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Abstract

This paper examines the impact of approximation steps that become necessary when particle filters are im-
plemented on resource-constrained platforms. We consider particle filters that perform intermittent approximation,
either by subsampling the particles or by generating a parametric approximation. For such algorithms, we derive
time-uniform bounds on the weak-sense Lp error and present associated exponential inequalities. We motivate the
theoretical analysis by considering the leader-node particle filter and present numerical experiments exploring its
performance and the relationship to the error bounds.
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I. INTRODUCTION

Particle filters have proven to be an effective approach for addressing difficult tracking problems [9]. Since
they are more computationally demanding and require more memory than most other filtering algorithms, they are
really only a valid choice for challenging problems, for which other well-established techniques perform poorly.
Such problems involve (approximated) dynamics and/or observation models that are substantially non-linear and
non-Gaussian.

A particle filter maintains a set of “particles” that are candidate state values of the system (for example, the
position and velocity of an object). The filter evaluates how well individual particles correspond to the dynamic
model and set of observations, and updates weights accordingly. The set of weighted particles provides a pointwise
approximation to the filtering distribution, which represents the posterior probability of the state. This approximation
allows one to form estimates of the state values and hence track the state.

The analysis of approximation error propagation and stability of non-linear Markov filters has been an active
research area for several decades [13], [21]. In the case of the particle filter, there has been interest in establishing
what conditions must hold for the filter to remain stable (the error remaining bounded over time), despite the error
that is introduced at every time-step of the algorithm by the pointwise approximation of the particle representa-
tion [3]–[6], [8], [16], [17]. The impact of modeling errors, including incorrect initial distributions and short-lived
model mismatches, has also been investigated [17], [26].

In this paper, we focus on examining the impact of additional intermittent approximation steps which become
necessary when particle filters are implemented on resource-constrained platforms. The approximations we consider
include subsampling of the particle representation and the generation of parametric mixture models. The main results
of the paper are time-uniform bounds on the weak-sense Lp-error induced by the combination of particle sampling
error and the additional intermittent approximation error (subsampling or parametric). We employ the Feynman-Kac
semigroup analysis methodology described in [4]; our investigation of parametric approximation is founded on error
bounds for the greedy likelihood maximization algorithm, which was developed in [19] and analyzed in [23], [28].

This research was supported by the National Scientific and Engineering Research Council of Canada (NSERC) through the Discovery
Grants program and the MITACS (Mathematics in Information Technology and Complex Systems) Networked Centres of Excellence.
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Fig. 1. The leader node distributed particle filtering setting

Throughout the paper, we will motivate the theoretical analysis by considering the concrete example of the
“leader node” particle filter [20], an algorithm (described in detail below) that has been proposed for distributed
tracking in sensor networks. We outline two other examples to illustrate that the analyzed problem arises in several
practical settings.

A. Example 1: leader node particle filter for sensor network tracking

One of the major concerns in distributed sensor network tracking is balancing the tradeoff between tracking
performance and network lifetime. Sensor nodes are most commonly battery-powered devices, so it is important
to limit the energy consumption, which is dominated (if the sensors are passive) by communication. Particle filter
tracking algorithms in sensor networks frequently adopt a centralized approach, wherein the particle filter resides
at a computation centre and measurements from remote sensors are transported across the network to this centre.
This approach has several disadvantages. Centralization introduces a single point of failure and can lead to high,
unevenly distributed energy consumption because of the high communication cost involved in transmitting the data.

Distributed algorithms, such as the distributed particle filtering algorithms proposed in [1], [24], address the
aforementioned problems. These algorithms decentralize the computation or communication so that a single fusion
centre is not required. Multiple particle filters run concurrently at different sensor nodes and compressed data or
approximate filtering distributions are shared between them. These distributed algorithms, while mitigating some
of the inherent problems of centralization, can be computationally expensive, because multiple nodes are required
to perform computation throughout the entire tracking procedure.

The leader node particle filter, proposed in [20], [29] and refined and analyzed in [11], [27], represents a
compromise; it is partially distributed, in the sense that at any time-step only one node performs the particle
filtering (the leader node), but this node changes over time. The setting corresponding to this filtering paradigm is
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depicted in Fig. 1. A leader node (depicted by the large circles) is responsible for performing local tracking based
on the data acquired by the satellite sensor nodes (depicted by small circles). The satellite nodes have sensing
capabilities and can locally transmit the acquired data to the nearest leader node. The leader node fuses the data
gathered by the satellite nodes in its neigbourhood, incorporating them into its particle filter.

Significant communication energy savings can be achieved if the leader node follows the target, because sensor
nodes only have to relay their measurements to a nearby location. This is illustrated in Figure 1; the leader node
approximately tracks the target trajectory (depicted by the squares). Sensor management strategies are used to
determine when to change leader node [27]. When this occurs, information must be exchanged so that the new
leader node can reconstruct the particle filter. In attempting to alleviate the communication cost of transmitting all
particle values when the leader node is exchanged (which can involve thousands of bits), the filtering distribution
is more coarsely approximated, either by transmitting only a subset of the particles or by training a parametric
model.

B. Example 2: Tracking with delayed measurements

In wireless sensor networks, packet losses can lead to measurements arriving out-of-order to a node performing
tracking. Incorporating delayed measurements into a particle filter is important, because they can be highly infor-
mative and improve tracking performance. One of the simplest, and most effective, strategies is to run the particle
filter again from the time-step corresponding to the delayed measurement. This strategy can be hampered by the
limited memory of most sensor network devices, which means it is impossible to store full particle representations
for multiple time-steps. The alternative is to store an approximation, either a subsampled set of particles, or a
parametric representation, for previous time-steps. When the particle filter is run again, it is initialized by sampling
from the approximated distribution. The effect is equivalent to injecting intermittent approximations (subsampling
or parametric) into the particle filter.

C. Example 3: Real-time tracking with computational constraints

When real-time tracking is performed on an embedded processor with computational limitations, it can be
important to adjust the time devoted to particle filter computation. For example, consider a mobile robot that
employs a particle filter to track its position and at the same time conducts iterative strategic planning of its
motion in order to reach a target location. The goal can be achieved more efficiently (in less time and with less
energy expenditure) if there is an adjustment of the computational time devoted to each of these two tasks. The
adaptive particle filter proposed in [10] and the real-time particle filter of [14] adjust the number of particles at each
time-step based on an estimate of the complexity of the filtering distribution (assigning fewer particles for simple
distributions). Through these schemes, the accuracy of the position estimation can be preserved, but more time
can be devoted to motion planning. The adaptation of the number of particles is an example of the subsampling
approximation that we analyze in this paper.

D. Paper Organization

The rest of the paper is organized as follows. Tables 1 and 2 summarize the notation that is used in the paper.
Section II sets up the analysis framework and outlines relevant terminology. Section III presents some foundational
results that serve as the basis for our analysis. In Section IV we present error bounds and exponential inequalities for
particle filters that perform intermittent subsampling, and in Section V we analyze the performance of particle filters
that employ parametric approximation. Section VI describes numerical experiments that illustrate the performance
of the algorithms we analyze and the relationship to the bounds. Section VII discusses related work and Section VIII
summarizes the contribution and makes concluding remarks.

II. ANALYSIS FRAMEWORK AND TERMINOLOGY

We consider a discrete-time non-linear filtering task in which the target dynamics and observations can be
described by the following general state-space signal model:

Xt = ft(Xt−1, %t) (1)

Yt = gt(Xt, ζt). (2)
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Here Xt ∈ Rdx is the target state vector at time t, Yt ∈ Rdy is the measurement vector, %t and ζt are system
excitation and measurement noises respectively, ft is a nonlinear system map ft : Rdx → Rdx , and gt is a nonlinear
measurement map gt : Rdx → Rdy .

In order to conduct stability (error propagation) analysis, we need to introduce slightly more rigorous mathematical
notation. Let (Et, Et), t ∈ N be a sequence of measurable spaces. The target state vector evolves according to a non-
homogeneous discrete-time Markov chain Xt with transitions Mt+1 from Et into Et+1. We denote by X ′t = X[0:t]

the historical path process associated with Xt. Associated with a measurable space of the form (E, E) is a set of
probability measures P(E) and the Banach space of bounded functions Bb(E) with supremum norm:

||h|| = sup
x∈E
|h(x)|.

We define a convex set Osc1(E) of E-measurable test functions with finite oscillations:

osc(h) = sup(|h(x)− h(y)|; x, y ∈ E)

Osc1(E) = {h : osc(h) ≤ 1}

For any h ∈ Bb(E) it is also possible to define the following:

||h||osc = ||h||+ osc(h).

In order to simplify the representation, we define for a measure µ ∈ P(E),

µ(h) =
∫
E
h(x)µ(dx)

and for the Markov kernel from (Ei−1, Ei−1) to (Ei, Ei):

(µi−1Mi)(Ai) =
∫
Ei−1

µi−1(dxi−1)Mi(xi−1, Ai).

Thus the composite integral operator from (Ei, Ei) to (Et, Et), Mi,t = Mi+1 . . .Mt, has the form:

(Mi+1 . . .Mt)(xi, dxt) =
∫
E[i+1:t−1]

Mi+1(xi, dxi+1) . . .Mt(xt−1, dxt).

A. Feynman-Kac models

Throughout the rest of this paper we adopt the methodology developed in [4] to analyze the behaviour of filtering
distributions arising from (1) and (2). This methodology involves representing the particle filter as an N -particle
approximation of a Feynman-Kac model. We now discuss the Feynman-Kac representation; for a much more detailed
description and discussion, please refer to [4].

The evolution of the unconditional signal distribution in (1) is completely defined by the Markov transition kernel
M(·, ·) and the initial signal distribution µ0:

Pr{Xt ∈ dxt|Xt−1 = xt−1} = Mt(xt−1, dxt) (3)

According to (3), the signal distribution at time t, with respect to the sequence of random variables X1, . . . , Xt,
can be written as follows

Pµ,t(d(x0, . . . , xt)) = µ(dx0)M1(x0, dx1) . . .Mt(xt−1, dxt)

defining the filtered probability space (
Ω =

t∏
i=0

Ei,Ft,F∞,Pµ

)
,

where the family of σ-algebras has the following property: Fi ⊂ Fj ⊂ F∞ for any i ≤ j and F∞ = σ(∪i≥0Fi) We
now introduce bounded and non-negative potential functions Gt : Et → [0,∞) that characterize the properties of
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the observation process in (2). This leads to the following definition of the unnormalized prediction Feynman-Kac
model, for ht ∈ Bb(Et) and t ∈ N.

γt(ht) = Eη0

(
ht(Xt)

t−1∏
i=0

Gi(Xi)

)

=
∫
E[0:t]

ht(Xt)
t−1∏
i=0

Gi(Xi)Pη0,t(d(x0, . . . , xt))

where Eη0 denotes expectation with respect to the distribution of an Et-valued Markov chain Xt with transitions
Mt. The normalized prediction Feynman-Kac model is then:

ηt(ht) =
γt(ht)
γt(1)

The Boltzmann-Gibbs transformation Ψt reflects the effect of the likelihood function at time t on the normalized
prediction model. The transformation Ψt maps the set of probability measures on Et onto itself, i.e. Ψt : ν ∈
Pt(Et) 7→ Ψt(ν) ∈ Pt(Et). For a particular measure ν,

Ψt(ν)(dxt) =
1

ν(Gt)
Gt(xt)ν(dxt).

This transformation is used to construct the key operator Φt : P(Et−1) → P(Et), which is used to update the
predictive posterior distribution from time step t− 1 to time step t:

ηt = Φt(ηt−1)

Thus this operator combines the fitness assessment described by the likelihood function Gt−1 and the diffusion
step described by the Markov kernel Mt

Φt(ηt−1) = Ψt−1(ηt−1)Mt

The repeated application of this operator, Φt(ηt−1)t≥1, results in the semigroups Φi,t, i ≤ t associated with the
normalized Feynman-Kac distribution flows ηt.

Φi,t = Φt ◦ Φt−1 ◦ . . . ◦ Φi+1

The semigroup Φi,t describes the evolution of the normalized prediction Feynman-Kac model from time i to time
t:

ηt = Φi,t(ηi)

It is related to Gi,t : Ei → (0,∞), the composite potential functions on Ei, and Pi,t : P(Ei)→ P(Et), the Markov
kernels from Ei to Et. In particular, Gi,t is defined as the expectation of the composite potential constructed based
on the observations acquired during time-steps i, . . . , t− 1 with respect to the shifted chain Mi+1 . . .Mt:

Gi,t(xi) =
∫
Ei+1,t

t−1∏
j=i

Gj(xj)Mi+1(xi, dxi+1) . . .Mt(xt−1, dxt),

and Pi,t is defined by the Feynman-Kac formulae as follows:

Pi,t(ht) =

∫
Ei+1,t

ht(xt)
t−1∏
j=i

Gj(xj)Mi+1(xi, dxi+1) . . .Mt(xt−1, dxt)

∫
Ei+1,t

t−1∏
j=i

Gj(xj)Mi+1(xi, dxi+1) . . .Mt(xt−1, dxt)
.

The Boltzmann-Gibbs transformation

Ψi,t(ηi)(hi) =
ηi(Gi,thi)
ηi(Gi,t)

and the semigroup Φi,t(ηi)

Φi,t(ηi) = Ψi,t(ηi)Pi,t

can then be represented via these two quantities.
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B. Feynman-Kac formulae and the Bayesian framework

It is instructive to draw parallels between the Feynman-Kac description of the filtering process discussed above
and the Bayesian formulation of sequential filtering. The integral operator, Mt(xt−1, dxt), describing the evolution
of signal diffusion in (1) is most naturally related to the state transition density (assuming one exists):

Mt(xt−1, dxt) = pt(xt|xt−1)dxt.

The measurement equation (2), which is compactly described by the potential function Gt(xt) in the Feynman-Kac
framework, is directly related to the likelihood function pt(yt|xt) in the Bayesian framework:

Gt(xt) = pt(yt|xt).

