologies and traffic which affect the algorithm’s
performance. Results from simulation and experiments
on real networks are presented in Sections VIII and IX,
and we conclude in Section X.

II. ON THE STRUCTURE OF MULTIPLE SOURCE

TOPOLOGIES

Algorithms which use end-to-end measurements typ-
ically discuss network topology in terms of the logical
topology since end-to-end measurements can only distin-
guish link boundaries by points where two paths either
branch or join, and not by individual routers. No inter-
nal node in a logical topology has both in degree and out
degree equal to one. Other approaches to topology iden-
tification which require special support from internal net-
work devices, such as traceroute [13], are able to iden-
tify individual routers along a single path, and thus more
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accurately describe the physical topology. Thus, there is
a tradeoff between using measurements requiring special
internal network support which infer a more detailed de-
scription of network topology, and using end-to-end tech-
niques which require no special internal network support
but only identify the logical topology. However, in the
context of network tomography, where the goal is to char-
acterize internal performance using end-to-end measure-
ments, the logical topology sufficiently describes connec-
tivity between the participating hosts.

ICMP-based techniques such as traceroute and
those based on traceroute come with their own prob-
lems. Barford et al. report in their 2000 study that 13% of
routers in the Internet do not respond to these special pur-
pose messages [14]. It is anticipated that this number will
only increase with rising security concerns. Additionally,
there is the problem of identifying routers which respond
with different addresses on different interfaces. These un-
solved problems are beyond the scope of this work, but
they motivate the development of alternative methods for
identifying topology. Also, while techniques based on
traceroute are limited to discovering layer-3 devices,
it is possible to map a layer-2 network using end-to-end
measurements as demonstrated later in this work. Thus,
topology identification techniques using end-to-end mea-
surements may also be used to fill in the gaps where other
procedures leave off.

A. Decomposing Multiple Source Networks

This work specifically focuses on characterizing the
internal network (topology and link-level performance)
using end-to-end measurements made from multiple
sources. Much of the previous network tomography work
has utilized pair-wise measurements made from a single
source. In this case, the topology takes the form of a tree.
The intuition behind pair-wise measurement schemes is il-
lustrated in the following example where one source sends
packets to two destinations. All packets sent from the
source traverse an initial common segment until the reach
a branching point, where the paths to each destination
split. Suppose two packets are sent back-to-back from the
source, with one packet going to each destination. Queu-
ing events experienced by both packets before they reach
the branching point are highly correlated since the pack-
ets are traveling back-to-back through the common set of
queues, or very close to each other. Queuing events oc-
curring downstream from the branching point are uncor-
related since by that point the packets are separated. These
correlated observations can be used to infer loss and delay
on the shared and unshared links.

Pair-wise measurements of this sort are a common
building block in many network tomography algorithms
[5, 6, 15]. Ratnasamy and McCanne first introduced the
idea in the multicast context for building a tree topology
[7]. Duffield et al. later proved that the topology inferred
using this type of measurement indeed corresponds to the
maximum likelihood solution for the topology given a set
of multicast measurements [9, 16]. Empirical evidence
also suggests that in the unicast situation methods based
on pair-wise comparisons give accurate results with high
confidence. The condition of failure for these algorithms
is when the weight on one link in the tree is zero. In this
case the inferred topology is a metric induced topology
[17]. Such topologies do not directly reflect the underly-
ing physical or logical topologies, but rather they reflect
the logical topology induced by the metric used to recon-
struct the topology.

In the context of multiple sources, the analogous
building block is the simplest multiple-source, multiple-
destination topology – that composed of two sources and
two destinations (a 2-by-2 component). The idea is that all
internal nodes in a logical topology are either points where
paths from multiple sources to a common destination join
(a joining point), or where paths from a single source to
multiple destinations branch (a branching point). Each 2-
by-2 component – composed of the logical topology and
performance parameters associated with each logical link
– contains information about at least one joining point and
one branching point. Having the 2-by-2 component infor-
mation for every pair of sources and destinations is suf-
ficient for reconstructing a general multiple source, mul-
tiple destination (M -by-N ) network. Please see [18] for
further discussion. Thus, by solving the 2-by-2 network
tomography problem we have effectively solved the more
general M -by-N problem.

B. Shared vs. Non-Shared 2-by-2 Topologies

Previous end-to-end measurement schemes utilizing a
single source have been based on the assumption that the
underlying topology takes the form of a tree [7–9, 16].
Indirectly, this basis assumes that routes between each
source and destination are unique. Following this same
line of reasoning, there are four possible 2-by-2 topolo-
gies as depicted in Figure 1.

