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Abstract

Distributed averaging describes a class of network algorithms for the decentralized computation of aggregate
statistics. Initially, each node has a scalar data value, and the goal is to compute the average of these values at every
node (the so-called average consensus problem). Nodes iteratively exchange information with their neighbors and
perform local updates until the value at every node converges to the initial network average. Much previous work
has focused on algorithms where each node maintains and updates a single value; every time an update is performed,
the previous value is forgotten. Convergence to the average consensus is achieved asymptotically. The convergence
rate is fundamentally limited by network connectivity, and it can be prohibitively slow on topologies such as grids
and random geometric graphs, even if the update rules are optimized. In this paper, we provide the first theoretical
demonstration that adding a local prediction component to the update rule can significantly improve the convergence
rate of distributed averaging algorithms. We focus on the case where the local predictor is a linear combination of
the node’s current and previous values (i.e., two memory taps), and our update rule computes a combination of the
predictor and the usual weighted linear combination of values received from neighbouring nodes. We derive the
optimal mixing parameter for combining the predictor with the neighbors’ values, and conduct a theoretical analysis
of the improvement in convergence rate that can be achieved using this acceleration methodology. For a chain
topology on N nodes, this leads to a factor of N improvement over standard consensus, and for a two-dimensional
grid, our approach achieves a factor of

√
N improvement, in terms of the number of iterations required to reach a

prescribed level of accuracy.
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I. INTRODUCTION

Distributed algorithms for solving the average consensus problem have received considerable attention in the
distributed signal processing and control communities recently, due to their applications in wireless sensor networks
and distributed control of multi-agent systems [1]–[7]. See [8] for a survey. In the average consensus problem, each
node initially has a value, e.g., captured by a sensor, and the goal is to calculate the average of these initial values
at every node in the network under the constraint that information can only be exchanged locally, between nodes
that communicate directly.

This paper examines the class of synchronous distributed averaging algorithms that solve the average consensus
problem. In this framework, which can be traced back to the seminal work of Tsitsiklis [9], each node maintains
a local estimate of the network average. In the simplest form of a distributed averaging algorithm, one iteration
consists of having all nodes exchange values with their neighbors and then update their local average with a weighted
linear sum of their previous estimate and the estimates received from their neighbors. This update can be expressed
as a simple recursion of the form x(t + 1) = Wx(t), where xi(t) is the estimate after t iterations at node i, and
the matrix W contains the weights used to perform updates at each node. (Note, Wi,j 6= 0 only if nodes i and
j communicate directly, since information is only exchanged locally at each iteration.) Xiao and Boyd [10] prove
that, so long as the matrix W satisfies mild contraction conditions, the values xi(t) converge asymptotically to the
initial average, as t→∞. However, Boyd et al. [11] have shown that for important network topologies — such as
the two-dimensional grid or random geometric graph, which are commonly used to model connectivity in wireless
networks — this type of distributed averaging can be prohibitively slow, even if the weight matrix is optimized,
requiring a number of iterations that grows quickly with network size.
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Numerical simulations have demonstrated that predictive consensus algorithms can converge much faster [4],
[12]–[15]. These algorithms employ local node-memory, and change the algorithm so that the state-update becomes
a mixture of a network-averaging and a prediction. But there has been no theoretical proof that they provide better
performance, nor has there been any analytical characterization of the improvement they can provide. In addition,
the algorithms have required intensive initialization to calculate their parameters. In this paper, we provide the
first theoretical results quantifying the improvement obtained by predictive consensus over standard memoryless
consensus algorithms. We focus on a linear predictor and derive a closed-form expression for the optimal mixing
parameter one should use to combine the local prediction with the neighbourhood averaging. We analytically
characterize the convergence rate improvement and describe a simple decentralized algorithm for initialization.

A. Related Work

Two major approaches to accelerating the convergence of consensus algorithms can be identified: optimizing the
weight matrix [1], [5], [10], [11], and incorporating memory into the distributed averaging algorithm [4], [12]–
[16]. The spectral radius of the weight matrix governs the asymptotic convergence rate, so optimizing the weight
matrix corresponds to minimizing the spectral radius, subject to connectivity constraints [1], [10], [11]. Xiao et
al. formulate the optimization as a semi-definite problem and describe a decentralized algorithm using distributed
orthogonal iterations [1], [10], [11]. Although elegant and efficient, this approach involves substantial initialization
costs, and the improvement does not scale in grid or random geometric graph topologies (the averaging time is
improved by a constant factor).