We can then see how the diffusion step within the Feynman-Kac framework is related to the prediction step within
the Bayesian framework:

Φt(ηt−1) =
∫
Et−1

Ψt−1(ηt−1)(dxt−1)Mt(xt−1, dxt) Feynman-Kac

pt(xt|y1:t−1) =
∫
Et−1

p(xt−1|y1:t−1)pt(xt|xt−1)dxt−1 Bayes

Thus the operator Φt generates the normalized predictive posterior distribution, ηt(dxt) = Φt(ηt−1)(dxt) =
p(xt|y1:t−1)dxt, and the Boltzmann-Gibbs transformation Ψt(ηt)(dxt) = p(xt|y1:t)dxt generates the normalized
posterior distribution using the update step analogous to that of the Bayes model:

Ψt−1(ηt−1) =
Gt−1(xt−1)ηt−1(dxt−1)∫
Et−1

Gt(xt−1)ηt−1(dxt−1)
Feynman-Kac

pt−1(xt−1|y1:t−1) =
pt−1(yt−1|xt−1)pt−1(xt−1|y1:t−2)∫

Et−1
pt−1(yt−1|xt−1)pt−1(xt−1|y1:t−2)dxt−1

Bayes

The normalization constant ηt−1(Gt−1) = p(yt−1|y1:t−2) can be interpreted as equivalent to Bayes’ evidence at
time t − 1, p(yt−1|y1:t−2). We conclude that the Feynman-Kac formulae are directly related to the predict-update
Bayesian recursion. The difference between the two formulations lies in the fact that the Feynman-Kac formulae
describe the evolution of distributions, while the Bayesian framework describes the evolution of the corresponding
densities (assuming that these densities exist).

C. N -particle approximations

Following [4], we can define a particle filter by developing an N -particle approximation to the Feynman-Kac
model. This approximation consists of N path particles:

ξ′kt = (ξki,t)0≤i≤t ∈ E′t = E[0,t] k ∈ 1, . . . , N

The particle approximation of the prediction Feynman-Kac model is defined as:

ηNt =
1
N

N∑
k=1

δξkt ,

where δ is the Dirac delta function.
The N -tuple ξt represents the configuration at time t of N particles ξkt , and resides in the product space ENt .

The particle filter then involves a two-step updating process:

ξt ∈ ENt
selection−→ ξ̂t ∈ ENt

mutation−→ ξt+1 ∈ ENt+1

The selection stage consists of selecting randomly N particles ξ̂kt . This random selection is achieved by setting, with
probability εtGt(ξkt ), ξ̂kt = ξkt ; otherwise we choose a random particle ξ̃kt with distribution

∑N
k=1

Gt(ξkt )∑N
j=1Gt(ξ

j
t )
δξkt ,

and we set ξ̂kt = ξ̃kt . During the mutation phase, each particle ξ̂kt evolves according to the Markov transition Mt+1.
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D. Regularity Conditions

The analysis we present relies on certain assumptions about the regularity and mixing properties of the Markov
kernels and likelihood potential functions. We adopt the same assumptions used for deriving time-uniform bounds
in [4].

We define the following condition on the Markov functions:
• (M)(m)

u There exists an integer m ≥ 1 and strictly positive number εu(M) ∈ (0, 1) such that for any i ≥ 0
and xi, yi ∈ Ei we have

Mi,i+m(xi, ·) = Mi+1Mi+2 . . .Mi+m(xi, ·) ≥ εu(M)Mi,i+m(yi, ·).

The following regularity condition is defined for the likelihood potentials:
• (G)u There exists a strictly positive number εu(G) ∈ (0, 1] such that for any t and xt, yt ∈ Et

Gt(xt) ≥ εu(G)Gt(yt)

The Dobrushin contraction coefficient (β(Pi,t) ∈ [0, 1]) plays a key role in our analysis. This is defined as follows:

β(Pi,t) = sup{||Pi,t(xi, ·)− Pi,t(yi, ·)||tv;xi, yi ∈ Ei}

If (G)u and (M)(m)
u hold, then according to Proposition 4.3.3. [4] we have the following estimate for the Dobrushin

contraction coefficient:

β(Pi,t) ≤
(

1− ε2u(M)ε(m−1)
u (G)

)b(t−i)/mc
.

III. FOUNDATIONAL RESULTS

Our analysis of error propagation relies on results that characterize the impact of sampling operations and the
manner in which distribution discrepancies are propagated in the Feynman-Kac framework. In this section, we state
and prove some of these foundational results, which build upon relationships presented in [4].

We first introduce some necessary notation. Denote by (µk)k≥1 a sequence of probability measures on (E, E),
and by (hk)k≥1 a sequence of E-measurable functions. Denote by m(X) = 1

N

∑N
k=1 δXk the N -empirical measure

associated with a collection of independent random variables (Xk)k≥1 with respective distributions (µk)k≥1. Further,

define m(X)(h) , 1
N

N∑
k=1

hk(Xk) and σ2(h) , 1
N

N∑
k=1

osc2(hk).

Let the sampling operator SN : P(E)→ P(EN ) be defined as:

SN (η)(h) =
1
N

N∑
k=1

h(ξk) . (4)

where (ξ1, . . . , ξN ) is the i.i.d sample from η. With this notation, the standard particle filter can be expressed using
the recursion ηNt = SN (Φt(ηNt−1)).

A. Bounds on errors induced by sampling

The following result bounds the weak-sense Lp error induced by the sampling operator for functions with finite
oscillations. We recall that for a measure P ∈ P(E), P (h) ,

∫
E h(x)P (dx).

Lemma 1. Suppose P ∈ P(E), then for any p ≥ 1 and an E-measurable function h with finite oscillations we
have

E{|[P − SN (P )](h)|p}
1
p ≤ c(p)

1
p
σ(h)√
N
,

where c(p) is defined as follows:

c(p) =
{

1 if p = 1
2−p/2pΓ[p/2] if p > 1

and Γ[·] is the Gamma function.
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Proof: Since E{[P − SN (P )](h)} = P (h)− P (h) = 0, we have from the Chernov-Hoeffding inequality:

P{|[P − SN (P )](h)| ≥ ε} ≤ 2e−
2Nε2

σ2(h)

We note that

P{|[P − SN (P )](h)|p ≥ ε} = P{|[P − SN (P )](h)| ≥ ε1/p}

and we have from the Chernov-Hoeffding inequality:

P{|[P − SN (P )](h)| ≥ ε1/p} ≤ 2e−2Nε2/p/σ2(h)

Next we recall the following property:

E{|[P − SN (P )](h)|} =
∫ ∞

0
P{|[P − SN (P )](h)| ≥ ε}dε

And finally we obtain:

E{|[P − SN (P )](h)|p}
1
p =

[∫ ∞
0

P{|[P − SN (P )](h)| ≥ ε1/p}dε
] 1
p

≤
[
2
∫ ∞

0
e−2Nε2/p/σ2(h)dε

] 1
p

=
[
σp(h)p(2N)−

p

2 Γ
[p

2

]] 1
p

Applying Lemma 7.3.3 of [4] allows us to set c(1) = 1 instead of c(1) = 2−1/2Γ[1/2] =
√
π/2, and this completes

the proof.
An almost identical result applies for the N -empirical measure m(X). Lemma 2 tightens Lemma 7.3.3 from [4]

and extends it to include non-integer p (for a comparison of the two bounds see Appendix A).

Lemma 2. For a sequence of E-measurable functions (hk)k≥1 with finite oscillations and satisfying µk(hk) = 0
for all k ≥ 1,

E{|m(X)(h)|p}
1
p ≤ c(p)

1
p
σ(h)√
N
,

for any p ≥ 1, where c(p) is defined as in Lemma 1.

The proof follows the same argument as that of Lemma 1, noting that the condition E(m(X)(h)) = 0, which is
necessary for application of the Chernoff-Hoeffding bound, follows from the condition µk(hk) = 0.

The following theorem provides a bound on the moment-generating function of the empirical measure m(X).
The result employs Lemma 1 to tighten Theorem 7.3.1 of [4] (for a comparison of the two bounds see Appendix B).

Theorem 1. For any sequence of E–measurable functions (hk)k≥1 such that µk(hk) = 0 for all k ≥ 1 and
σ(h) <∞, we have for any ε

E
{
eε
√
N |m(X)(h)|

}
≤ 1 + εσ(h)

(
1−

√
π

2
+
√
π

2
e
ε2

8
σ2(h)

[
1 + Erf

[
εσ(h)√

8

]])
Proof: We first utilize the power series representation of the exponential:

E
{
eε|m(X)(h)|

}
=
∑
n≥0

εn

n!
E {|m(X)(h)|n}

= ε0E
{
|m(X)(h)|0

}
+ εE {|m(X)(h)|}+

∑
n≥2

εn

n!
E {|m(X)(h)|n}
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Utilizing Lemma 1 we have:

E
{
eε|m(X)(h)|

}
≤ 1 +

εσ(h)√
N

+
∑
n≥2

εn

n!
σn(h)n(2N)−n/2Γ [n/2]

= 1 +
εσ(h)√
N

+
∑
n≥2

[
εσ(h)

(2N)1/2

]n Γ [n/2]
(n− 1)!

= 1 +
εσ(h)√
N
− εσ(h)

√
π√

2N
+
εσ(h)

√
π√

2N
e
ε2σ2(h)

8N

[
1 + Erf

[
εσ(h)√

8N

]]
Choosing ε = ε

√
N and rearranging terms completes the proof.

The following corollary containing a more tractable variation of the previous theorem can be useful for deriving
the exponential inequalities for the particle approximations of Feynman-Kac models.

Corollary 1. For any sequence of E–measurable functions (hk)k≥1 such that µk(hk) = 0 for all k ≥ 1 we have
for any ε

σ(h) <∞ =⇒ E
{
eε
√
N |m(X)(h)|

}
≤
(

1 +
√

2πεσ(h)
)
e
ε2

8
σ2(h)

Proof: The proof is straightforward since supx Erf(x) = 1, 1−
√
π/2 < 0 and e

ε2

8
σ2(h) ≥ 1.

We note that the simplified estimate of the moment-generating function in Corollary 1 is much tighter than the
bound in Theorem 7.3.1 of [4] for asymptotically large deviations ε while the more complex bound in Theorem 1
is uniformly tighter over the range of ε.

B. Error propagation

Proposition 4.3.7. in [4] underpins our analysis of the stability of the semigroups Φi,t.

Proposition 1 (Del Moral [4], Proposition 4.3.7). For any 0 ≤ i ≤ t, µi ∈ P(Ei), and ht ∈ Bb(Et) with
osc(ht) ≤ 1, respectively ||ht|| ≤ 1, there exists a function hi in Bb(Ei) with osc(hi) ≤ 1, respectively ||hi|| ≤ 1,
such that for any ηi ∈ P(Ei) we have

|[Φi,t(ηi)− Φi,t(µi)](ht)| ≤ β(Pi,t)
||Gi,t||osc

ηi(Gi,t)
|(ηi − µi)(hi)| (5)

and respectively

|[Φi,t(ηi)− Φi,t(µi)](ht)| ≤ β(Pi,t)
2||Gi,t||
ηi(Gi,t)

|(ηi − µi)(hi)| (6)

Using the following logic for some positive function ϕ we can obtain a result intermediate between (5) and (6):

||ϕ||osc = ||ϕ||+ osc(ϕ) = ||ϕ||+ sup
x,y∈E

|ϕ(x)− ϕ(y)|

≤ ||ϕ||

(
1 +

1
||ϕ||

sup
x,y∈E

∣∣∣∣1− ϕ(y)
ϕ(x)

∣∣∣∣ |ϕ(x)|

)

≤ ||ϕ||

(
1 +
||ϕ||
||ϕ||

sup
x,y∈E

∣∣∣∣1− ϕ(y)
ϕ(x)

∣∣∣∣
)

≤ ||ϕ||
(

2−
infy∈E ϕ(y)
supx∈E ϕ(x)

)
Summarizing, we can formulate the following proposition.
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Proposition 2. For any 0 ≤ i ≤ t, µi ∈ P(Ei), and ht ∈ Bb(Et) with osc(ht) ≤ 1 there exists a function hi in
Bb(Ei) with osc(hi) ≤ 1 such that for any ηi ∈ P(Ei) we have

|[Φi,t(ηi)− Φi,t(µi)](ht)| ≤ β(Pi,t)
||Gi,t||
ηi(Gi,t)

[
2−

infyi∈Ei Gi,t(yi)
||Gi,t||

]
|(ηi − µi)(hi)|

These results describe the propagation of one-step approximation error through the non-linear operator Φi,t. They
reveal the link between the initial error at time i and the propagated error at time t through the properties of the
potential functions Gi,t and the Dobrushin contraction coefficient β(Pi,t).

According to Proposition 4.3.3. [4], the oscillations of the potential functions can be bounded as follows under
assumptions (G)u and (M)(m)

u :

infxi∈Ei Gi,t(xi)
||Gi,t||

≥ εu(M)εmu (G)

||Gi,t||
ηi(Gi,t)

≤ ε−1
u (M)ε−mu (G)

Thus Proposition 2 implies that under assumptions (G)u and (M)(m)
u the error propagation in the sequential

Feynman-Kac filter can be characterized as follows:

|[Φi,t(ηi)− Φi,t(µi)](ht)| ≤
(

1− ε2u(M)ε(m−1)
u (G)

)b(t−i)/mc
×2− εu(M)εmu (G)

εu(M)εmu (G)
|(ηi − µi)(hi)| (7)

The global approximation error between the true filtering distribution and its N -particle approximation, ηNt − ηt,
can be related to the sequence of local approximation errors ηNi − Φi(ηNi−1), i = 0, . . . , t [4]:

ηNt − ηt =
t∑
i=0

[
Φi,t(ηNi )− Φi,t(Φi(ηNi−1))

]
. (8)

IV. PARTICLE FILTERS WITH INTERMITTENT SUBSAMPLING

This section presents an analysis of the error propagation in particle filters that perform intermittent subsampling
approximation steps. We focus on the case where the number of particles N is constant and the subsampling
approximation step always uses Nb particles. It is relatively straightforward to generalize our results to other
settings, where the number of particles N and the size of the subsample approximation may vary over time. Our
main results are a time-uniform bound on the weak-sense Lp-error and an associated exponential inequality.