One could further decompose any 2-by-2 network into
two single-source, two-destination (1-by-2) components
and two dual-source, single-destination (2-by-1) compo-
nents. However, in order to make measurements on the
2-by-1 components analogous to the back-to-back packet
pair measurements made on the 1-by-2 components it is
necessary to transmit packets from each source so that
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Fig. 1. Four possible topologies for a two source, two destination net-
work. Nodes A and B are sources, and nodes 1 and 2 are destinations.
The flow of traffic is directed downward on links, but arrowheads are
omitted to avoid cluttering. The shared topology in (a) has one join-
ing point (j1) and one branching point (b1), and fewer links over all.
The non-shared topologies shown in (b), (c), and (d) each have distinct
joining points for paths to each destination. As a result more links are
required, so there are more degrees of freedom in the model. This is
the basis for the dichotomy of shared and non-shared topologies.

they are correlated (back-to-back) on the common down-
stream link to the destination. Measurements of this sort
are impractical, as one would need to have precise syn-
chronization among hosts, knowledge of internal delays,
and no competition from cross-traffic in order to transmit
packets such that they arrive simultaneously at the first
shared router. Rather than give up here, we ask ourselves,
“What can we infer about a 2-by-2 topology without the
2-by-1 component measurements?”

We begin by distinguishing among the four 2-by-2
topologies based on the model order of each topology.
The shared topology depicted in Figure 1(a) has two in-
ternal nodes and five links, and the non-shared topologies
depicted in Figures 1(b-d) each have four internal nodes
and eight links. The multiple source probing algorithm
described in this paper is designed to identify the model-
order of a 2-by-2 network.

Without these measurements on the 2-by-1 compo-
nents, there is no clear way to further distinguish between
the three non-shared topologies. However, for the purpose
of network tomography where our goal is to infer link-
level performance characteristics, there is not much to
be gained by differentiating among the non-shared cases.
Each non-shared topology has the same model order, and
existing techniques for inferring performance – namely,
back-to-back packet probes – do not allow us to achieve
better results in the non-shared case than if each source
acted independently. On the other hand, we can take ad-
vantage of topological properties in the shared case.

Link-level performance estimates are typically gener-
ated by averaging over the outcomes of multiple measure-
ments, and it is a well-known fact that the variance of av-
eraging estimators is inversely proportional to the number

of measurements used. Using existing techniques, each
source is able to characterize performance on the logical
links extending from the branching point, bi, to each des-
tination. For the shared topology, these logical links are
identical for both sources A and B, and so measurements
can be averaged to produce better estimates (i.e. when
measurements from two sources are averaged the variance
of the estimate is reduced by 1/2).

Now, one of the drawbacks to using active measure-
ment techniques is that network resources are consumed
in the measurement process which would otherwise not
be used. Keeping this in mind, next we pose the question,
“How does probing collaboratively from multiple sources
affect the amount of probe traffic required?” We find
that by probing collaboratively from multiple sources it
is possible to procure more information without requiring
any more measurements than would be used if the sources
were to transmit probes independently.

III. COLLABORATIVE PROBING FROM MULTIPLE

SOURCES

This section describes the multiple source measure-
ment algorithm developed in this work. Measurements
are developed to exploit differences between the shared
and non-shared topologies. Sources transmit packets in a
semi-randomized fashion, and destinations record packet
arrival order. Because neither of these operations require
precise time synchronization between any of the partici-
pating hosts the algorithm is easy and practical to imple-
ment.

Initially, to facilitate in explaining the algorithm we
make the following idealistic assumptions:

1) there is no cross-traffic in the network so that there
is no variability in delay along any link,

2) sources are precisely synchronized,
3) routes between end-hosts are unique, and
4) packets do not get reordered within the network.

These assumptions are relaxed/justified in Section IV.

A. Packet Arrival Order

Consider the “Y” shaped topology which describes the
routes from sources A and B to destination 1 as shown in
Figure 2(a). Under the assumptions listed above, if A and
B both transmit a packet to 1 at some time t0, then the
packets arrive at 1 in the same order they arrive at join-
ing point j1. More precisely, let dA,1 denote the delay
incurred by packets traveling from A to j1, and let dB,1

denote the delay incurred by packets traveling from B to
j1. The order in which packets arrive at destination 1 in-
dicates the sign of the quantity δ1 = dB,1 − dA,1. That
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is, if the packet from A arrived at the destination first then
δ1 > 0, and if the packet from B arrived first then δ1 < 0.
Thus, this notion of packet arrival order is directly related
to the difference in delays incurred from the sources to the
joining point.
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Fig. 2. (a) Packet arrival order at the destination is the same as the
order in which they arrive at the joining point, j1. This order is de-
termined by the delays incurred by packets traveling from the sources
to the joining point. (b-d) Shared and non-shared topologies are de-
picted with delays to each joining point labeled. The joining point in
the shared topology is common for paths to both destinations. Joining
points to each destination are unique in the non-shared topology. The
collaborative multiple source probing algorithm hinges on this idea to
identify whether a topology is shared or not.