A more promising research direction is based on using local node memory. The idea of using higher-order
eigenvalue shaping filters was discussed in [4], but the problem of identifying optimal filter parameters was not
solved. In [12] Cao et al. proposed a memory-based acceleration framework for gossip algorithms where updates
are a weighted sum of previous state values and gossip exchanges, but they provide no solutions or directions
for weight vector design or optimization. Johansson and Johansson [15] advocate a similar scheme for distributed
consensus averaging. They investigate convergence conditions and use standard solvers to find a numerical solution
for the optimal weight vector. Recently, polynomial filtering was introduced for consensus acceleration, with the
optimal weight vector again determined numerically [14]. Analytical solutions for the topology-dependent optimal
weights have not been considered in previous work [12]–[15] and, consequently, there has been no theoretical
convergence rate analysis for variants of distributed averaging that use memory to improve the convergence rate.

Aysal et al. proposed the mixing of neighbourhood averaging with a local linear predictor in [13]. The algorithm
we analyze belongs to the general framework presented therein. Although the algorithmic framework in [13] allows
for multi-tap linear predictors, the analysis focuses entirely on one-tap prediction. Since one-tap prediction uses
only the current state-value (and the output of neighbourhood averaging), the procedure is equivalent to modification
of the memoryless consensus weight matrix. As such, the convergence rate improvement cannot be better than that
achieved by optimizing the weight matrix as in [1], [10], [11]. Aysal et al. also present numerical simulations for
acceleration involving multi-tap predictors, which showed much greater improvement in convergence rate. However,
they provided no method to choose or initialize the algorithmic parameters, so it was impossible to implement the
algorithm in practice. There was no theoretical analysis demonstrating that the predictive acceleration procedure
could consistently outperform memoryless consensus and no characterization of the improvement.

An extreme approach to consensus acceleration is the methodology proposed in [16]. Based on the notion of
observability in linear systems, the algorithm achieves consensus in a finite number of iterations. Each node records
the entire history of values {xi(t)}Tt=0, and after enough iterations, inverts this history to recover the network
average. In order to carry out the inversion, each node needs to know a topology-dependent set of weights. This
leads to complicated initialization procedures for determining these weights. Another drawback is that the memory
required at each node grows with the network size.

B. Summary of Contributions

We analyze a simple, scalable and efficient framework for accelerating distributed average consensus. This
involves the convex combination of a neighborhood averaging and a local linear prediction. We demonstrate
theoretically that a simple two-tap linear predictor is sufficient to achieve dramatic improvements in the convergence
rate. For this two-tap case, we provide an analytical solution for the optimal mixing parameter and characterize
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the achieved improvement in convergence rate. We show that the performance gain grows with increasing network
size at a rate that depends on the (expected) spectral gap of the original weight matrix1. As concrete examples,
we show that for a chain topology on N nodes, the proposed method achieves a factor of N improvement over
memoryless consensus, and for a two-dimensional grid, a factor of

√
N improvement, in terms of the number of

iterations required to reach a prescribed level of accuracy. We report the results of numerical experiments comparing
our proposed algorithm with standard memoryless consensus, the polynomial filter approach of [14] and finite-time
consensus [16]. The proposed algorithm converges much more rapidly than memoryless consensus, outperforms the
polynomial filtering approach of [14], and achieves performance comparable to finite-time consensus for random
geometric graph topologies. We also present a novel, efficient approach for initialization of the accelerated algorithm.
The initialization overhead is much less than that of other acceleration methods, rendering the scheme more practical
for implementation.

C. Paper Organization

The remainder of this paper is structured as follows. Section II introduces the distributed average consensus
framework and outlines the linear prediction-based acceleration methodology. Section III provides the main results,
including the optimal value of the mixing parameter for the two-tap predictor, an analysis of convergence rate and
processing gain, and a practical heuristic for efficient distributed initalization. We report the results of numerical
experiments in Section IV, and provide proofs of the main results together with accompanying discussion in
Section V. Section VI concludes the paper.