A. Algorithm Description

Denote by δt a binary variable which indicates whether a subsampling approximation is performed at time-step t.
In our analysis, we will assume that this variable is the outcome of a decision function based on the set of particles
{ξkt−1}Nk=1 and observations yt at the previous time-step. Similar results could be obtained should the decision
function be of a more general nature (for example, based on either the entire history of the particle filter, (ξ′k)Nk=1,
and/or the entire history of measurements y1:t). We define δ0(·, ·) = 0, and we assume there exist probabilities:

E{δt} = P{δt = 1} = qt

The expectation is with respect to the Monte-Carlo sampling, measurement noise and the possible target trajectories.
The value of qt characterizes the frequency of subsampling approximation at time-step t.

The subsample approximation particle filter can then be expressed as:

ηNt = SN ◦ SNb(Φt(ηNt−1)) if δt = 1,

ηNt = SN (Φt(ηNt−1)) if δt = 0 (9)

Example: leader node particle filter with subsampling
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Suppose that L = {1, 2, . . . , L} is the set of leader node labels and every leader node with label ` ∈ L has a set of
satellite nodes S` that take measurements and transmit them to the leader node. The number of such satellite nodes
in the vicinity of the leader node ` is |S`|. The state-space model describing the target evolution and measurement
process at every leader node is then a simple modification of the general state-space model described in Section II:

Xt = ft(Xt−1, %t) (10)

Y j
t = gjt (X

j
t , ζ

j
t ) ∀j ∈ S`t (11)

Thus the target model is the same at every leader node but the observation process may be different.
For the leader node particle filter, the decision function δt({ξjt−1}Nj=1, Y

S`t
t ), is used to decide whether or not

to change a leader node at time t. Here Y S`tt denotes the set of all measurements recorded at time t by the set
of satellite sensor nodes S`t of leader node `t. The leader node algorithm with subsampling can be described as
follows:

Φ`t(η
N
t−1)⇒ ηNb

t −→ ηNb
t ⇒ ηNt if δt = 1, (12)

Φ`t(η
N
t−1)⇒ ηNt if δt = 0 (13)

Here the implication sign ⇒ represents a sampling operation and the right arrow −→ denotes the communication
process.

If δt = 1, the current leader node `t determines the next leader node `t+1 (through a sensor management algorithm,
see e.g. [27]), and calculates the Nb-particle approximation to the current predictive posterior distribution, ηNt , by
sub-sampling the output of the standard N -particle propagation step. Finally, the leader node `t transmits ηNb

t to the
next leader node `t+1, which recovers the N -particle approximation by up-sampling. If δt = 0, the current leader
node performs standard particle propagation.

In the leader node setting, the uniform condition (G)u can be formulated as follows:
• (G)`u There exists a strictly positive number εu(G) ∈ (0, 1] such that for any `, t and xt, yt ∈ Et

G`t(xt) ≥ εKu
u (G)G`t(yt)

Indeed, (G)`u holds if we take εu(G) = inf
t≥0

min
`t∈L

ε`t(G) and Ku = max
`∈L
|S`|. Thus Proposition 2 implies that in the

leader node setting and under assumptions (G)`u and (M)(m)
u the error propagation in the sequential Feynman-Kac

filter can be characterized as follows:

|[Φ`i,`t(ηi)− Φ`i,`t(µi)](ht)| ≤
(

1− ε2u(M)ε(m−1)Ku
u (G)

)b(t−i)/mc
× 2− εu(M)εmKu

u (G)
εu(M)εmKu

u (G)
|(ηi − µi)(hi)| (14)

B. Time-uniform error bounds and exponential inequalities

We now analyze the global approximation error for particle filtering with intermittent subsampling. We first
present a theorem that specifies a time-uniform bound on the weak-sense Lp error.

Theorem 2. Suppose assumptions (G)u and (M)(m)
u hold. Suppose further that P{δi = 1} ≤ qu for any i ≥ 0 and

0 ≤ qu ≤ 2/3. Then for a positive integer χ such that N = χNb, t ≥ 0, p ≥ 1 and ht ∈ Osc1(Et) we have the
time uniform estimate

sup
t≥0

E
{
|[ηNt − ηt](ht)|p

}1/p ≤ εu,mc
1/p(p)√
N

(
q1/p

u
√
χ+ (1− qu)1/p

)
where the constant εu,m is1:

εu,m =
m(2− εu(M)εmu (G))

ε3u(M)ε(2m−1)
u (G)

. (15)

1In the leader node setting this is given by the following expression εu,m = m(2− εu(M)εmKu
u (G))/ε3u (M)ε

(2m−1)Ku
u (G).
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Proof: We begin by applying Minkowski’s inequality to (8)

E
{∣∣[ηNt − ηt](ht)∣∣p} 1

p ≤
t∑
i=0

E
{∣∣[Φ`i,`t(η

N
i )− Φ`i,`t(Φ`i(η

N
i−1))

]
(hi)

∣∣p} 1
p

and then applying Proposition 2:
t∑
i=0

E
{∣∣[Φ`i,`t(η

N
i )− Φ`i,`t(Φ`i(η

N
i−1))

]
(hi)

∣∣p} 1
p

≤
t∑
i=0

E
{∣∣∣∣β(P`i,`t)

||G`i,`t ||
ηi(G`i,`t)

[
2−

infyi∈Ei G`i,`t(yi)
||G`i,`t ||

]∣∣∣∣p ∣∣[ηNi − Φ`i(η
N
i−1)

]
(hi)

∣∣p}1/p

.

Furthermore, applying (7) we have:
t∑
i=0

E
{∣∣[Φ`i,`t(η

N
i )− Φ`i,`t(Φ`i(η

N
i−1))

]
(hi)

∣∣p} 1
p

≤ 2− εu(M)εmu (G)
εu(M)εmu (G)

×
t∑
i=0

(
1− ε2u(M)ε(m−1)

u (G)
)b(t−i)/mc

E
{∣∣[ηNi − Φ`i(η

N
i−1)

]
(hi)

∣∣p}1/p
.

Next we analyze each individual expectation under the sum above. In particular, using the structure of the algorithm
defined in (24) and the definition of sampling operator introduced in (4) we can rewrite the terms comprising the
sum in the following explicit way:

E
{∣∣[ηNi − Φ`i(η

N
i−1)

]
(hi)

∣∣p} 1
p (16)

= E
{∣∣[δiSN ◦ SNb(Φ`i(η

N
i−1)) + (1− δi)SN (Φ`i(η

N
i−1))− Φ`i(η

N
i−1)

]
(hi)

∣∣p} 1
p

Grouping the terms and using Minkowski’s inequality again we conclude the following:

E
{∣∣[ηNi − Φ`i(η

N
i−1)

]
(hi)

∣∣p} 1
p ≤ E

{∣∣δi [SN ◦ SNb(Φ`i(η
N
i−1))− Φ`i(η

N
i−1)

]
(hi)

∣∣p} 1
p

+ E
{∣∣(1− δi) [SN (Φ`i(η

N
i−1))− Φ`i(η

N
i−1)

]
(hi)

∣∣p} 1
p

.

Adding and subtracting δiSNb(Φ`i(η
N
i−1)) in the first term on the right and applying Minkowski’s inequality again

we have:

E
{∣∣[ηNi − Φ`i(η

N
i−1)

]
(hi)

∣∣p} 1
p (17)

≤ E
{∣∣δi [SN ◦ SNb(Φ`i(η

N
i−1))− SNb(Φ`i(η

N
i−1))

]
(hi)

∣∣p} 1
p

+ E
{∣∣δi [SNb(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)

]
(hi)

∣∣p} 1
p

+ E
{∣∣(1− δi) [SN (Φ`i(η

N
i−1))− Φ`i(η

N
i−1)

]
(hi)

∣∣p} 1
p

We see that each error term under the sum splits into three individual terms, describing the approximation paths
the leader node algorithm can follow at time i. If N = χNb then the N -particle approximation after subsampling
can be recovered from the Nb-particle approximation without error by replicating the Nb-particle approximation χ
times. Thus the first term in (17) is zero.

The analysis of the remaining two terms is similar. We first concentrate on the second term. Recall that δi =
δi({ξji−1}Nj=1, Y

S`i
i ). Thus given the σ-algebra Fi−1 and the realization of the current measurement, Y S`ii = y

S`i
i ,

the output of the decision rule is independent of the sampling error, [SN (Φ`i(η
N
i−1))− Φ`i(η

N
i−1)](hi). We exploit
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this Markovian nature of the decision rule and apply Lemma 1 to the conditional expectation rendering the following
bound:

E
{∣∣δi [SNb(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)

]
(hi)

∣∣p}1/p
(18)

= E
{
δiE

{∣∣[SNb(Φ`i(η
N
i−1))− Φ`i(η

N
i−1)

]
(hi)

∣∣p ∣∣∣Fi−1, Y
S`i
i = y

S`i
i

}}1/p

≤ c1/p(p)√
Nb

q
1/p
i

Combining the analysis results for all three terms we obtain:

E
{∣∣[ηNi − Φ`i(η

N
i−1)

]
(ht)

∣∣p}1/p
≤ c1/p(p)

(
q

1/p
i

1√
Nb

+ (1− qi)1/p 1√
N

)
We note that the expression in brackets has the form ϕ(qi) = q

1/p
i (α+ β) + (1− qi)1/pα for some β > α ≥ 0. For

p ≥ 1, ϕ(qi) has maximum at qi = qmax with

qmax =
1

1 +
[
α+β
α

]p/(1−p) .
We have that ϕ(qi) is non-decreasing on qi ∈ [0, qmax] and non-increasing on qi ∈ (qmax, 1]. Noting that
[(α+ β)/α]p/(1−p) is increasing in p we obtain:

qmax ≥
1

1 +
[

α
α+β

] ≥ inf
β:β>α

1

1 +
[

α
α+β

] = 2/3.

Thus if qu ≤ 2/3 ≤ qmax then for any i ≥ 0 we have the time-uniform estimate:

E
{∣∣[ηNi − Φ`i(η

N
i−1)

]
(ht)

∣∣p}1/p
≤ c1/p(p)

(
q

1/p
u

1√
Nb

+ (1− qu)1/p 1√
N

)
Finally, noting [4] that:

t∑
i=0

(
1− ε2u(M)ε(m−1)

u (G)
)b(t−i)/mc

≤ m

ε2u(M)ε(m−1)
u (G)

(19)

we complete the proof of theorem.
The result can be generalized to cases where N is not an integer multiple of Nb, at the expense of a slight

loosening of the bound.

Corollary 2. Suppose the assumptions of Theorem 2 apply, except we allow any integer Nb < N . Then for any
t ≥ 0, p ≥ 1 and ht ∈ Osc1(Et) we have the time uniform estimate

sup
t≥0

E
{
|[ηNt − ηt](ht)|p

}1/p ≤ εu,mc
1/p(p)

(
q1/p

u

[
1√
N

+
1√
Nb

]
+ (1− qu)1/p 1√

N

)
where the constant εu,m is defined as in (15).

The corollary follows by allowing for sampling error to arise in the first term in (17):

E
{∣∣δi [SN ◦ SNb(Φ`i(η

N
i−1))− SNb(Φ`i(η

N
i−1))

]
(hi)

∣∣p} 1
p ≤ c1/p(p)√

N
q

1/p
i .

and incorporating this error bound throughout the rest of the proof of Theorem 2.

Corollary 3. Under the same assumptions as Theorem 2, we have for p ∈ N and ht ∈ Osc1(Et) the time uniform
estimate

sup
t≥0

E
{
|[ηNt − ηt](ht)|p

}1/p ≤ εu,mc
1/p(p)√
N

(
quχ

p/2 + (1− qu)
)1/p

(20)
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Proof: Starting with (16), we perform a different error decomposition:

E
{∣∣[ηNi − Φ`i(η

N
i−1)

]
(hi)

∣∣p} 1
p (21)

= E
{∣∣δi [SN ◦ SNb(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)

]
(hi)

+ (1− δi)
[
SN (Φ`i(η

N
i−1))− Φ`i(η

N
i−1)

]
(hi)

∣∣p} 1
p

≤ E
{
δpi |
[
SN ◦ SNb(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)

]
(hi)|p

+
p−1∑
k=1

(
p

k

)
δki (1− δi)p−k|

[
SN ◦ SNb(Φ`i(η

N
i−1))− Φ`i(η

N
i−1)

]
(hi)|k

× |
[
SN (Φ`i(η

N
i−1))− Φ`i(η

N
i−1)

]
(hi)|p−k

+ (1− δi)p
∣∣[SN (Φ`i(η

N
i−1))− Φ`i(η

N
i−1)

]
(hi)

∣∣p}1/p
.

We observe that δi(1− δi) = 0 and that if N = χNb for integer χ, we can reconstruct an N -sample representation
from the Nb sample with no additional error. Thus:

E
{∣∣[ηNi − Φi(ηNi−1)

]
(hi)

∣∣p} 1
p ≤ E

{
δi
∣∣[SNb(Φi(ηNi−1))− Φi(ηNi−1)

]
(hi)

∣∣p
+ (1− δi)

∣∣[SN (Φi(ηNi−1))− Φi(ηNi−1)
]

(hi)
∣∣p}1/p

.

Applying the same conditioning as in (18) and utilizing Lemma 1

E
{∣∣[ηNi − Φi(ηNi−1)

]
(hi)

∣∣p} 1
p ≤

(
qic(p)

N
p/2
b

+
(1− qi)c(p)

Np/2

)1/p

=
c(p)1/p

√
N

(
qiχ

p/2 + (1− qi)
)1/p

(22)

We note that χ ≥ 1 and qiχ+ (1− qi) ≤ quχ+ (1− qu) under the assumption qi ≤ qu. The final step in the proof
involves applying (19) as in the proof of Theorem 2.