The shared topology is unique in that there is only one
joining point. That is, the joining point in the shared
topology is shared by paths going to both destination 1
and destination 2. Thus, when packets are transmitted by
the sources they pass through this common joining point
regardless of which destination the packets are destined
for. On the other hand, in any of the non-shared topolo-
gies, there are two joining points; one joining point for
packets going to destination 1 and the other for pack-
ets going to destination 2. Figures 2(b-d) display de-
lays from the sources to each joining point for shared and
non-shared topologies. The collaborative multiple source
probing algorithm exploits this feature using packet ar-
rival order measurements to distinguish between shared
and non-shared topologies.

B. Multiple Source Probes

The basic multiple source probe is as follows. At time
t0, source A sends a pair of packets spaced apart by ∆

seconds with the first packet headed for destination 1 and
the second packet going to destination 2. The space be-
tween packets is chosen to be sufficiently large so that the
inter-packet spacing is not affected by differences in band-
widths on upper and lower links of the topology. Specif-
ically, ∆ > packetsize/bmin, where bmin is the mini-
mum bandwidth of all links in the 2-by-2 network. This
criterion ensures that the packets will traverse the network
independently.

Source B sends packets in a similar configuration, but
with a random offset introduced between the transmit
times of corresponding packets. That is, if source A trans-
mits packets at times t0 and t0 + ∆, then source B trans-
mits packets at times t0 +u and t0 +∆+u to destinations
1 and 2 respectively, where u is a random variable dis-
tributed uniformly over the interval [−D,+D] and D is
much larger than ∆. These four packets constitute a sin-
gle probe. By sending repeated measurements and vary-
ing the offset u over a range of values, the difference in
delays to each joining point is indirectly measured. An
example of such a series of probes is depicted in Figure 3.

t
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t
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 + u

1
t
0

12

121212

t
2
 + u

2

12

t
0
 + u

0

12

Source A:

Source B:

∆

∆

Fig. 3. This figure depicts a series of probes. The inter-packet spac-
ing, ∆, is chosen to be large enough so that queuing events affecting
the two packets are independent. The offset variables ui are indepen-
dent random draws, uniformly distributed over the interval [−D, +D],
and D is much larger than ∆ in practice.

Let α1 = ±1 denote the packet arrival order at desti-
nation 1, with α1 = +1 indicating that the packet from
source A arrived before the packet from source B and
α1 = −1 indicating that the packet from source B ar-
rived first. Similarly, let α2 denote packet arrival order at
destination 2. The arrival order at destination one can be
written as

α1 = sign((t0 + u + dB,1) − (t0 + dA,1), (1)

= sign(δ1 + u), (2)

with a similar expression for α2, the arrival order at desti-
nation 2. Define the arrival order statistic to be

z = 1{α1 6= α2}, (3)

where 1{·} is the indicator function. Thus, z takes value
1 only when the arrival order at each destination is differ-
ent. In terms of modeling, z is a Bernoulli random vari-
able with a parameter ρ which quantifies the probability
of observing different arrival orders at each destination.
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Fig. 4. Displaying α1, α2, and z as functions of the random offset u for both (a) shared and (b) unshared topologies. The arrival order statistic,
z, is modeled as a Bernoulli random variable with parameter ρ, and an estimate of this parameter is used to determine whether a topology is
shared or not.

Observe from Fig. 2(b) that for the shared topology,
δ1 = δ2. Disregarding the effects of cross-traffic, it is
always true that α1 = α2, and thus z = 0 for a shared
topology. The random offset, u, determines the sign of
each αi, but the outcomes at each destination are identical
so u has no effect on the value of z.

On the other hand, for any non-shared topology, it is
unlikely that the delay differences to each destination, δ1

and δ2, are the same. Then, for a certain range of offset
values, the packet arrival order will be different at the two
destinations. Thus, the random offset, u, acts as a mech-
anism for exploring the behavior of an unknown 2-by-2
network. Figure 4 depicts the relationship between the
αi, z, and u for both shared and non-shared topologies.
This illustration makes clear the point that for non-shared
topologies arrival orders will be different at each destina-
tion for a certain range of u.

In practice, probes are sent at a frequency 1/T , with
the offset taking different values u(1), u(2), u(3), . . . , u(n)

for each probe. The probing period T is chosen to be
large enough that the experiences of each probe are sta-
tistically independent. In our experiments we set T to
twice the maximum round-trip time (RTT) for any source-
destination pair. Assuming the probes have independent
experiences and that the queuing distribution is stationary
for the duration of an experiment (∼ 2 − 5min.), the z(i)

are independent and identically distributed Bernoulli ran-
dom variables.