II. PROBLEM FORMULATION

We assume that a network of N nodes is given, and that the communication topology is specified in terms of a
collection of neighborhoods of each node: Ni ⊆ {1, . . . , N} is the set of nodes with whom node i communicates
directly. For j ∈ Ni, we will also say that there is an edge between i and j, and assume that connectivity is
symmetric; i.e., j ∈ Ni implies that i ∈ Nj . The cardinality of Ni, di = |Ni|, is called the degree of node i. We
assume that the network is connected, meaning that there is a path (a sequence of adjacent edges) connecting every
pair of nodes.

Initially, each node i = 1, . . . , N has a scalar value xi(0) ∈ R, and the goal is to develop a distributed algorithm
such that every node computes x̄ = 1

N

∑N
i=1 xi(0). Previous studies (see, e.g., [9] or [10]) have considered linear

updates of the form
xi(t+ 1) = Wiixi(t) +

∑
j∈Ni

Wijxj(t), (1)

where
∑

jWij = 1, and Wi,j 6= 0 only if j ∈ Ni. Stacking the values x1(t), . . . , xN (t) into a column vector, one
network iteration of the algorithm is succinctly expressed as the linear recursion x(t+ 1) = Wx(t). Let 1 denote
the vector of all ones. For this basic setup, Xiao and Boyd [10] have shown that necessary and sufficient conditions
on W which ensure convergence to the average consensus, x̄1, are

W1 = 1, 1TW = 1T , ρ(W − J) < 1, (2)

where J is the averaging matrix, J = 1
N 11T , and ρ(A) denotes the spectral radius of a matrix A:

ρ(A) , max
i
{|λi| : i = 1, 2, . . . , N}, (3)

where {λi}Ni=1 denote the eigenvalues of A. Algorithms have been identified for locally generating weight matrices
that satisfy the required convergence conditions if the underlying graph is connected, e.g., Maximum–degree and
Metropolis–Hastings weights [1], [17].

Empirical evidence suggests that the convergence of the algorithm can be significantly improved by using local
memory [13]–[15]. The idea is to exploit smooth convergence of the algorithm, using current and past values to
predict the future trajectory. In this fashion, the algorithm achieves faster convergence by bypassing intermediate

1The expectation is appropriate for families of random graphs, and is taken over the set of random graphs for a specified number of nodes.
For deterministic topologies (e.g., grid, chain) the same result applies without expectation.
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states. Each update becomes a weighted mixture of a prediction and a neighborhood averaging, but the mixture
weights must be chosen carefully to ensure convergence.

The simplest case of local memory is two taps (a single tap is equivalent to storing only the current value, as
in standard distributed averaging), and this is the case we consider in this paper. The primary goal of this paper is
to prove that local memory can always be used to improve the convergence rate and show that the improvement
is dramatic; it is thus sufficient to examine the simplest case. For two taps of memory, prediction at node i is
based on the previous state value xi(t− 1), the current value xi(t), and the value achieved by one application of
the original averaging matrix, i.e. xW

i (t+ 1) = Wiixi(t) +
∑

j∈NiWijxj(t). The state-update equations at a node
become a combination of the predictor and the value derived by application of the consensus weight matrix (this
is easily extended for predictors with longer memories; see [13], [15]). In the two-tap memory case, we have:

xi(t+ 1) = αxP
i (t+ 1) + (1− α)xW

i (t+ 1) (4a)

xW
i (t+ 1) = Wiixi(t) +

∑
j∈Ni

Wijxj(t) (4b)

xP
i (t+ 1) = θ3x

W
i (t+ 1) + θ2xi(t) + θ1xi(t− 1). (4c)

Here θ = [θ1, θ2, θ3] is the vector of predictor coefficients.
The network-wide equations can then be expressed in matrix form by defining

W3[α] , (1− α+ αθ3)W + αθ2I, (5)

X(t) , [x(t)T ,x(t− 1)T ]T , (6)

where I is the identity matrix of the appropriate size, X(t) is the memory vector, and

Φ3[α] ,

[
W3[α] αθ1I

I 0

]
. (7)

Each block of the above matrix has dimensions N×N . We also define x(−1) = x(0) so that X(0) = [x(0)Tx(0)T ].
The update equation is then simply X(t+ 1) = Φ3[α]X(t).