The intuitive implication of Theorem 2 and Corollary 3 is that rare approximation events have limited effect on
the average error performance of the subsample approximation particle filter. The L2 error bound for the standard
particle filter is the same as (20) of Corollary 3 taken with p = 2, except for the term (quχ+ (1− qu))1/2.
This expression thus quantifies the performance deterioration, in terms of L2 error bounds, due to the subsample
approximation step. If the compression factor, χ, is χ = 10, and subsample approximations occur with probability
0.1, then the deterioration of the root mean-square performance captured, in terms of bounds, by the factor
(0.1× 10 + (1− 0.1))1/2 is around 40%. The communication overhead, on the other hand, represented by the
total number of particles transmitted during leader node hand-off, is reduced by a factor of 10. The compressed
particle cloud exchanges are most efficient in scenarios where the targets being tracked have slow dynamics and the
density of leader nodes is relatively low (both implying rare hand-off events), but the tracking accuracy requirements
and leader-to-leader communication costs are high.

Example: leader node particle filter: If the compression factor, χ, is χ = 10, and subsample approximations
occur with probability 0.1, then the deterioration of the root mean-square performance deterioration captured, in
terms of bounds, by the factor (0.1× 10 + (1− 0.1))1/2, is around 40%. The communication overhead, on the
other hand, represented by the total number of particles transmitted during leader node hand-off, is reduced by
a factor of 10. The compressed particle cloud exchanges are most efficient in scenarios where the targets being
tracked have slow dynamics and the density of leader nodes is relatively low (both implying rare hand-off events),
but the tracking accuracy requirements and leader-to-leader communication costs are high.

Theorem 3 below provides the exponential estimate for the probability of large deviations of the approximate
Feynman-Kac flows associated with the subsample approximation particle filter. Before proceeding to Theorem 3
we state a technical lemma.
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Lemma 3. Let X and Y be real random variables taking values in X ⊆ R and Y ⊆ R and let the joint distribution
of these variables be PX,Y (d(x, y)). Then for any ε ∈ R we have:

P{X + Y ≥ ε} ≤ P{X ≥ ε/2}+ P{Y ≥ ε/2}

Proof: Let us define subsets Xx≥y ⊆ X , Xx≥y = {x ∈ X : x ≥ y, y ∈ Y} and Xx<y = X cx≥y, Xx<y = {x ∈
X : x < y, y ∈ Y}. Denote by 1cond the indicator function, taking value 1 where the condition cond holds and 0
elsewhere. Now write the explicit expression for P{X + Y ≥ ε}:

P{X + Y ≥ ε} =
∫
Y

∫
X

1x+y≥εPX,Y (d(x, y))

=
∫
Y

∫
Xx≥y

1x+y≥εPX,Y (d(x, y)) +
∫
Y

∫
Xx<y

1x+y≥εPX,Y (d(x, y))

Since 1x+y≥ε ≤ 12x≥ε on Xx≥y and 1x+y≥ε ≤ 12y≥ε on Xx<y we have

P{X + Y ≥ ε} ≤
∫
Y

∫
Xx≥y

1x≥ε/2PX,Y (d(x, y)) +
∫
Y

∫
Xx<y

1y≥ε/2PX,Y (d(x, y))

≤
∫
Y

∫
X

1x≥ε/2PX,Y (d(x, y)) +
∫
Y

∫
X

1y≥ε/2PX,Y (d(x, y)),

and the claim of lemma follows.

Theorem 3. Suppose assumptions (G)u and (M)(m)
u hold. Suppose further that P{δi = 1} ≤ qu for i ≥ 0 and

0 ≤ qu ≤ 1. Then for any Nb < N , t ≥ 0 and ht ∈ Osc1(Et) we have

sup
t≥0

P
{
|[ηNt − ηt](ht)| ≥ ε

}
≤

(
1 + 4

√
2π
ε
√
N

εu,m

)
e
− Nε2

2ε2u,m

+ qu

(
1 + 4

√
2π
ε
√
Nb

εu,m

)
e
− Nbε

2

2ε2u,m

Proof: Using the triangle inequality in (8) we have∣∣[ηNt − ηt](ht)∣∣ ≤ t∑
i=0

∣∣[Φi,t(ηNi )− Φi,t(Φi(ηNi−1))
]

(hi)
∣∣

Following the methodology presented in Theorem 2 and denoting ωi =
(

1− ε2u(M)ε(m−1)
u (G)

)b(t−i)/mc
and a =

2−εu(M)εmu (G)
εu(M)εmu (G) we have:

∣∣[ηNt − ηt](ht)∣∣ ≤ a t∑
i=0

ωi
∣∣[ηNi − Φi(ηNi−1)

]
(hi)

∣∣ .
Using the structure of the algorithm defined in (24) and the definition of sampling operator introduced in (4) we
obtain the following (similarly to Theorem 2):∣∣[ηNt − ηt](ht)∣∣ ≤ a t∑

i=0

ωiδi
∣∣[SN ◦ SNb(Φi(ηNi−1))− SNb(Φi(ηNi−1))

]
(hi)

∣∣
+ a

t∑
i=0

ωi(1− δi)
∣∣[SN (Φi(ηNi−1))− Φi(ηNi−1)

]
(hi)

∣∣
+ a

t∑
i=0

ωiδi
∣∣[SNb(Φi(ηNi−1))− Φi(ηNi−1)

]
(hi)

∣∣
= Z1 + Z2,
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where

Z1 = a
t∑
i=0

ωiδi
∣∣[SN ◦ SNb(Φi(ηNi−1))− SNb(Φi(ηNi−1))

]
(hi)

∣∣
+ a

t∑
i=0

ωi(1− δi)
∣∣[SN (Φi(ηNi−1))− Φi(ηNi−1)

]
(hi)

∣∣

Z2 = a
t∑
i=0

ωiδi
∣∣[SNb(Φi(ηNi−1))− Φi(ηNi−1)

]
(hi)

∣∣
Noting that

sup
t≥0

P
{
|[ηNt − ηt](ht)| ≥ ε

}
≤ sup

t≥0
P {Z1 + Z2 ≥ ε}

and applying Lemma 3 we have:

sup
t≥0

P
{
|[ηNt − ηt](ht)| ≥ ε

}
≤ sup

t≥0
P {Z1 ≥ ε/2}+ sup

t≥0
P {Z2 ≥ ε/2} .

Now applying Markov inequality we conclude:

sup
t≥0

P
{
|[ηNt − ηt](ht)| ≥ ε

}
≤ sup

t≥0
P
{
eτ1Z1 ≥ eτ1ε/2

}
+ sup

t≥0
P
{
eτ2Z2 ≥ eτ2ε/2

}
≤ sup

t≥0
e−τ1ε/2E

{
eτ1Z1

}
+ sup

t≥0
e−τ2ε/2E

{
eτ2Z2

}
Next we apply the exponential series expansion

E
{
eτ1Z1

}
=
∑
n≥0

τn1
n!

E{Zn1 } (23)

and use the fact that according to the following conditioning argument and Lemma 1 we have

E{Zn1 }1/n = (E{Zn1 |δi = 1}P{δi = 1}+ E{Zn1 |δi = 0}P{δi = 0})1/n

≤ a
t∑
i=0

ωiE
{(
δi
∣∣[SN ◦ SNb(Φi(ηNi−1))− SNb(Φi(ηNi−1))

]
(hi)

∣∣
+ (1− δi)

∣∣[SN (Φi(ηNi−1))− Φi(ηNi−1)
]

(hi)
∣∣)n}1/n

= a
t∑
i=0

ωi

(
P{δi = 1}E

{∣∣[SN ◦ SNb(Φi(ηNi−1))− SNb(Φi(ηNi−1))
]

(hi)
∣∣n |δi = 1

}
+ P{δi = 0}E

{∣∣[SN (Φi(ηNi−1))− Φi(ηNi−1)
]

(hi)
∣∣n |δi = 0

})1/n

≤ a
t∑
i=0

ωi(qic(n)N−n/2 + (1− qi)c(n)N−n/2)1/n

=
c1/n(n)√

N
a

t∑
i=0

ωi.

Noting that a
t∑
i=0

ωi ≤ εu,m we have:

E{Zn1 } ≤ εnu,mc(n)N−n/2
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Substituting this into (23) and employing the same simplifications as in the proofs of Theorem 1 and Corollary 1
we obtain:

e−ετ1/2E
{
eτ1Z1

}
≤
∑
n≥0

(
τ1εu,m√
N

)n c(n)
n!

e−ετ1/2

≤

1 +
τ1εu,m√
N

+
∑
n≥2

(
τ1εu,m√

2N

)n Γ(n/2)
(n− 1)!

 e−ετ1/2
=
(

1 +
√

2π
τ1εu,m√
N

)
e
τ21 ε

2
u,m

8N
−ετ1/2

Choosing τ1 = 2εN
ε2u,m

we have

e−ετ1/2E
{
eτ1Z1

}
≤

(
1 + 4

√
2π
ε
√
N

εu,m

)
e
− Nε2

2ε2u,m

Similar analysis yields

e−ετ2/2E
{
eτ2Z2

}
≤ qu

(
1 +
√

2π
τ2εu,m√
Nb

)
e
τ22 ε

2
u,m

8Nb
−ετ2/2,

which after choosing τ2 = 2Nbε
ε2u,m

results in:

e−ετ2/2E
{
eτ2Z2

}
≤ qu

(
1 + 4

√
2π
ε
√
Nb

εu,m

)
e
− Nbε

2

2ε2u,m .

This completes the proof.

V. PARTICLE FILTERING WITH INTERMITTENT PARAMETRIC APPROXIMATIONS

In this section we analyze the error behaviour of a particle filter that incorporates intermittent parametric mixture
estimation of the filtering density. The probability density estimation problem consists of estimating an unknown
probability density given the i.i.d. sample {ξi}Ni=1 from this density. As before, let (E, E) be a measurable space.
Denote λ a σ-finite measure on E . Throughout this section it is assumed that the underlying distribution has a
density if its Radon-Nikodym derivative with respect to λ exists.

We assume that with the sequence of the approximate filtering distributions, Φi(ηNi−1)(dxi), there exists an
associated and well-behaved sequence of approximate filtering densities 1

dxi
Φi(ηNi−1)(dxi) so that the mixture density

estimation problem is well-defined. The main result of the section, constituted in Theorem 6, is a time-uniform,
weak-sense Lp error bound characterizing the expected behaviour of the parametric approximation leader node
particle filter.

A. Parametric Approximation Particle Filter Algorithm

For this algorithm, the binary variable δt now indicates whether a parametric approximation is performed at
time-step t. Again we assume that it is the outcome of a decision function based on the set of particles {ξkt−1}Nk=1

and observations Yt−1 at the previous time-step. Denote by WNp : P(E) → P(ENp) an operator that represents
a parametric mixture approximation procedure that involves Np mixture components (we will provide a concrete
example below). The parametric approximation particle filter can then be expressed as:

ηNt = SN ◦WNp(Φt(ηNt−1)) if δt = 1,

ηNt = SN (Φt(ηNt−1)) if δt = 0 (24)

Example: parametric approximation leader node particle filter
When it employs parametric approximation, the leader node particle filter can be represented as follows.

Φ`t(η
N
t−1)⇒ ηNt V η̂

Np
t −→ η̂

Np
t ⇒ ηNt if δt = 1,

Φ`t(η
N
t−1)⇒ ηNt if δt = 0
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Here the V represents the local distribution parametric approximation process and Np is the number of the compo-
nents in the mixture. As before, ⇒ represents an N -particle sampling operation and −→ represents communication
between leader nodes. Thus the second particle filter we define relies upon a parametric approximation of the
distribution Φi(ηNi−1) based on the current particle set (a sample from this distribution).

B. Parametric Approximation

Within the GML framework proposed by Li and Barron [19] the discrepancy between the target density f and its
estimate is measured by the Kullback-Leibler (KL) divergence. For any two measures ν and µ on E KL-divergence
can be defined as follows:

D(ν||µ) =
∫
E

log
dν
dµ

dν (25)

We will also abuse notation by writing KL-divergence for two arbitrary densities f and g in a similar fashion:

D(f ||g) =
∫
E

log
f(x)
g(x)

f(x)dλ(x) (26)

Consider the following class of bounded parametric densities:

Hi =

{
φθi(x) : θi ∈ Θi, ai ≤ inf

θi,xi
φθi(xi), sup

θi,xi

φθi(xi) ≤ bi

}
where 0 < ai < bi < ∞ and Θi ⊂ Rdi defines the parameter space, and inf and sup are taken over Θi and
Ei. In the setting where the intermittent approximation is accomplished using parametric approximation, we are
looking for a sequence of mixture density estimators of the filtering densities. We thus define the class of bounded
parametric densities, φθi(x), indexing it by time-step i to emphasize that the parameterization can be time-varying.
The approximation is restricted to a class of discrete Np-component convex combinations of the form:

CNp,i = convNp(Hi) =

g : g(x) =
Np∑
j=1

αi,jφθj (x), φθj ∈ Hi,
Np∑
j=1

αi,j = 1, αi,j ≥ 0


As Np grows without bound, CNp,i converges to the class of continuous convex combinations:

Ci = conv(Hi) =
{
g : g(x) =

∫
Θ
φθ(x)Pi(dθ), φθ ∈ Hi

}
The general framework for the greedy approximation of arbitrary cost functions is discussed in [28].

The particular instance of this more general framework is the Greedy Maximum Likelihood (GML)
for mixture approximation (see [19]). The corresponding computational routine, a sequential greedy
maximum likelihood, associated with this procedure is summarized in the form of Algorithm 1.

Algorithm 1: GML
Given g1 ∈ H1

for k = 2 to Np do2

Find φθk ∈ H and 0 ≤ αk ≤ 1 to maximize the function:3

(θ∗k, α
∗
k) = arg max

αk,θk

N∑
j=1

log((1− αk)gk−1(xj) + αkφθk(xj))
4

Let gk = (1− α∗k)gk−1 + α∗kφθ∗k5

endfor6

To link the greedy maximum likelihood maximization in Algorithm 1 to the minimization of KL-divergence we
recall that if ν is a known distribution and µ is the KL-based fit to this distribution, the KL-divergence minimization
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problem can be written as follows (assuming that the corresponding densities exist):

min
µ∈P(E)

D(ν||µ) = min
µ∈P(E)

∫
E

log
dν
dµ

dν

= min
µ∈P(E)

[∫
E

log
dν

dλ(x)
dν −

∫
E

log
dµ

dλ(x)
dν
]

= max
µ∈P(E)

∫
E

log
dµ

dλ(x)
dν

In practice ν itself is unknown, but a sample from this distribution may be available. The approximation of the
true expectation with respect to ν above by the expectation with respect to its empirical counterpart, SN (ν), leads
to the maximum likelihood density estimator:

min
µ∈P(E)

D(ν||µ) = max
µ∈P(E)

Eν log
dµ

dλ(x)

≈ max
µ∈P(E)

ESN (ν) log
dµ

dλ(x)

= max
µ∈P(E)

N∑
i=1

log
dµ

dλ(x)
(xi)

Thus the error committed by resorting to the suboptimal GML algorithm consists of two contributions.
First, there is the error associated with the limitations of the approximation class C: even the best possible

µ ∈ C will have non-zero D(ν||µ) if ν /∈ C. We will call this error the approximation error. Second, there is
the combined error associated with the greedy optimization and the approximation of the true expectation by its
empirical counterpart — we will call this the estimation error. In the following we analyze these errors for the
one-step approximation and then link the results of the analysis to the overall error of the parametric approximation
particle filter.