The probing procedure samples the function z(u)
in a random fashion. Then, keeping track of
z(1), z(2), . . . , z(n), one can calculate ρ̂ = 1

n

∑
i z(i), an

estimate of the probability of observing different arrival
orders at each destination. For shared topologies, the es-
timate ρ̂ = 0, and for non-shared topologies then ρ̂ > 0.
Section VI describes a more precise formulation of this
decision process in terms of a statistical hypothesis test.

IV. RELAXING ASSUMPTIONS

A. Cross-Traffic Distorts Packet Spacing

In reality, cross-traffic in the network induces a random
queuing delay on each link. This is accounted for by mod-
eling the delays from sources to joining points as a random
process, dS,R(t). Queuing due to cross-traffic has the ef-
fect of distorting the spacing, ∆, between packets in each
probe. Consequently, the probability of observing differ-
ent arrival orders at each destination is no longer zero for
the shared topology, but should be some small value due to
queuing delay. For non-shared topologies, queuing “blurs
the edges” of the region between δ1 and δ2, where differ-
ent arrival order observations occur.

To gauge whether the mechanism inducing different ar-
rival order events is just cross-traffic (shared) or a com-
bination of cross-traffic and topological characteristics
(non-shared), a modified probing measurement is devel-
oped which measures the percentage of different arrival
order events due to cross-traffic alone. Similar to the
probes described in Section III-B, each source sends two
packets spaced by time ∆, with the same timing and ran-
dom offset as before, only that all four packets in the
probe are transmitted to a single destination. For a single-
destination probe of this form, a different arrival order
event occurs when the arrival order of the first packets sent
from each source is different from the arrival order of the
second packets. Such an event may occur if the spacing
∆ is distorted by queuing.

Let ρ1 denote the probability that a different arrival or-
der event occurs when all packets are sent to destination
1. Define the following packet arrival order observations
for these measurements.

α′
1 = sign(dB,1(t0 + u) − dA,1(t0) + u)

α′′
1 = sign(dB,1(t0 + ∆ + u) − dA,1(t0 + ∆) + u

The arrival order statistic z1 = 1{α′
1 6= α′′

1}, is a Bernoulli
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random variable with parameter ρ1 describing the prob-
ability that cross-traffic will affect the arrival order for
packets going to destination 1. For a set of n measure-
ments, we calculate ρ̂1 = 1

n

∑
i z

(i)
1 . This estimate re-

flects the percentage of different arrival order events due
to queuing on the links leading from each source to join-
ing point j1, for the paths leading to destination 1.

A similar experiment is performed, but with all four
packets going to destination 2. These single-destination
experiments mimic conditions under the shared topology,
with both sets of packets going through a single joining
point. An estimate, ρ̂2, is obtained that reflects the amount
of queuing on the links leading from each source to join-
ing point j2, for the paths leading to destination 2.

Now, when the topology is shared, there is only one
joining point, so every different arrival order event is due
to queuing. Because the joining point is the same for
the paths to either destination, ρ1 = ρ2. Additionally,
ρ1 = ρ2 = ρ when the topology is shared since the only
mechanism causing different arrival orders in the shared
case is queuing along the paths to the one joining point.

When the topology is not shared, the joining points are
different to each destination as are the paths from each
source to the joining points. In this case, queuing behavior
may be different for links to each joining point so it is not
necessarily true that ρ1 = ρ2. For non-shared topologies,
ρ should be larger than ρ1 and ρ2 since it is also expected
that different arrival order events will be observed in the
experiment involving both destinations due to the different
mean delays from sources to each joining point.

Thus, intuitively, when ρ̂1, ρ̂2, and ρ̂ are very similar
we declare that the topology is shared. When ρ̂ is signifi-
cantly larger than the other two estimates we conclude that
the topology is not shared. A formal decision procedure
is developed in Section VI.

B. Dealing With Coarse Source Synchronization

A major advantage to using packet arrival order mea-
surements is that no precision timing infrastructure is re-
quired to make the measurements. The destinations only
need to record the order in which packets arrive. It is not
practical to assume that a precision timing infrastructure
will be in place between the sources, either. It is practical,
however, to assume that the sources can achieve a coarse
awareness of each others relative time though a handshak-
ing mechanism. To this extent, we expect that the sources
will be able to synchronize to within 5-10 milliseconds of
each other at the beginning of an experiment.

The time difference between source clocks can be char-
acterized as a constant offset and a difference in rate. Let-
ting τA(t) and τB(t) denote each source’s perception of

time, set τB(t) = βτA(t) + κ. Without loss of gener-
ality, let τA(t) = t. Suppose that the probes are sent at
some frequency 1/T , so that source A ideally sends the
first packet in each probe at times t0, t0 + T, t1 + T, . . . .
Note that T can be set as large as desired, and typically
we choose T = 2D. Rewriting (2), we find that the ex-
pression for the kth arrival order at destination r is

αr(k) = sign(dB,r − dA,r + (u + κ + kβT )).