III. MAIN RESULTS

This section presents the main results of the paper. Proofs and more detailed discussion are deferred to Section V.
We first present in Section III-A a discussion of how to optimize the two-tap memory predictive consensus algorithm
with respect to the network topology. The main contribution is an analytical expression for the mixing parameter α
that achieves the minimum limiting convergence time (a concept defined below). This analytical expression involves
only the second-largest eigenvalue of the original weight matrix W. In Section III-D, we describe an efficient
distributed algorithm for estimating the second-largest eigenvalue. This means that there is only a relatively small
overhead in initializing the predictive consensus algorithm with a very accurate approximation to the optimal mixing
parameter.

Section III-B presents an analysis of the convergence rate of the two-tap memory predictor-based consensus
algorithm when the optimal mixing parameter is used. We show how incorporating prediction affects the spectral
radius, which governs asymptotic convergence behaviour. Our result provides a bound on how the spectral radius
scales as the number of nodes in the network is increased. We discuss how this bound can be used to develop
guidelines for selecting asymptotically optimal prediction parameters θ. The second set of results on convergence
time, presented in Section III-C, characterizes a processing gain metric. This metric measures the improvement
in asymptotic convergence rate achieved by an accelerated consensus algorithm (relative to the convergence rate
achieved by standard distributed averaging using the original weight matrix).

A. Optimal Mixing Parameter

The mixing parameter α determines the influence of the standard one-step consensus iteration relative to the
predictor in (4a). We assume a foundational weight matrix, W, has been specified, and proceed to determine the
optimal mixing parameter α with respect to W. Before deriving an expression for the optimal α, it is necessary to
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specify what “optimal” means. Our goal is to minimize convergence time, but it is important to identify how we
measure convergence time.

Xiao and Boyd [10] show that selecting weights W to minimize the spectral radius ρ(W−J) (while respecting
the network topology constraints) leads to the optimal convergence rate for standard distributed averaging. In
particular, the spectral radius is the worst-case asymptotic convergence rate,

ρ(W − J) = sup
x(0)6=x̄

lim
t→∞

(
‖x(t)− x̄‖
‖x(0)− x̄‖

)1/t

. (8)

Maximizing asymptotic convergence rate is equivalent to minimizing asymptotic convergence time,

τasym ,
1

log(ρ(W − J)−1)
, (9)

which, asymptotically, corresponds to the number of iterations required to reduce the error ‖x(t)− x̄‖ by a factor
of e−1 [10]. An alternative metric is the convergence time, the time required to achieve the prescribed level of
accuracy ε for any non-trivial initialization [18]:

Tc(W, ε) = inf
τ≥0
{τ : ||x(t)− x̄(0)||2 ≤ ε||x(0)− x̄(0)||2 ∀ t ≥ τ, ∀ x(0)− x̄(0) 6= 0} , (10)

In the case where W is symmetric, ρ(W − J) also defines the convergence time (see Appendix A). The update
matrix we propose, (7), is not symmetric and it may not even be contracting. For such matrices, and the spectral
radius ρ(W − J) cannot, in general, be used to specify an upper bound on convergence time. We can, however,
establish a result for the limiting ε-convergence time, which is the convergence time for asymptotically small ε.
Specifically, in Section V-A we show that for matrices of the form (7),

lim
ε→0

Tc(Φ3[α], ε)
log ε−1

=
1

log ρ(Φ3[α]− J)−1
. (11)

According to this result, the convergence time required to approach the average within ε-accuracy grows at the rate
1/ log ρ(Φ3[α]−J)−1 as ε→ 0. Minimizing the spectral radius is thus a natural optimality criterion. The following
theorem establishes the optimal setting of α for a given weight matrix W, as a function of λ2(W), the second
largest eigenvalue of W.

Theorem 1 (Optimal mixing parameter). Suppose W ∈ RN×N is a symmetric weight matrix satisfying convergence
conditions (2) and |λN (W)| ≤ λ2(W), where the eigenvalues λ1(W) = 1, λ2(W), . . . , λN (W) are labelled in
decreasing order. Suppose further that θ3 + θ2 + θ1 = 1 and θ3 ≥ 1, θ2 ≥ 0. Then the solution of the optimization
problem

α? = arg min
α
ρ(Φ3[α]− J) (12)

is given by the following:

α? =
−((θ3 − 1)λ2(W)2 + θ2λ2(W) + 2θ1)− 2

√
θ2

1 + θ1λ2(W) (θ2 + (θ3 − 1)λ2(W))
(θ2 + (θ3 − 1)λ2(W))2 (13)