C. Local Error Analysis

The attractive features of Algorithm 1 are threefold. First, the algorithm simplifies the ML density estimation
procedure. Instead of facing the Np-mixture estimation problem we only have to solve Np 2-mixture estimation
problems [19]. Second, there are several bounds on approximation and sampling errors of Algorithm 1 in terms of
KL-divergence (see [19] and [23]). In this section we extend the existing results and perform the Lp error analysis.
Third, it was shown [19] that the performance of the greedy algorithm converges to the performance of the optimal
mixture estimation algorithm as N and Np become large. Thus if these conditions hold, the results obtained for the
parametric approximation particle filter that uses GML are also applicable if other density estimators are employed.

Here we state the relevant results from [19] that will be of use in further analysis. The following notation
is introduced to facilitate presentation. Assuming that f is a target density and g ∈ C we denote D(f ||C) =
infg∈C D(f ||g), the least possible divergence between a target density, f , and a member g from the class of
continuous convex combinations C. Furthermore, assuming that the target density f is known, the analytical estimator
gNp ∈ CNp can be obtained by solving the following greedy recursion for i = 2 . . . Np (see Algorithm 1):

(θ∗k, α
∗
k) = arg max

αk,θk

∫
x∈E

log((1− αk)gk−1(x) + αkφθk(x))f(x)dx.

Alternatively, ĝNp ∈ CNp is an empirical Np-mixture estimator constructed using Algorithm 1 based on a sample
from the target density, f . The following theorem (see [19]) reveals an important general property of the GML
algorithm.

Theorem 4 (Li and Barron [19], Theorem 2). For every gC(x) ∈ C

D(f ||gNp) ≤ D(f ||gC) +
γc2f,C
Np

.
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Here,

c2
f,C =

∫ ∫
Θ φ

2
θ(x)P(dθ)

(
∫

Θ φθ(x)P(dθ))2
f(x)dx,

and γ = 4[log(3
√
e) + supθ1,θ2∈Θ,x∈E log(φθ1(x)/φθ2(x))]

One of the consequences [19] of Theorem 4 is the following relationship between an arbitrary gC(x) ∈ C and
the empirical GML algorithm output ĝNp ∈ CNp :

1
N

N∑
i=1

log ĝNp(xi) ≥
1
N

N∑
i=1

log gC(xi)−
γc2f,C
Np

. (27)

Clearly, it also follows directly from Theorem 4 that D(f ||gNp) ≤ D(f ||C) + γc2f,C
Np

. Thus Theorem 4 establishes a
strong formal argument that shows that the greedy density estimate converges to the best possible estimate as Np

grows without bound. Similar results for the empirical estimator ĝNp appear in [23] and [19].
Our next goal is to connect the existing results on the performance of the GML in terms of the KL-divergence to

its performance in terms of Lp error metric. Our next result reveals the Lp error bound characterizing the average
performance of the GML algorithm. One of the components of the bound is the packing number D(ε,H, dN ),
which is the the maximum number of ε-separated points in H (the class of parametric density functions) under the
empirical semimetric dN . The empirical semimetric is defined for h1, h2 ∈ H as

d2
N (h1, h2) =

1
N

N∑
k=1

(h1(xk)− h2(xk))2.

Theorem 5. Suppose ĝNp ∈ CNp is constructed using Algorithm 1 and ĜNp ∈ P(E) is the distribution associated
with ĝNp . Suppose further that there exists density f associated with the target distribution F ∈ P(E). Then for
any h ∈ Bb(E) with ||h||osc ≤ 1, p ≥ 1, and N,Np ∈ N we have:

E
{
|[ĜNp − F ](h)|p

}1/p
≤
√

2
[

8
a
√
N

(
2c2/p(p/2)

+(p/4)!CE
∫ b

0

√
log (1 +D(ε,H, dN ))dε

)
+
γc2f,C
Np

+D(f ||C)

]1/2

where C is a universal constant2.

Proof: Using Pinsker’s inequality,
∫
|f − g| ≤

√
2D(f ||g), [7] we have

E
{
|[ĜNp − F ](h)|p

}1/p
= E

{(∫
E

[ĝNp(x)− f(x)]h(x)dx
)p}1/p

≤ ||h||E
{(∫

E
|ĝNp(x)− f(x)|dx

)p}1/p

≤ E
{(√

2D(f ||ĝNp)
)p}1/p

=
√

2
[
E
{
D(f ||ĝNp)p/2

}2/p
]1/2

Now, suppose p ≥ 2. The following decomposition can be used to analyze the previous expression:

D(f ||ĝNp) = D(f ||ĝNp)−D(f ||C) +D(f ||C)

2See [25] for details.



21

Denoting g∗ = arg ming∈C D(f ||g) we have the following modification of the decomposition proposed by Rakhlin
et al. in [23]:

D(f ||ĝNp)−D(f ||C) = −
∫

log ĝNp(x)F (dx) +
∫

log g∗(x)F (dx)

= −
∫

log ĝNp(x)F (dx) +
1
N

N∑
i=1

log ĝNp(xi)

+
1
N

N∑
i=1

log g∗(xi)−
1
N

N∑
i=1

log ĝNp(xi)

+
∫

log g∗(x)F (dx)− 1
N

N∑
i=1

log g∗(xi)

Applying (27) to the middle term we see:

D(f ||ĝNp)−D(f ||Ci) ≤ |[F − SN (F )](log ĝNp)|+ |[F − SN (F )](log g∗)|+
γc2f,C
Np

By the definition of D(f ||C) it follows that D(f ||ĝNp)−D(f ||C) ≥ 0 and thus we conclude:∣∣D(f ||ĝNp)−D(f ||C)
∣∣ ≤ 2 sup

g∈C

∣∣[F − SN (F )] (log g)
∣∣+

γc2f,C
Np

This allows splitting the effect of approximation and sampling errors by applying Minkowski’s inequality (since
p ≥ 2):

E
{
D(f ||ĝNp)p/2

}2/p
= E

{∣∣D(f ||ĝNp)−D(f ||C) +D(f ||C)
∣∣p/2}2/p

≤ 2E


[

sup
g∈C

∣∣[F − SN (F )] (log g)
∣∣]p/2

2/p

+
γc2f,C
Np

+D(f ||C).

The next step of the proof makes use of a symmetrization argument. We recall the definition of the Rademacher
sequence (εk) as a sequence of independent random variables taking values in {−1,+1} with P{εk = 1} = P{εk =
−1} = 1/2. Denote by SNε the generator of the signed Rademacher measure (with xk being the samples from µ):

SNε (µ) =
1
N

N∑
k=1

εkδxk .

Using the symmetrization lemma (see e.g. Lemma 2.3.1 in [25] or Lemma 6.3 in [18]) we deduce:

E


[

sup
g∈C

∣∣[F − SN (F )] (log g)
∣∣]p/2

2/p

≤ 2E


[

sup
g∈C

∣∣SNε (F ) (log g)
∣∣]p/2

2/p

Denoting κ(x) = g(x)− 1 and using the fact [22] that ϕ(κ(x)) = a log(κ(x) + 1) is a contraction3, we apply the
comparison inequality (Theorem 4.12 in [18]), observing that [·]p/2 is convex and increasing for p ≥ 2 and κ is a

3The function ϕ : R→ R is a contraction if we have |ϕ(x)− ϕ(y)| ≤ |x− y|, ∀x, y ∈ E.
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bounded function:

E


[

sup
g∈C

∣∣SNε (F ) (log g)
∣∣]p/2

2/p

= E


[

1
2

2
a

sup
g∈C

∣∣SNε (F ) (a log(κ+ 1))
∣∣]p/2

2/p

≤ 2
a

E


[

sup
g∈C

∣∣SNε (F ) (g − 1)
∣∣]p/2

2/p

≤ 2
a

E


[

sup
g∈C
|SNε (F )(g)|

]p/2
2/p

+
2
a

E
{
|SNε (F )(1)|p/2

}2/p

Using Lemma 1 we have:

E
{
|SNε (F )(1)|p/2

}2/p
= E


∣∣∣∣∣ 1
N

N∑
i=1

εi

∣∣∣∣∣
p/2


2/p

≤ 2c2/p(p/2)√
N

On the other hand, we have for any g ∈ C a corresponding φθ ∈ H:

|SNε (F )(g)| =

∣∣∣∣∣ 1
N

N∑
i=1

εig(xi)

∣∣∣∣∣
=

∣∣∣∣∣ 1
N

N∑
i=1

εi

∫
θ∈Θ

φθ(xi)P(dθ)

∣∣∣∣∣
=

∣∣∣∣∣
∫
θ∈Θ

1
N

N∑
i=1

εiφθ(xi)P(dθ)

∣∣∣∣∣
≤
∫
θ∈Θ

∣∣∣∣∣ 1
N

N∑
i=1

εiφθ(xi)

∣∣∣∣∣P(dθ)

≤ sup
θ∈Θ

∣∣∣∣∣ 1
N

N∑
i=1

εiφθ(xi)

∣∣∣∣∣
Thus we have

E


[

sup
g∈C
|SNε (F )(g)|

]p/2
2/p

≤ E


[

sup
g∈H
|SNε (F )(g)|

]p/2
2/p

The Orlicz norm [4], [25] πψp(Y ) of a random variable Y is defined, for a nondecreasing convex function
ψp(x) = ex

p − 1, as

πψp(Y ) = inf{C > 0 : E{ψp(|Y |/C)} ≤ 1}.
By Hoeffding’s inequality the Rademacher process SNε (F )(g) is sub-Gaussian for the semimetric dN [25]. Using

the fact that E{Xp}1/p ≤ (p/2)!πψ2(X) (see e.g. Lemma 7.3.5 in [4] or [25], p. 105, Problem 4) we deduce:

EEε


[

sup
g∈H
|SNε (F )(g)|

]p/2
2/p

≤ (p/4)!Eπψ2(sup
g∈H
|SNε (F )(g)|)

In addition, since SNε (F )(g) is sub-Gaussian, we have for some universal constant C (see Proof of Corollary 2.2.8
in [25]):

Eπψ2(sup
g∈H
|SNε (F )(g)|) ≤ C√

N
E
∫ b

0

√
log (1 +D(ε,H, dN ))dε
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Combining the above we have:

E
{
|[ĜNp − F ](h)|p

}1/p
≤
√

2
[

8
a
√
N

(
2c2/p(p/2)

+(p/4)!CE
∫ b

0

√
log (1 +D(ε,H, dN ))dε

)
+
γc2f,C
Np

+D(f ||C)

]1/2

Finally, suppose 1 ≤ p < 2. In this case using Jensen’s inequality we have:

E
{
D(f ||ĝNp)p/2

}2/p
≤ E

{
D(f ||ĝNp)

}
Thus the above analysis applies if we choose p = 2 and the proof is now complete.

Corollary 4. Suppose that the assumptions of Theorem 5 hold. Suppose in addition that f ∈ C then we have for
any p ≥ 1:

E
{
|[ĜNp − F ](h)|p

}1/p
≤
√

2
[

8
a
√
N

(
2c2/p(p/2)

+(p/4)!CE
∫ b

0

√
log (1 +D(ε,H, dN ))dε

)
+ 4 log(3

√
e(b/a))

(b/a)2

Np

]1/2

Proof: The proof follows from the fact that under the additional assumption we have D(f ||C) = 0. Furthermore,
we note that under this assumption c2

f,C ≤ (b/a)2 and γ = 4 log(3
√
e(b/a))

D. Time-uniform error bounds

In this section we present a result specifying time-uniform error bounds for particle filters performing intermittent
parametric approximation. The result links the properties of Markov transitions Mi(xi−1, dxi) and error bounds for
parametric GML approximation (Theorem 5) with the propagation of approximation errors through Feynman-Kac
operators. It is based on the following observations. For an absolutely continuous Markov kernel with density
pi(xi|xi−1), we can write [4]:

Mi(xi−1, dxi) = Pr{Xi ∈ dxi|Xi−1 = xi−1} = pi(xi|xi−1)dxi = pϑi(xi)dxi,

where we explicitly assume that the structure of the kernel Mi can be captured by a set of parameters ϑi ∈ Θi ⊂ Rdi

(these parameters may include the state-value xi−1). We can further define a class Mi of such densities:

Mi =
{
pϑi(xi) : ϑi ∈ Θi ⊂ Rdi

}
.

Thus if Mi is such that pϑi(xi) ∈ Mi and Mi ⊆ Hi then the assumption (M)(m)
u is satisfied with m = 1 and

εu(M) = a/b, yielding for any xi−1, yi−1 ∈ Ei−1:

Mi(xi−1, ·) ≥
a

b
Mi(yi−1, ·)

Furthermore, using the definitions of the one-step Boltzman-Gibbs transformation and the associated Feynman-Kac
operator we see that the distribution at time i is related to the distribution at time i− 1 as follows:

ηi = Φi(ηi−1) = Ψi−1(ηi−1)Mi

=
∫
Ei−1

Mi(xi−1,dxi)Ψi−1(ηi−1)(dxi−1)

=
∫
Ei−1

Mi(xi−1,dxi)
Gi−1(xi−1)ηi−1(dxi−1)

ηi−1(Gi−1)
.