Thus, we can think of discrepancies in relative source
clocks purely in terms of their effect on the distribution
of random offset variable u. The constant offset, κ, acts
as an initial offset so that on the first probe (k = 0), u
is drawn uniformly from [−D + κ,D + κ]. Then the
rate difference, β, shifts the uniform random offset in-
terval by Tβ at each probe transmission. As long as
δ1, δ2 ∈ [−D + κ + kβT,D + κ + kβT ] for every k then
the probability of observing a different arrival order event
on any individual trial is the same. Thus, by choosing the
parameter D sufficiently large we see that synchroniza-
tion discrepancies in the form of a constant offset and rate
difference in the source clocks have no effect on our col-
laborative multiple source measurement procedure.

On the other hand, the size of D is inversely propor-
tional to performance. Intuitively, the feature we are tak-
ing advantage of in relation to Figure 4 is the area be-
tween δ1 and δ2 where z(u) = 1. The values of δ1 and
δ2 are determined by the network topology (transmission
delays) and by current network conditions (mean delay),
thus δ1 and δ2 are essentially fixed for the duration of an
experiment. Intuitively, the larger we make D, the smaller
|δ1 − δ2|/2D becomes. The number of probes required to
achieve a given level of estimator accuracy is inversely
proportional to 2D. Therefore, there is a tradeoff between
making D large enough to account for the lack of precise
synchronization, and minimizing D to reduce the amount
of network resources consumed. Observe that

|δi| < max(dA,i, dB,i) < max(RTTA,i, RTTB,i). (4)

That is, the delay difference to a given destination is
bounded from above by the maximum RTT from a source
to a receiver. In the experiments and simulations reported,
we choose D to be

D = max
S∈{A,B}, R∈{1,2}

(RTTS,R), (5)

the maximum round-trip time from a source to destina-
tion, and find that we are able to make accurate inferences
with a reasonable number of probes.
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C. The Effects of Packet Reordering and Multiple Paths

The assumption that paths between a source and desti-
nation are unique is motivated by the fact that the majority
of routers in the Internet use routing tables to determine
next hops based off of destination addresses. Zhang, Pax-
son, and Shenker report that Internet routes typically re-
main stable for many hours [19], suggesting that routing
tables are not apt to change rapidly. While it is possible
that they may change at any time, by restricting our mea-
surement periods to be roughly five minutes in duration it
is less likely that routes will change during an experiment.

Additionally, the assumption was made that packets do
not get reordered within the network. In a recent study
on packet reordering in IP networks, Bellardo and Sav-
age conclude that the probability of two packets being
reordered as they travel through the network is highly
correlated with the space in time between the packets as
they traverse through the network [20]. The probability
of reordering decreases dramatically as the space between
packets increases. Specifically, packets traveling more
than 200 microseconds apart experience reordering with
probability less than 0.01. Thus, unless two packets arrive
at a joining point within 200 microseconds of each other,
it is safe to assume that their ordering will be preserved.
In the collaborative multiple source probing algorithm de-
scribed above, packets will occasionally arrive at a joining
point very close to each other. These probes are the very
same ones which are susceptible to the effects of queuing.
Accordingly, we group the effects of reordering with the
random delay due to queuing, and together these effects
are treated as noise.

It is possible that load balancing may be employed on
the network of interest. In this case incoming traffic is
transmitted over two or more paths in parallel in order to
reduce the load on any part of the network. This situa-
tion violates our assumption that paths between the source
and destination are unique, and may be a cause of packet
reordering. Because our algorithm uses end-to-end mea-
surements, the load-balanced links carrying probe traffic
will appear as a single virtual link, and the inferred per-
formance characteristic for the virtual link will reflect the
average behavior across all links in the load balancing sys-
tem.

V. INCORPORATING PERFORMANCE MEASUREMENTS

This section briefly describes how a slight modification
to the probe structure described in Section III allows us to
make dual-destination measurements (Sec. III-B), single-
destination measurements (Sec. IV-A), and measurements
of performance all using the same probing structure. Then

we can combine these measurements to jointly character-
ize topology and link-level performance. This is achieved
by modifying the original probes (Figure 3) so that each
packet in the probe goes to both destinations. If multi-
cast packets are being used then no modification needs to
be made since each packet effectively is transmitted to all
destinations in the multicast group. When unicast pack-
ets are being used the modification is made by replacing
each single packet with a back-to-back packet pair. Many
single-source active probing techniques have been devel-
oped using back-to-back probes or stripes of many back-
to-back packets to infer link-level performance parame-
ters such as loss rate and delay variance [4–6, 15, 21]. The
resulting probe structure is depicted in Figure 5.

t0 t0 + u0

12

Source A:

Source B:

21

1221

∆

∆

Fig. 5. Modified multiple source probes. Each rectangle represents
a packet and the numbers beneath each rectangle indicate the packet’s
destination. In the unicast setting we replace each packet with a back-
to-back packet pair in order to acquire measurements which can also be
used to estimate link-level performance. In each back-to-back packet
pair, one packet goes to destination 1 and the other to destination 2.
Back-to-back packets are used to measure link-level performance be-
cause their experiences are highly correlated on parts of their paths
before the branching point.