A brief discussion of the conditions of this theorem is warranted. The conditions on the predictor weights are
technical conditions that ensure convergence is achieved. Two factors motivate our belief that these are not overly-
restricting. First, these conditions are satisfied if we employ the least-squares predictor weights design strategy. Aysal
et al. [13] describe a method for choosing the predictor coefficients θ based on least-squares predictor design. For
the two-tap memory case, the predictor coefficients are identified as θ = A†TB, where

A ,

[
−2 −1 0
1 1 1

]T
, (14)

B , [1, 1]T , and A† is the Moore-Penrose pseudoinverse of A. This choice of predictor coefficients satisfies the
technical conditions on θ in Theorem 6 above (θ1 + θ2 + θ3 = 1 and θ3 ≥ 1, θ2 ≥ 0). Second, in Section III-B we
show that the choice of weights does not have a significant effect on the convergence properties.
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The condition on the weight matrix, |λN (W)| ≤ |λ2(W)|, significantly reduces the complexity of the proof.
Most distributed algorithms for constructing weight matrices (e.g., Metropolis-Hastings (MH) or max-degree) lead
to W that satisfy the condition, but they are not guaranteed to do so. We can ensure that the condition is satisfied
by applying a completely local adjustment to any weight matrix. The mapping W 7→ 1/2(I + W) transforms any
stochastic matrix W into a stochastic matrix with all positive eigenvalues [11]; this mapping can be carried out
locally, without any knowledge of the global properties of W, and without affecting the order-wise asymptotic
convergence rate as N →∞.

B. Convergence Rate Analysis

We begin with our main result for the convergence rate of two-tap predictor-based accelerated consensus.
Theorem 2 indicates how the spectral radius of the accelerated operator Φ3[α] is related to the spectral radius
of the foundational weight matrix W. Since the limiting ε-convergence time is governed by the spectral radius,
this relationship characterizes the improvement in convergence rate.

Theorem 2 (Convergence rate). Suppose the assumptions of Theorem 6 hold. Suppose further that the original
matrix W satisfies ρ(W− J) ≤ 1−Ψ(N) for some function Ψ : N→ (0, 1) of the network size N decreasing to
0. Then the matrix Φ3[α?] satisfies ρ(Φ3[α?]− J) ≤ 1−

√
Ψ(N).

In order to explore how fast the spectral radius, ρ(Φ3[α?] − J) =
√
−α?θ1, (see Section V-C for details) goes

to one as N →∞, we can take its asymptotic Taylor series expansion:

ρ(Φ3[α∗]− J) = 1−

√
2(θ3 − 1) + θ2

θ3 − 1 + θ2

√
Ψ(N) +O(Ψ(N)). (15)

From this expression, we see that the bound presented in Theorem 2 correctly captures the convergence rate of the
accelerated consensus algorithm. Alternatively, leaving only two terms in the expansion above, ρ(Φ3[α∗] − J) =
1− Ω(

√
Ψ(N)), we see that the bound presented is rate optimal in Landau notation.

We can also use (15) to provide guidelines for choosing asymptotically optimal prediction parameters θ3 and θ2.
In particular, it is clear that the coefficient γ(θ2, θ3) =

√
[2(θ3 − 1) + θ2]/[θ3 − 1 + θ2] should be maximized to

minimize the spectral radius ρ(Φ3[α?] − J). It is straightforward to verify that setting θ2 = 0 and θ3 = 1 + ε for
any ε > 0 satisfies the assumptions of Theorem 6 and also satisfies γ(0, 1 + ε) > γ(θ2, 1 + ε) for any positive θ2.
Since γ(0, 1 + ε) =

√
2 is independent of ε (or θ3) we conclude that setting (θ1, θ2, θ3) = (−ε, 0, 1 + ε) satisfies

the assumptions of Theorem 6 and asymptotically yields the optimal limiting ε-convergence time for the proposed
approach, as N →∞.

C. Processing Gain Analysis

Next, we investigate the gain that can be obtained by using the accelerated algorithm presented in this paper. We
consider the ratio τasym(W)/τasym(Φ3[α∗]) of the asymptotic convergence time of the standard consensus algorithm
using weight matrix W and the asymptotic convergence time of the proposed accelerated algorithm. This ratio
shows how many times fewer iterations, asymptotically, the optimized predictor-based algorithm must perform to
reduce error by a factor of e−1.