Thus for an absolutely continuous Markov kernel with pϑi(xi) ∈Mi we can rewrite the previous equation with a
suitable change of measure:

ηi(dxi)
dxi

=
∫
Θi

pϑi(xi)P(dϑi).
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This implies that for an N -particle approximation ηNi−1 we have that ηi(dxi)
dxi

∈ convN (Mi) and, as N grows without
bound, we have ηi(dxi)

dxi
∈ conv(Mi). Thus the performance of GML approximation algorithm is determined by the

properties of Markov transition kernel Mi(xi−1, dxi) and the class of approximating densities Hi. In particular, for
an absolutely continuous Markov kernel with pϑi(xi) ∈ Mi and a sufficiently rich class Hi, such that Mi ⊆ Hi
we have asymptotically unbiased approximation:

D

(
ηi(dxi)

dxi

∣∣∣∣∣∣C) = 0.

The preceding discussion can be summarized in the form of a concise assumption:
• (H)u: The Markov kernels associated with the target dynamics are absolutely continuous and can be expressed

in the form Mi(xi−1,dxi) = pϑi(xi)dxi. The class of densities associated with Mi is defined as Mi ={
pϑi(xi) : ϑi ∈ Θi ⊂ Rdi

}
. For eachMi there exists an approximation class Hi and strictly positive numbers

au = infi≥0 ai, bu = supi≥0 bi satisfying 0 < au < bu <∞ such that for any i ≥ 0 we have

Mi ⊆ Hi and hence Mi(xi−1, ·) ≥
au

bu
Mi(yi−1, ·)

The following result describes the analog of Theorem 2 for the case of a parametric approximation particle filter
using the GML algorithm.

Theorem 6. Suppose assumptions (G)u and (H)u hold. Suppose further that P{δi = 1} ≤ qu for any i ≥ 0 and
0 ≤ qu ≤ 1. Then for any Np, N ≥ 1, t ≥ 0, p ≥ 1 and ht ∈ Osc1(Et) we have the time uniform bound

sup
t≥0

E
{
|[ηNt − ηt](ht)|p

}1/p ≤ εu

[
c1/p(p)√

N
+ q1/p

u

[
16
a
√
N

(
2c2/p(p/2)

+C(p/4)! sup
i≥0

E
∫ bi

0

√
log (1 +D(ε,Hi, dN ))dε

)
+ 8 log(3

√
e(b/a))

(b/a)2

Np

]1/2
]

where the constant εu is given by:

εu =
2− (au/bu)εu(G)

(au/bu)3εu(G)
.

Proof: Using the same argument as in Theorem 2 we have

E
{
|[ηNt − ηt](ft)|p

}1/p

≤ 2− εu(M)εu(G)
εu(M)εu(G)

t∑
i=0

(
1− ε2u(M)

)(t−i) E
{∣∣[ηNi − Φi(ηNi−1)

]
(hi)

∣∣p}1/p
.

Based on the Minkowski inequality we have the decomposition for each individual expectation under the sum
above:

E
{∣∣[ηNi − Φi(ηNi−1)

]
(hi)

∣∣p} 1
p

≤ E
{∣∣∣δi [SN (ĜNp)− ĜNp

]
(hi) + (1− δi)

[
SN (Φi(ηNi−1))− Φi(ηNi−1)

]
(hi)

∣∣∣p} 1
p

+ E
{∣∣∣δi [ĜNp − Φi(ηNi−1)

]
(hi)

∣∣∣p} 1
p
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Using the same conditioning argument as in Theorem 2 and applying Corollary 4 based on the assumption (H)u

to the second term we have:

E
{∣∣∣δi [ĜNp − Φi(ηNi−1)

]
(hi)

∣∣∣p}1/p

= E
{

E
{
δi

∣∣∣[ĜNp − Φi(ηNi−1)
]

(hi)
∣∣∣p ∣∣∣Fi−1, Y

S`i
i = y

S`i
i

}}1/p

≤ q1/p
i

√
2
[

8
ai
√
N

(
2c2/p(p/2) + (p/4)!CE

∫ bi

0

√
log (1 +D(ε,Hi, dN ))dε

)
+ 4 log(3

√
e(bi/ai))

(bi/ai)2

Np

]1/2

Applying conditioning and Lemma 1 and the same conditioning argument as in Theorem 3 to the remaining term
we have:

E
{∣∣[ηNi − Φi(ηNi−1)

]
(hi)

∣∣p}1/p
≤ c1/p(p)√

N

+ q
1/p
i

(√
2
[

8
ai
√
N

(
2c2/p(p/2) + (p/4)!CE

∫ bi

0

√
log (1 +D(ε,Hi, dN ))dε

)
+ 4 log(3

√
e(bi/ai))

(bi/ai)2

Np

]1/2
)

We conclude that since qi ≤ qu then for any i ≥ 0 we have the time-uniform estimate:

E
{∣∣[ηNi − Φi(ηNi−1)

]
(hi)

∣∣p}1/p
≤ c1/p(p)√

N

+ q
1/p
u
√

2
[

8
au
√
N

(
2c2/p(p/2) + (p/4)!C sup

i≥0
E
∫ bi

0

√
log (1 +D(ε,Hi, dN ))dε

)
+ 4 log(3

√
e(bu/au))

(bu/au)2

Np

]1/2

This along with a variation of (19) for m = 1 and the fact that according to assumption (H)u, εu(M) ≥ au/bu,
completes the proof of theorem.

The above theorem provides an error bound for the parametric approximation particle filter (using the GML
algorithm to perform approximation) that is similar in structure to that specified for the subsampling approximation
particle filter. The error bound consists of two distinct contributions, one corresponding to the normal operation of
the filter and the other capturing the impact of the parametric approximation operation. The theorem establishes
a sufficiency requirement on the sequence of approximating classes Hi leading to unbiased approximation of
distribution flows. The requirement is that the Markov transition kernel must have an associated bounded density
and this density must be a member of the class Hi. This condition is reminiscent of the modeling assumptions
that underpin Gaussian sum particle filtering (see e.g. [12]), where the premise is that the filtering density can
asymptotically be represented as an infinite sum of Gaussians.

VI. NUMERICAL EXPERIMENTS

In this section we present the results of numerical experiments exploring the performance of the leader node
particle filter. The experiments provide an example of how the subsampling and parametric approximation particle
filters can be applied in a practical tracking problem. They provide an opportunity to compare the performance
of the two algorithms and to examine whether practical behaviour is similar to that predicted by the theoretical
analysis.

We adopt the following information acquisition and target movement models. The state of the target is two-
dimensional with dynamics [11]

Xt = Xt−1 + r0([cosϕt; sinϕt]) + ut.
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Here r0 is a constant (we set r0 = 0.02) and ϕt, ut are independent and uniformly distributed ut ∼ U [0, 1],
ϕt ∼ U [−π, π]. Kl = 20 leader nodes and Ks = 200 satellite nodes are distributed uniformly in the unit square.
A satellite sensor node j with coordinates sj = [s1,j , s2,j ] can transmit its measurement to any active leader node
within the connectivity radius rc. The connectivity radius is set to rc =

√
2 log(Ks)/Ks (note that if every node

can be a leader node, Kl = Ks, the resultant network topology is a random geometric graph). We assume that any
active leader node can transmit an approximation of its posterior representation to any other potential leader node.

The measurement equation of every satellite sensor is the binary detector [2] capable of detecting a target within
radius rd with probability pd and false alarm rate pf :

P{Y j
t = 1|Xt} =

{
pd if Xt ∈ X jd
pf if Xt /∈ X jd

,

where the detection region X jd of satellite sensor j is defined as X jd = {x : ‖x − sj‖2 ≤ rd}. To perform sensor
selection step we use the mutual information (MI) criterion [20]:

`t+1 = arg max
`t+1∈L

I(Xt+1, Y
S`t+1

t+1 |y
S`1:t
1:t ) (28)

Here yS`1:t1:t denotes the entire history of measurements, and the random variable Y
S`t+1

t+1 denotes the (potential) set
of measurements at time t + 1 by the set of satellite sensor nodes (S`t+1) of a candidate leader node `t+1. The
calculation of the mutual information in the multiple sensor framework is generally a computationally demanding
exercise. In the binary sensor framework, the calculations can be simplified using an efficient approximation (see
Appendix D for details).

Williams et al. pointed out in [27] that the application of the one-step mutual information criterion for sensor
selection can result in undesirable leader node bouncing (frequent, unnecessary hand-off). To prevent this, Williams
et al. proposed a computationally demanding finite-time horizon dynamic program [27]. In our simulations we use a
simpler randomized algorithm to control the leader node exchange rate. In this algorithm the current leader node flips
a biased coin with the probability of the flip outcome being 1 equal to λ. If the outcome is 1 then the current leader
node calculates the mutual information criterion. It then determines if the current particle representation should be
transferred to a new leader node that is more likely to make informative measurements. If the outcome is 0, then no
calculations are performed. With this approach, the computational load for each leader node is significantly reduced
and the communication overhead can be regulated by the choice of λ. However, the value of λ should be tailored
depending on the application (as the mobility of the target increases, leader node hand-offs must be considered
more frequently). In our experiments we fix λ = 1/5.

We consider two leader node particle filtering algorithms, with one employing non-parametric approximation
(subsampling) and the other using parametric approximation. To create a subsample for transmission in the non-
parametric framework we use the general residual resampling scheme [8]. The parametric leader node particle filter
is implemented using the GML algorithm with Np components. Each component consists of a two-dimensional
Gaussian density with diagonal covariance matrix. The mean vector and covariance matrix are estimated using the
particle representation available at the current leader node. To implement the GML algorithm we used the standard
MATLAB nonlinear optimization routine fmincon (see Appendix C for details of the implementation).

In the following we report the simulation results obtained using the set-up discussed above. All results are
achieved using 5000 Monte Carlo trials, and in each trial a new trajectory of the target is generated.

We first demonstrate that the discussed sensor selection procedure (leader node exchange rule) has good
information fusion properties. Fig. 2 depicts the performance in terms of Root Mean Squared Error (RMSE)
between the true position of the target and its estimate using different information diffusion schemes. The first
scheme denoted by 5 corresponds to the situation when the leader node is selected at the initialization and is fixed
throughout the tracking exercise. The second and third schemes denoted by + and � respectively correspond to
non-parametric leader node algorithms using Nb = 10 and Nb = 300 particles for communications respectively.
The fourth scheme denoted by ◦ corresponds to the centralized scenario when all the measurements available from
every sensor at every time step t are used to track the target. Note that the baseline particle filter uses N = 300
particles4 in all scenarios (so the Nb = 300 case corresponds to no subsampling). We can see from Fig. 2 that

4This value was selected after experimentation with multiple values of N because it provides sufficient accuracy without inducing
unnecessary computational overhead. The primary purpose of the simulations is to examine the impact of the approximation steps.
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Fig. 2. Performance (RMSE) of different fusion schemes versus time: 5 denotes the scheme with fixed leader node selected at initialization;
+ denotes the scheme with leader node selected using approximate Mutual Information (MI) criterion and non-parametric (subsampling)
approximation with Nb = 10; � denotes the scheme with leader node selected using approximate MI criterion but no subsampling
approximation (Nb = 300); and ◦ denotes the centralized scheme using the entire set of measurements from all sensors at every step.

the centralized scheme has the best performance in terms of RMSE. However, it is only marginally better than
the leader node scenario without compression (N = Nb = 300). This highlights the effectiveness of the leader
node particle filtering method and confirms that leader node selection based on the approximate mutual information
is a valid approach. Compared to the centralized scheme, the communication and power consumption costs are
significantly decreased since only a small subset of nodes is activated at any particular time step.

The leader node particle filter that uses a very small number of transmitted particles (Nb = 10) performs
comparably well. This suggests that there are practical scenarios where a particle filter can incorporate aggressive
approximation to reduce communication overhead without incurring a significant penalty in tracking accuracy. The
fixed leader node approach performs poorly, because the activated sensors only provide useful information when
the target is nearby. As the target moves further away, the particle cloud approximating the filtering distribution
becomes very diffuse, and tracking accuracy is 4 times worse than that of any of the other schemes.

In the next set of results, we explore the approximation error, i.e. the error induced by both sampling and the
additional parametric/subsampling approximations. The RMSE combines both approximation error and estimation
error resulting from the inaccuracy and/or ambiguity of the measurement information. We can estimate a Root
Mean Squared Approximation Error (RMSAE) by calculating the error between a candidate particle filter and an
“ideal” reference particle filter. As our reference filter, we employ a particle filter that uses N = 3000 particles,
with no approximation during hand-off. For each of the 5000 Monte Carlo trials, we apply this reference filter to
generation location estimates. The approximation error for our test filters is measured relative to these estimates
rather than the true locations.

Figure 3(a) depicts how the tracking performance is affected as the number of particles in the subsampling
step (Nb) changes; Figure 3(b) provides similar results for the parametric approximation method as the number of
components in the mixture model (Np) is varied. The performance is measured in terms of the RMSAE increase
relative to a leader node particle filter that performs no approximation, i.e. uses Nb = N = 300 particles during
hand-off.

Fig. 3 indicates that the performance of the leader node particle filter has interesting dynamic structure. In
particular, in the time period t ∈ [1, 50] we can see an articulated transient behaviour (see Fig. 3(a), Nb = 10 in
particular). The transient in these curves arises because the particle representation of the target location density is
initially highly dispersed and multi-modal, making it relatively difficult to approximate using either a subsampling
or parametric method with a small number of particles/mixture components. However, as time progresses (t ∈
[51, 100]) the particle representation of the target becomes more localized and closer to uni-modal, so approximation
performance improves significantly. Qualitatively, the performance deteriorates gracefully with respect to the extent
of the compression during hand-off (reduction in number of particles or components), as theoretically predicted in
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Fig. 3. Deterioration of performance as a function of (a) varying number of transmitted particles for the subsampling approximation leader
node particle filter; and (b) varying number of transmitted mixture components for the parametric approximation leader node particle filter.
The performance deterioration is measured as the ratio of the Root Mean Squared Approximation Error (RMSAE) of the candidate particle
filtering algorithm with intermittent approximation (subsampling or parametric) to that of a leader node particle filter that performs no
approximation (Nb = 300). See Section VI for a definition of the RMSAE.

the previous sections.
For the final performance analysis, we define a compression factor as the ratio of the number of particles used

during regular particle filter computations to the number of values transmitted during the hand-off. For the subsample
approximation case, this is simply N/Nb. In our case of a Gaussian mixture, variance information is transmitted
in addition to the locations of the Gaussians and the mixture weights, so the factor is 2N/5Np. Figure 4 presents
a box-plot depicting performance deterioration (ratio of approximation error of the leader node with Nb < N and
the leader node with Nb = N ) versus the compression factor. Both the median and the maximal deviations of
the performance deterioration scale smoothly with changing compression factor. Parametric approximation clearly
outperforms subsampling.