With this type of probe structure, one can look at the ar-
rival order of the first pair of packets at destination 1 and
the second pair of packets at destination 2 to get dual des-
tination measurements. Alternatively, by comparing the
arrival orders of both pairs of packets arriving at destina-
tion 1 (or all arriving at destination 2) one gets a single
destination measurement. Finally, the outcomes of pack-
ets within a back-to-back probe can be used to estimate
internal performance parameters. Thus, by having the
sources collaborate and by adding structure to the back-
to-back probes, the resulting set of measurements can be
used to infer more information than if the two sources had
independently employed an active measurement scheme
using back-to-back probes.

VI. DECISION-THEORETIC FRAMEWORK

This section describes a statistical framework and hy-
pothesis test for deciding whether or not the topology of
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a 2-by-2 network is shared. The framework is flexible,
taking as inputs either arrival order measurements, delay
variance measurements, loss measurements, or any com-
bination thereof. When multiple sets of measurements are
used (e.g. arrival order and loss), the test jointly solves for
the topology characterization and performance estimates.
Due to constraints on the length of this paper, we limit our
discussion to the case where arrival order measurements
and loss measurements are both used. For a complete out-
line of the framework please see [18].

Suppose the sources send N probes. Each destination
keeps track of packet arrival order and loss. Let z denote
the set of arrival order measurements and let y denote the
set of loss measurements for an experiment. Denote by
θ1, . . . , θ6 the link-level loss rates, corresponding to links
as depicted in the two 1-by-2 networks in Figure 6.

1

A

b

2

θ 1

θ 3 θ2

(a)

1

B

b

2

θ 4

θ 6θ 5

(b)

Fig. 6. Two 1-by-2 components which comprise the 2-by-2 prob-
lem. We would like to estimate the link-level performance parameters,
θ1, . . . , θ6, averaging the estimates from each source when the topol-
ogy is shared.

Let HS denote the hypothesis that the 2-by-2 topol-
ogy is shared, and let HN denote the hypothesis that the
topology is not shared. Let θ = (θ1, . . . , θ6) denote
the general six-dimensional vector of loss rates, and let
ρ = (ρ, ρ1, ρ2) denote the three dimensional vector of
different arrival order probabilities.

Under each hypothesis the joint likelihood function is
written as p(y, z|Hi,θ,ρ). A decision is made by choos-
ing the hypothesis which maximizes the likelihood given
the observations. We factor the likelihood function into

p(y, z|Hi,θ,ρ) = p(y|Hi,θ) p(z|Hi,ρ), (6)

implying that the loss measurements and arrival order
measurement are statistically independent. Independence
follows from the assumption that the inter packet-pair
spacing, ∆, is large enough that queuing effects experi-
ences by the first and second back-to-back packet probes
sent from each source are independent, as described in
Section III-B.

Now, the true parameters ρ, θ are unknown variables.
We take the generalized likelihood ratio test (GLRT) ap-

proach to solving this composite hypothesis problem. In
the GLRT, the unknown distribution parameters θ and ρ

are replaced with their maximum likelihood estimates un-
der each model. Under HN , we have θ ∈ [0, 1]6 and
ρ ∈ [0, 1]3. On the other hand, under HS , the model or-
der of the network is reduced. Consequently, the parame-
ter space is restricted so that θ2 = θ5, and θ3 = θ6. Thus,
under HS , we have θ ∈ [0, 1]4 and ρ ∈ [0, 1]1. The GLRT
can be written as

Λ(y, z) =

max
θ∈[0,1]6,ρ∈[0,1]3

p(y|HN ,θ)p(z|HN ,ρ)

max
θ∈[0,1]4,ρ∈[0,1]1

p(y|HS ,θ)p(z|HS ,ρ)
. (7)

Then a decision is made according to

Λ(y, z)
HN

≷

HS

η, (8)

for some threshold η. When the likelihood ratio is greater
than the threshold, the test declares that the topology is
not shared. Otherwise the test declares it is shared.