For the subsampling case, Theorem 2 and Corollary 3 provide an analytical bound on the expected approximation
error. The curve based on these results is depicted in Figure 4(a) and provides a meaningful characterization of the
expected performance deterioration. Indeed, the theoretical prediction based on the factor (quχ+ (1− qu))1/2 from
Corollary 3 closely coincides with the maximal performance deterioration observed for each compression factor.
For comparison purposes, we include a similar characterization derived based on a simple worst-case assumption
that the subsample approximation particle filter performs only as well as a particle filter that uses Nb particles at
all times. The characterization based on the bounds developed in this chapter clearly provides a better indication
of the performance deterioration.

VII. RELATED WORK

The analysis of approximation error propagation and stability of non-linear Markov filters has been an active
research area for several decades. In [13] Kunita studied the asymptotic behaviour of the error and stability of the
filter that has an ergodic signal transition semigroup with respect to the initial distribution. Ocone and Pardoux [21]
addressed the stability of linear filters with respect to a non-Gaussian initial condition and examined the stability
of non-linear filters in the case where the signal diffusion is convergent. The important conclusion drawn by Ocone
and Pardoux based on results in [13], [21] is that if the signal diffusion is stable with respect to its initial condition
then the optimal filter inherits this property and it is also stable with respect to the initial condition.

Although interesting, the results in [13], [21] address the optimal filtering scenario, and more relevant to our
study is the analysis of approximately optimal filters (especially particle filters). Important results concerning the
stability of particle filters have been developed over the past decade [3]–[6], [8], [15]–[17], [26].

The Feynman-Kac semigroup approach to the stability analysis of particle filters has been described and developed
by Del Moral, Miclo and Guionnet in [4]–[6]. The authors study the stability properties of general non-linear
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Fig. 4. Box-plots showing the relationship between deterioration of approximation performance and compression factor. The performance
deterioration is measured as the ratio of the Root Mean Squared Approximation Error (RMSAE) of the candidate particle filtering algorithm
with intermittent approximation (subsampling or parametric) to that of a leader node particle filter that performs no approximation (Nb = 300).
The compression factor, defined in Section VI, is the ratio of N to the number of values transmitted during leader node exchange (Nb or
2.5Np). The boxes show lower quartile, median and upper quartile of the 5000 Monte Carlo trials. Whiskers depict 1.5 times the interquartile
range and capture most of the extreme values, and the + values denote outliers extending beyond the whiskers.

Feynman-Kac semigroups under a variety of assumptions. The Dobrushin contraction coefficient of the underlying
Markov chain plays a central role in the analysis. In [6], Del Moral and Miclo formulate the conditions for the
exponential asymptotic stability of the Feynman-Kac semigroup and bound the Lyapunov constant and Dobrushin
coefficient. One of the applications of these results is a time-uniform upper bound on the error of interacting
particle systems. In [4], Del Moral provides an extensive analysis of the properties of Feynman-Kac semigroups.
His analysis forms the basis for our study in this paper, particularly in the case of the subsampling approximation
particle filter.

Stability analysis for particle filters is frequently built on relatively strong assumptions about the mixing and
ergodicity properties of the underlying Markov transitions of the signal (target state). Our analysis in this paper
is no exception, with the regularity conditions (M)(m)

u and (H)u underpinning our results. There have been some
efforts to relax these types of assumptions. In [16], [17], Le Gland and Oudjane study the stability and convergence
rates for particle filters using the Hilbert projective metric. In [16], they relax the signal mixing assumptions by
employing a specific, “robust” particle filter architecture with truncated likelihood functions. In [17], the mixing
assumption is applied not to the Markov kernel governing signal diffusion, but to the non-negative kernel that
governs the evolution of the particle filter. This kernel combines the effects of the Markov transitions and the
likelihood potentials, so mixing behaviour can arise from either of these two components.

The papers cited thus far addressed the analysis of particle filters with fixed population size (number of particles).
In the subsampling approximation particle filter analyzed in this paper, the number of particles varies over time.
Crisan et al. examine the stability of branching and interacting particle systems in [3]; in these systems the population
size also varies, because at each time step a particle generates a random number of offspring. The population size
forms a positive integer-valued martngale with respect to the filtration and the properties of the resulting particle
filter depend on the initial number of particles. The variation in the number of particles is clearly very different
from that of the subsampling approximation particle filter, so the results are not directly applicable.

Thus far we have discussed previous work that has addressed particle filter stability when the error arises due
to the sampling approximation. The sampling error is dependent on the resampling schemes, and Douc et al. have
provided theoretical results that allow various resampling schemes to be compared [8]. Other work has considered
additional sources of error. Vaswani et al. analyzed the performance of a particle filter in the case of signal model
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mismatch (when the true underlying Markov transitions differ from the model used to update the filter) [26]. They
showed, using the same assumptions as in [17], that the particle filter is stable if the mismatch persists for only a
finite interval of time.

Le Gland et al. propose and analyze the kernel-based regularized particle filter in [15], [17], and this work is the
most closely related to our study of the parametric approximation particle filter. From an algorithmic standpoint,
there are also similarities with the Gaussian sum particle filter [12], but the theoretical analysis of this filter is
less developed. The regularized particle filters described in [15], [17] incorporate a step in which the N -sample
pointwise density approximation is replaced by a continuous density approximation, using a kernel-based density
estimation approach. During resampling, N particles are generated by sampling from this continuous density. The
practical benefit of this approach is the increase in the diversity of the particle system, eliminating the potential for
degeneracy and improving the stability of the algorithm. Le Gland et al. provide uniform convergence results for
the regularized particle filters. Although there is some similarity to the parametric approximation particle filter we
analyze, the purpose of the approximation is very different. It is not performed intermittently to reduce computation
or communication cost, but rather is performed every time step with a complex model (N components).

There has been some work addressing the analysis of the leader node particle filter [11]. Although simulation
(and to some extent, experimental) results indicate that instability effects are rarely observed in the leader node
particle filtering, prior to our work, the theoretical bounds on estimation error for leader node particle filtering using
intermittent parametric approximation grow exponentially over time [11]. The analysis in [11] used maximum log-
error to model the approximation error propagation. Because the analysis does not take into account the structure
of the dynamic system (and indeed imposes no assumptions on its mixing properties and regularity), the resulting
bounds diverge.

VIII. CONCLUDING REMARKS

We have presented the analysis of particle filters that perform intermittent approximation. Our main results have
the form of upper bounds on the expected Lp error of particle filters that occasionally employ either subsampling or
parametric approximations of the filtering distribution. Such approximation steps become necessary when particle
filters are deployed on resource-constrained platforms, where the resource can be energy, memory or computational
power. The important conclusion of our analysis is that these approximation steps do not induce instability, and
moreover, the frequency of the approximation steps significantly affects the extent of performance degradation. If
the approximation steps are rare, then the compression can be very high (very few subsamples or very few mixture
components) and the error remains reasonable. Numerical experiments indicate that the bound for the subsample
approximation particle filter provides a meaningful characterization of practical performance.
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Fig. 5. Comparison of bounds in Lemma 4 and Lemma 1 for the Lp error of the N -sample mean estimator of the uniform random variable
distributed over the interval [0, 10]. Sample size, N = 1000.

APPENDIX A
THE COMPARISON OF LOCAL APPROXIMATION ERROR BOUNDS

The following local error analysis result from [4] is presented here without a proof.

Lemma 4 (Del Moral [4], Lemma 7.3.3). For any p ≥ 1 and sequence of E-measurable functions (hi)i≥1 with
finite oscillations such that µi(hi) = 0 for all i ≥ 1 we have

√
NE{|m(X)(h)p|}

1
p ≤ d(p)

1
pσ(h)

where the following definitions are used

m(x)(h) =
1
N

N∑
i=1

hi(xi) and σ2(h) =
1
N

N∑
i=1

osc2(hi)

and finite constants d(p) are given by the following:

d(2p) =
(2p)!
p!

2−p,

d(2p− 1) =
(2p− 1)!

(p− 1)!
√
p− 1/2

2−(p−1/2)

It is relatively straightforward to see why the sequence of constants c(p) provides tighter bounds in Lemma 1
than the sequence d(p) in Lemma 4. For example, for the even p = 2n the ratio of the two sequences is

d(2n)
c(2n)

=
(2n)!2−n

n!(2n)Γ(n)2−n

=
(2n− 1)!

n(n− 1)!Γ(n)
=

Γ(2n)
nΓ(n)Γ(n)

=
1

nB(n, n)
. (29)

Here B is the beta function. B(n, n) is a quickly decaying function. In particular, for large n Stirling’s approximation
gives a simple expression for beta function, B(n, n) ∼

√
2πn−1/22−2n+1/2, yielding the large n Stirling’s

approximation for (29):

d(2n)
c(2n)

∼ 1√
2πn

22n−1/2.
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This shows that c(p) grows much slower with p than d(p). This improved nature of constants c(p) results in
better estimates of moment generating function in Theorem 1 and Corollary 1, and better exponential inequality
in Theorem 3. The comparison of the bound in Lemma 4 with the bound in Lemma 1 is provided in Fig. 5 for
the Lp error of the N -sample mean estimator in the case of uniform random variable distributed over the interval
[0, s]. We verify that in this case the function that we are analyzing is:

E{|[P − SN (P )](h)|p}
1
p = E

{∣∣∣∣∣ 1
N

N∑
i=1

h(xi)

∣∣∣∣∣
p} 1

p

= E

{∣∣∣∣∣ 1
N

N∑
i=1

(xi − µ)

∣∣∣∣∣
p} 1

p

We conclude that our test function has the following form in this setting: h(xi) = xi − µ and oscillations of this
function can be estimated straightforwardly:

σ2(h) =
1
N

N∑
i=1

osc2(hi)

=
1
N

N∑
i=1

sup{|hi(xi)− hi(yi)|;xi, yi ∈ Ei}2

=
1
N

N∑
i=1

sup{|xi − µ− yi + µ|;xi, yi ∈ [0, s]}2

=
1
N

N∑
i=1

sup{|xi − yi|;xi, yi ∈ [0, s]}2

=
1
N

N∑
i=1

s2 = s2

Hence we have in this case σ(h) = s and the bound from Lemma 1 takes the form: E{|[P − SN (P )](h)|p}
1
p ≤

c(p)1/p s√
N

. On the other hand, applying Lemma 4 gives: E{|[P − SN (P )](h)|p}
1
p ≤ d(p)1/p s√

N
. Fig. 5 depicts

the two bounds plotted for different values of p and compares it with the actual errors observed during simulations.
We used the following settings to obtain this plot: N = 1000, s = 10.

APPENDIX B
THE ESTIMATES OF THE MOMENT GENERATING FUNCTION

In this appendix we show how the impact of improved constants in Lemma 1 can be used to improve the estimate
of the moment generating function in Theorem 7.3.1 [4]. We now state the Theorem 7.3.1.

Theorem 7 (Del Moral [4], Theorem 7.3.1). For any sequence of E–measurable functions (hi)i≥1 such that µi(hi) =
0 for all i ≥ 1 we have for any ε

σ(h) <∞ =⇒ E
{
eε
√
N |m(X)(h)|

}
≤ (1 + εσ(h)) e

ε2

2
σ2(h)

We note that the simplified estimate of MGF in Corollary 1 is much tighter than the bound in Theorem 7
for asymptotically large deviations ε while the more complex bound in Theorem 1 outperforms the one in the
Theorem 7 uniformly over the range of ε. The comparison of the bounds obtained in Theorem 7 and Theorem 1
with the empirical estimate is provided in Fig. 6. The test setup is the same as in Appendix A The parameters of
the simulation can be summarized as follows: scale parameter, s = 10, number of iid samples, N = 100, averaging
is performed over M = 10000 trials, ε ranges from 0 to 1. Similar results are obtained in other settings.
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Fig. 6. Comparison of bounds in Theorem 7 and Theorem 1 for the moment generating function of N -sample mean estimator of the
uniform random variable distributed over the interval [0, 10]. Sample size, N = 100.

APPENDIX C
GML IMPLEMENTATION DETAILS (OBJECTIVE FUNCTION AND ITS DERIVATIVES)

In this section we present the derivatives of the objective function of the GML algorithm. As was mentioned
earlier, the injection of this information into the numerical optimization routine results in a significant (two times)
acceleration of the GML speed. Assuming that {ξ(j)}Nj=1 is the current particle set, φθi comes from the class of
two-dimensional Gaussian densities with diagonal covariance matrix

φθi(ξ
(j)) =

1
2πσ2,iσ1,i

e
−(ξ(j)1 −µ1,i)2

2σ2
1,i

−(ξ(j)2 −µ2,i)2

2σ2
2,i

and ith-step GML objective is written as follows (according to Algorithm 1)

Ji = −
N∑
j=1

log[αiφθi(ξ
(j)) + (1− αi)gi−1(ξ(j))]

we can calculate the following set of the first- and second-order derivatives necessary to construct gradient and
Hessian for the non-linear optimization routine at iteration i. The acceleration is achieved by evaluating the expensive
exponential terms

Vi,j = e
(ξ(j)1 −µ1,i)2

2σ2
1,i

+
(ξ(j)2 −µ2,i)2

2σ2
2,i , 1 ≤ j ≤ N

only once per GML iteration and vectorizing the code with respect to the terms of the type (ξ(j)
1 − µ1,i) and((

ξ
(j)
1 − µ1,i

)2
− σ2

1,i

)
.

∂Ji
∂µ1,i

=
N∑
j=1

−αi
(
ξ

(j)
1 − µ1,i

)
σ2

1,i

(
αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j))

)
∂Ji
∂µ2,i

=
N∑
j=1

−αi
(
ξ

(j)
2 − µ2,i

)
σ2

2,i

(
αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j))

)
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∂Ji
∂σ1,i

=
N∑
j=1

−αi
((

ξ
(j)
1 − µ1,i

)2
− σ2

1,i

)
σ3

1,i

(
αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j))

)

∂Ji
∂σ2,i

=
N∑
j=1

−αi
((

ξ
(j)
2 − µ2,i

)2
− σ2

2,i

)
σ3

2,i

(
αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j))

)

∂2Ji
∂µ2

1,i

=
N∑
j=1

αi

(
αiσ1,i + 2Vi,jπgi−1(ξ(j))(1− αi)

((
ξ

(j)
1 − µ1,i

)2
− σ2

1,i

)
σ2,i

)
σ3

1,i

(
αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j))

)2
∂2Ji

∂µ1,i∂µ2,i
=

N∑
j=1

2Vi,jπgi−1(ξ(j))(1− αi)αi
(
ξ

(j)
1 − µ1,i

)(
ξ

(j)
2 − µ2,i

)
σ1,iσ2,i

(
αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j))

)2

∂2Ji
∂µ1,i∂σ1,i

=
N∑
j=1

2αi
(
ξ

(j)
1 − µ1,i

)(
αi +

Vi,jπgi−1(ξ(j))(1−αi)
(
(ξ(j)1 −µ1,i)2−3σ2

1,i

)
σ2,i

σ1,i

)
σ3

1,i

(
αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j))

)2
∂2Ji

∂µ1,i∂σ2,i
=

N∑
j=1

2Vi,jπgi−1(ξ(j))(1− αi)αi
(
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)((
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2 − µ2,i
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2,i
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∂2Ji
∂σ2

2,i

=
N∑
j=1

2Vi,jπgi−1(ξ(j))(1− αi)αi
(
ξ

(j)
1 − µ1,i

)((
ξ

(j)
2 − µ2,i

)2
− σ2

2,i

)
σ1,iσ2

2,i

(
αi + (1− αi)2πσ1,iσ2,iVi,jgi−1(ξ(j))

)2
Gradient and Hessian calculated using the above formulae can be inserted into any standard non-linear

optimization routine to boost its performance. Note that as we mentioned above, for more efficient operation,
the exponential terms should be evaluated only once for every iteration of the non-linear optimization routine —
during the evaluation of the objective function.

APPENDIX D
APPROXIMATE CALCULATION OF THE LEADER-NODE SELECTION CRITERION

In this section we show how to calculate the information based leader-node selection criterion based on the
definition (28). We first note that from the relationship between the mutual information and conditional entropy,
I(X,Y |Z = z) = H(Y |Z = z)−H(Y |X,Z = z) we have

I(Xt+1, Y
S`t+1

t+1 |y
S`1:t
1:t ) = H(Y

S`t+1

t+1 |y
S`1:t
1:t )−H(Y

S`t+1

t+1 |Xt+1, y
S`1:t
1:t ) (30)

Second, recalling our assumption of the conditional independence of the measurements we can see

H(Y
S`t+1

t+1 |Xt+1, y
S`1:t
1:t ) =

∑
j∈S`t+1

H(Y j
t |Xt+1, y

S`1:t
1:t ) (31)

Using the definition of the conditional entropy (where yS`1:t1:t is the sequence of measurements that has already been
realized [27])

H(Y
S`t+1

t+1 |Xt+1, y
S`1:t
1:t ) = −

∑
j∈S`t+1

∫
log p(yjt+1|xt+1, y

S`1:t
1:t )p(xt+1, y

j
t+1|y

S`1:t
1:t )dxt+1dyjt+1

= −
∑

j∈S`t+1

∫
log p(yjt+1|xt+1, y

S`1:t
1:t )p(yjt+1|xt+1, y

S`1:t
1:t )p(xt+1|y

S`1:t
1:t )dxt+1dyjt+1

Since the true predictive density p(xt+1|y
S`1:t
1:t ) is unknown we have to use its Monte-Carlo approximation consisting

of the set of diffused (predictive) particles {ξ(i)
t+1}Ni=1. This results in the following efficient approximation of the

above integral:

H(Y
S`t+1

t+1 |Xt+1, y
S`1:t
1:t ) = −

∑
j∈S`t+1

1
N

N∑
i=1

∫
log p(yjt+1|ξ

(i)
t+1)p(yjt+1|ξ

(i)
t+1)dyjt+1

According to our sensor model, the likelihood function can be represented as follows:

p(yjt+1|ξ
(i)
t+1) = p

yjt+1∆j
i

d (1− pd)(1−yjt+1)∆j
ip
yjt+1(1−∆j

i )

f (1− pf )(1−yjt+1)(1−∆j
i ), (32)

where ∆j
i = 1ξ(i)t+1∈X

j
d
. Straightforward calculation gives

H(Y
S`t+1

t+1 |Xt+1, y
S`1:t
1:t ) = −

∑
j∈S`t+1

qj(pd log pd + (1− pd) log(1− pd))

+ (1− qj)(pf log pf + (1− pf ) log(1− pf )).

Here qj = 1
N

∑N
i=1 ∆j

i is the average number of particles in the detection region of sensor j. Thus we have
constructed an efficient Monte-Carlo approximation to the second summand in the expression for the mutual
information between the predicted state Xt+1 and the measurements arising in the neighborhood of the leader
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node `t+1. The first summand, H(Y
S`t+1

t+1 |y
S`1:t
1:t ) is much more difficult to approximate directly using Monte-Carlo

technique. One form of decomposing this term [27]

H(Y
S`t+1

t+1 |y
S`1:t
1:t ) =

|S`t+1 |∑
j=1

H(Y j
t+1|Y

1:j−1
t+1 , y

S`1:t
1:t ) (33)

implies that for a general measurement model the evaluation complexity grows exponentially in the size of the
neighborhood |S`t+1 |. This is because the sequence of measurements Y 1:j−1

t+1 is unknown and averaging over all
possible cases is required. Our experiments revealed that approximating this term using Monte-Carlo sampling
of possible measurements is also inefficient. However, for sensors with uninformative (noisy) measurements the
following approximation can be used

H(Y
S`t+1

t+1 |y
S`1:t
1:t ) =

|S`t+1 |∑
j=1

H(Y j
t+1|y

S`1:t
1:t )

The intuition behind this approximation can be explained as follows. We can represent each term in the
decomposition in the following way:

H(Y j
t+1|Y

1:j−1
t+1 , y

S`1:t
1:t ) = −

∫
log
[∫

p(yjt+1|xt+1)p(xt+1|y1:j−1
t+1 , y

S`1:t
1:t )dxt+1

]
(∫

p(y1:j
t+1|xt+1)p(xt+1|y

S`1:t
1:t )dxt+1

)
dy1:j
t+1

If measurements Y 1:j−1
t+1 are uninformative with respect to the current predictive density p(xt+1|y

S`1:t
1:t ) their incor-

poration will not significantly affect the density and the following will hold p(xt+1|y
S`1:t
1:t ) ≈ p(xt+1|y1:j−1

t+1 , y
S`1:t
1:t ).

In our particular setting a measurement Y j
t+1 is uninformative (according to the likelihood model (32)) if all the

particles are either simultaneously inside or outside the detection region X jd of sensor j. This implies that ∆j
i is same

for all i and, consequently, the updated weight of every particle does not depend on the realization of measurement
Y j
t+1. Such a measurement can be excluded from mutual information calculation without affecting the accuracy

of calculation. We observed in our simulations that when the particle representation of predictive density becomes
localized most of the sensors in the neighbourhoods of leader-nodes become uninformative and we introduced the
approximation p(xt+1|y

S`1:t
1:t ) ≈ p(xt+1|y1:j−1

t+1 , y
S`1:t
1:t ) into the calculation of the mutual information. This resulted

in a significant simplification (dimensionality reduction) of calculations:

H(Y j
t+1|Y

1:j−1
t+1 , y

S`1:t
1:t ) ≈ −

∫
log
[∫

p(yjt+1|xt+1)p(xt+1|y
S`1:t
1:t )dxt+1

]
(∫

p(y1:j
t+1|xt+1)p(xt+1|y

S`1:t
1:t )dxt+1

)
dy1:j
t+1

= −
∫

log
[∫

p(yjt+1|xt+1)p(xt+1|y
S`1:t
1:t )dxt+1

]
(∫

p(yjt+1|xt+1)p(xt+1|y
S`1:t
1:t )dxt+1

)
dyjt+1.

Furthermore, using Monte-Carlo representation of predictive density we can approximate the inner integral:∫
p(yjt+1|xt+1)p(xt+1|y

S`1:t
1:t )dxt+1 ≈ qjp

yjt+1

d (1− pd)1−yjt+1 + (1− qj)py
j
t+1

f (1− pf )1−yjt+1

Finally, calculating the outer integral we obtain:

H(Y j
t+1|Y

1:j−1
t+1 , y

S`1:t
1:t ) ≈ −(qjpd + (1− qj)pf ) log(qjpd + (1− qj)pf )

− (qj(1− pd) + (1− qj)(1− pf )) log(qj(1− pd) + (1− qj)(1− pf ))
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Thus according to (30), (31) and (33) we have the following approximate expression for the calculation of mutual
information:

I(Xt+1, Y
S`t+1

t+1 |y
S`1:t
1:t ) =

|S`t+1 |∑
j=1

H(Y j
t+1|Y

1:j−1
t+1 , y

S`1:t
1:t )−H(Y j

t+1|Xt+1, y
S`1:t
1:t )

≈
∑

j∈S`t+1

−(qjpd + (1− qj)pf ) log(qjpd + (1− qj)pf )

− (qj(1− pd) + (1− qj)(1− pf )) log(qj(1− pd) + (1− qj)(1− pf ))

+ qj(pd log pd + (1− pd) log(1− pd))
+ (1− qj)(pf log pf + (1− pf ) log(1− pf ))

Note that this is an extremely fast approximation since its complexity is proportional to N |S`t+1 | operations as
opposed to the exponential complexity of exact calculation, which is proportional to N2|S`t+1 |.
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TABLE I
GREEK AND OPERATOR NOTATION

Symbol Definition
|| · || supremum norm of function h ||h|| = supx∈E |h(x)|
|| · ||osc ||h||osc = ||h||+ osc(h) (see Table II for definition of osc(·))
|| · ||tv ||P (·)−Q(·)||tv = sup{|P (A)−Q(A)| : A ∈ F}
β(Pi,t) Dobrushin contraction coefficient

β(Pi,t) = sup{||Pi,t(xi, ·)− Pi,t(yi, ·)||tv;xi, yi ∈ Ei}
χ Positive integer indicating ratio of N to Nb
δt binary variable indicating whether approximation occurs at time t

εu(M), εu(G), εu,m Constants for regularity conditions
(εk) Rademacher sequence of independent binary random variables
γt(ht) unnormalized prediction Feynman-Kac model
µ(h) For measure µ in P(E) and function h,

µ(h) =
∫
E
h(x)µ(dx)

1
dλ(xi)

ν(dλ(xi)) Density associated with distribution ν ∈ P(Ei) and σ-finite measure
λ on measurable space (Ei, Ei)

ηt(ht) normalized prediction Feynman-Kac model
πψp(Y ) Orlicz norm of a random variable Y

for non-decreasing convex function ψp(x) = ex
p

− 1
Φt Feynman-Kac update-operator ηt = Φt(ηt−1)
Φi,t semigroups associated with the normalized

Feynman-Kac distribution flows, Φi,t = Φt ◦ Φt−1 ◦ . . . ◦ Φi+1

Ψt Boltzmann-Gibbs transformation Ψt(ν)(dxt) = 1
ν(Gt)

Gt(xt)ν(dxt)
σ2(h) Measure of oscillations for sequence of functions hk

σ2(h) , 1
N

N∑
k=1

osc2(hk)

Θ parameter space
θ parameters of mixture approximation
ξkt k-th particle at time t
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TABLE II
NOTATION

Symbol Definition
Bb(E) Banach space of bounded functions
c(p) Constants (c(p) = 1 if p = 1; and c(p) = 2−p/2pΓ[p/2] if p > 1)
CNp class of discrete Np-component convex

combinations of densities from H
D(f ||g) Kulback-Leibler divergence for densities f and g
D(f ||C) infg∈C D(f ||g)
D(ε,H, dN ) packing number - maximum number of ε-separated

points in H using the empirical semimetric dN
d2
N (h1, h2) empirical semi-metric for h1, h2 ∈ H

d2
N (h1, h2) = 1

N

∑N
i=1(h1(xi)− h2(xi))

2

(Et, Et), t ∈ N sequence of measurable spaces through which the target transitions
GNp Np component distribution associated with gNp

gNp Np component mixture density
ĝNp empirical Np-mixture density estimate constructed from

N samples from a target density
Gt : Et → [0,∞) bounded, non-negative potential functions characterizing Yt

(G)u time-uniform regularity condition for likelihood potentials
H class of bounded parametric densities

Mt+1 Markov chain transitions of Xt from Et into Et+1

Mi,t = Mi+1 . . .Mt composite integral operator from (Ei, Ei) to (Et, Et)
M(·, ·) Markov transition kernel
(M)

(m)
u time-uniform regularity condition on the Markov functions

m(X) = 1
N

∑N
k=1 δXk the N -empirical measure

m(X)(h) Application of empirical measure to a sequence of functions hk:

m(X)(h) = 1
N

N∑
k=1

hk(Xk)

N number of particles in standard particle filter
Nb number of particles in subsampled particle filter
Np number of components in mixture approximation

osc(h) sup(|h(x)− h(y)|; x, y ∈ E)
Osc1(E) convex set of E-measurable test functions with finite oscillations

({h : osc(h) ≤ 1})

SN Sampling operator SN (η)(h) = 1
N

N∑
k=1

h(ξk)

SNε (µ) generator of the signed Rademacher measure for distribution µ
Xt dx × 1 target state vector at time t (Markov chain)

X ′t = X[0:t] the historical path process associated with Xt
Yt dy × 1 observation vector at time t

Yt = Y[1:t] the history of observations from time 1 to t