In general, setting a threshold for the GLRT is a diffi-
cult task when no uniformly most powerful test exists and
when a priori probabilities are not available for each hy-
pothesis. However, for the composite hypothesis test as
formed above, a threshold can be set using Wilks’ Theo-
rem for the asymptotic behavior of the log likelihood ratio
statistic [22]. Let λ(y, z) = 2 log Λ(y, z). Then under
mild assumptions about the regularity of the likelihood
functions p(y|Hi,θ) and p(z|Hi,ρ) – which are satisfied
in our case – Wilks’ Theorem states that under the shared
(null or restricted) hypothesis, λ(y, z)

d
−→ χ2

ν , where ν is
the difference in the number of degrees of freedom under
each hypothesis. In other words, using loss and arrival or-
der measurements, λ(y, z) converges in distribution to a
chi-squared random variable with four degrees of freedom
under HS . By knowing the distribution of the log likeli-
hood ratio statistic under the shared hypothesis it is possi-
ble to determine a threshold, η, by setting the probability
of mistakenly declaring that a topology is not shared when
it is really shared (Type I error). For example, to have a
Type I error rate of 2% set η = 0.429.

VII. CHARACTERISTICS OF INTERNET TOPOLOGIES

AND TRAFFIC AFFECTING PERFORMANCE

As described above, Wilks’ Theorem tells us how to set
a threshold based on choosing the Type I error rate. In
general, it is difficult to precisely quantify the error rate
when the true topology is not shared (Type II error) be-
cause it depends on the magnitude of diversity between
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the delay differences on links, and these are parameters we
do not know. In this section we offer an intuitive explana-
tion of the characteristics of Internet topologies and traffic
which will affect performance in the non-shared scenario.
In the next section we further evaluate the performance
through simulation.

We begin by relating the problem when the true topol-
ogy is shared to the classic signal-in-noise detection prob-
lem. We would like to decide whether or not the topol-
ogy is not-shared given a set of noisy measurements. The
signal is the “bump” region of offsets between δ1 and δ2

where different arrival order events are observed. Noise
takes the form of queuing due to cross-traffic which can
both cause different arrival order events and same arrival
order events where they would otherwise not occur. In
such a problem, the error rate is usually parameterized
by a signal-to-noise ratio, with performance improving as
this ratio increases.

Signal power is related to the width of the bump
squared, (E|δ1 − δ2|)

2. Each δi is a difference in delays
along two paths to the same receiver. The larger the bump,
the stronger the signal, the easier it is to detect. If there is
a large variation in mean path delay – for instance, due to
the geographic locations of different hosts – then it is very
likely that the region between the δi will be wide. Noise
power, on the other hand, can be written as var(δ1 − δ2).
This quantity describes the variance due to cross-traffic.
The more bursty the background traffic, the stronger the
noise. Thus the Type II error rate of our algorithm de-
pends on mean path delay which is related to the topology,
and the traffic property, delay variance.

Placing a distribution on these properties is not a simple
task, as they can vary greatly depending the scale of the
network considered, geographic location of hosts, time of
day, and so on. Our intuition tells us, however, that in
general path lengths will vary greatly for reasons of geog-
raphy, and that in most places the network infrastructure is
over-provisioned, so that queuing delay is relatively low.
In a study of round-trip delays, Acharya and Saltz report
that there is large temporal and spatial variation in RTTs,
but that jitter in RTT observations is small [23]. This re-
sult seems to favor a strong signal-to-noise ratio. It is also
possible that a situation could occur where the network is
relatively homogeneous, with transmission delays more
or less the same between every source-destination pair.
If this were the case and if cross-traffic were extremely
bursty then performance would be degraded. However, it
should be noted that the signal-to-noise ratio can always
be improved by taking more measurements.

VIII. SIMULATION RESULTS

Next, we evaluate our multiple source algorithm using
the ns-2 simulator [24]. Both loss and arrival order mea-
surements were used in the simulation. Packet delays and
losses are due to congestion as probes compete with cross-
traffic. Following [10], infinite TCP flows produce the
majority of the background traffic, as TCP is the dominant
transport protocol on the Internet. A few exponential on-
off flows are also included, with the over all mix of back-
ground traffic such that link-level loss rates vary between
0.01% and 2%. Probes in the simulation are composed of
multicast packets.

The simulated topology is depicted in Figure 7. Note
the bi-directional flow of probe traffic on one link. The
2-by-2 networks for destination pairs (1, 2) and (3, 4) are
shared, and those for all other pairs of destinations are
non-shared. The simulation was repeated 500 times, with
different random seeds. Each trial consists of 1000 probes
transmitted over 200 simulated seconds. All settings were
chosen to reflect a realistic scenario.

A B

1 2 3 4 5

Fig. 7. Simulated topology. Solid lines indicate the paths taken by
probes from source A and dashed lines indicated the paths taken by
probes from source B. The 2-by-2 networks for destination pairs (1, 2)
and (3, 4) are shared, and those for all other pairs of destinations are
non-shared.

Figure 8 depicts a histogram of the values taken by the
joint log likelihood ratio, λ(y, z), using 1000 loss and
arrival order measurements when the true topology was
shared. According to Wilks’ Theorem, the values taken by
this function should asymptotically be distributed accord-
ing to a chi-squared random variable with four degrees of
freedom. The chi-squared distribution is shown as a solid
line for reference. The histogram conforms fairly well to
the distribution, so we are reassured that Wilks’ asymp-
totic result indeed holds when at least 1000 probes are
used.

Next we assess the performance of our algorithm. Fig-
ure 9 shows a plot of the Type I error rate versus one minus
the Type II error rate. This type of plot is sometimes re-
ferred to receiver-operator characteristics, or ROC curves.
Note that the origin is in the upper left-hand corner of the
figure, and that the indices on each axis range between 0
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Fig. 8. Histogram of joint log likelihood ratio values where the true
topology was shared. According to Wilks’ Theorem the joint log like-
lihood ratio should have a chi-squared distribution with four degrees
of freedom. The solid line corresponds to this reference distribution.

and 0.5. Three curves are shown for the cases when only
arrival order measurements are used, only loss measure-
ments are used, and both arrival order and loss measure-
ments are used. In order to set a threshold for the statisti-
cal test, we choose the Type I error rate (along the x-axis).
The resulting Type II error rate is depicted along the y-
axis. Ideally, we would like these curves to go through
the top left corner, where there is no error of either type.
Note that the detector using combined arrival order and
loss measurements outperforms both the loss only and ar-
rival order only detectors.

Each of the curves depicted in Figure 9 show results for
when 1000 probes are used. Next, we analyze the perfor-
mance by varying the number of measurements fed in to
the algorithm. Figure 10 depicts the ROC curve for the
joint detector, varying the number of probes used by the
algorithm. As expected, the Type II error rate decreases
quickly as the number of probes increases. When 1000
probes are used, it is possible to achieve a Type II er-
ror rate as low as 10% with the Type I error rate at 5%.
Thus, it is possible to achieve desirable performance us-
ing a moderate number of probes.

IX. INTERNET EXPERIMENTS

As a proof-of-concept, we have implemented the multi-
ple source probing algorithm using UDP probes and tested
it in two diverse settings. In both experiments only ar-
rival order measurements were used. The first setting con-
sists of a collection of hosts scattered around the Inter-
net. The two sources were located in Montreal, Quebec,
and Houston, Texas. Destinations were situated in Portu-
gal, Illinois, Wisconsin, and Michigan, and both Berke-
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Fig. 9. Type II versus Type I error rates for detectors using both loss
and arrival order measurements, only loss measurements, and only ar-
rival order measurements. We choose a value for the Type I error in
order to set the threshold, and the resulting Type II error is depicted
along the y-axis. The joint detector (using arrival order and loss mea-
surements) exhibits the best performance.
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Fig. 10. This figure depicts ROC curves for the joint arrival order,
loss detector. Different curves show the performance achieved as the
number of probes is increased from 100 to 1000. The performance
quickly increases as the number of probes goes up, especially for low
Type I error rates, where we would prefer to operate.

ley and San Diego, California. This configuration offered
examples of both shared and non-shared 2-by-2 topolo-
gies. Results were verified against topologies obtained
using traceroute. In this experiment we were able to
successfully characterize each 2-by-2 network using 1000
probes per destination pair.

The second set of experiments were performed using 18
hosts on an operational LAN at Rice University. Results
were validated with assistance from the network admin-
istrators. It should be noted that the topology connecting
these hosts is mainly composed of layer-2 devices, with
only a single layer-3 router spanning the LANs in different
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buildings. Using only end-to-end measurements, the algo-
rithm was able to correctly determine shared/non-shared
topology characteristics for each pair of destinations. We
believe that the positive results of these two experiments
indicate the strength and versatility of the multiple source
probing algorithm described here.

X. CONCLUSION AND DISCUSSION

Multiple source topologies can be decomposed in to 2-
by-2 networks, thus by solving the 2-by-2 problem we
have essentially solved the M -by-N problem. The pos-
sible 2-by-2 networks can further be broken down into
shared and non-shared classes based on their model or-
der (number of links and nodes). There are two main rea-
sons we are interested in this dichotomy. If the topology
is shared then measurements can be combined from both
sources to achieve reduced variance estimates of link-
level parameters on the downstream links. Additionally,
when the topology is shared then we have more informa-
tion about topology (namely some information about the
placement of joining points) than we would have if each
source had actively probed without collaborating.

Packet arrival order is determined at the first shared
queue. This was the basis of our multiple source prob-
ing algorithm. Main highlights of the algorithm include
the fact that precise synchronization is not required, ei-
ther multicast or unicast packets can be used, and no
more packets are required than would have been used if
the sources probed without collaborating even though we
know more at the end of the day. Because the algorithm
is founded on a principle directly related to topology,
namely that the arrival order of packets is determined at
the joining point – the algorithm is robust to cross-traffic
and can operate effectively under a variety of conditions.
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