If the network topology is modeled as random (e.g., a sample from the family of random geometric graphs), we
adopt the expected gain G(W) = E{τasym(W)/τasym(Φ3[α?])} as a performance metric, where Φ3[α∗] is implicitly
constructed using the same matrix W. The expected gain characterizes the average improvement obtained by
running the algorithm over many realizations of the network topology. In this case the spectral radius, ρ(W− J),
is considered to be a random variable dependent on the particular realization of the graph. Consequently, the
expectations in the following theorem are taken with respect to the measure induced by the random nature of the
graph.

Theorem 3 (Expected gain). Suppose the assumptions of Theorem 6 hold. Suppose further that the original matrix
W satisfies E{ρ(W − J)} = 1−Ψ(N) for some function Ψ : N→ (0, 1) of the network size N decreasing to 0.
Then G(W) = 1/

√
Ψ(N).
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We note that there is no loss of generality in considering the expected gain since, in the case of a deterministic
network topology, these results will still hold (without expectations) since they are based on the deterministic
derivations in Theorems 1 and 2.

For a chain graph (path of N vertices) the eigenvalues of the Metropolis-Hastings (MH) weight matrix, WMH,
constructed according to [1] (Wi,j = 1/(1 + max(di, dj)) if (i, j) ∈ E , i 6= j; Wi,j = 0 if (i, j) /∈ E ; and Wi,i =
1−

∑
j∈Ni Wi,j) are given by λi(WMH) = 1/3 + 2/3 cos(π(i− 1)/N), i = 1, 2, . . . , N . This is straightforward to

verify using Theorem 5 in [19]. For the path graph, the weight matrix WMH is tridiagonal and we have max(di, dj) =
2,∀i, j. Thus, in this case, ρ(WMH − J) = 1/3 + 2/3 cos(π/N). For large enough N this results in ρ(WMH −
J) ≈ 1 − π2

3
1
N2 + O(1/N4). Using the same sequence of steps used to prove Theorem 3 above without taking

expectations, we see that for the chain topology, the improvement in asymptotic convergence rate is asymptotically
lower bounded by N ; i.e., G(W) = Ω(N). Similarly, for a network with two-dimensional grid topology, taking
W to be the transition matrix for a natural random walk on the grid (a minor perturbation of the MH weights) it
is known [20] that (1− λ2(W))−1 = Θ(N). Thus, for a two-dimensional grid, the proposed algorithm leads to a
gain of G(W) = Ω(N1/2).

This discussion suggests that the following result may also be useful in characterizing the improvement in
asymptotic convergence rate obtained by using the proposed algorithm.

Corollary 1. Suppose that assumptions of Theorem 3 hold and suppose in addition that ρ(W − J) = 1−Θ( 1
Nβ )

then the improvement in asymptotic convergence rate attained by the accelerated algorithm is G(W) = Ω(Nβ/2).

D. Initialization Heuristic: Decentralized Estimation of λ2(W)

Under our assumptions, the optimal value of the mixing parameter depends only on the values of predictor
coefficients and the second largest eigenvalue of initial matrix W. In this section we discuss a decentralized
procedure for estimating λ2(W). Since we assume the predictor weights, θ, and weight matrix W are fixed and
specified, this is the only parameter that remains to be identified for a fully decentralized implementation of the
algorithm. Estimation of λ2(W) is a straightforward exercise if we employ the method of decentralized orthogonal
iterations (DOI) proposed for distributed spectral analysis in [21] and refined for distributed optimization applications
in [11].

Algorithm 1 presents the proposed specialized and streamlined version of DOI, which is only used to calculate
the second largest eigenvalue of the consensus update matrix W. Our underlying assumptions in Algorithm 1 are
those of Theorem 6, in which case we have λ2(W) = ρ(W − J). The eigenvalue shifting technique discussed
after Theorem 6 can be employed whenever assumption |λN (W)| ≤ λ2(W) does not hold. The main idea of DOI,
is to repeatedly apply W to a random vector v0, with periodic normalization and subtraction of the estimate of
the mean, until vK = WKv0 converges to the second-largest eigenvector of W. Then, estimate the second-largest
eigenvalue by calculating ||WvK ||/||vK || for a valid matrix norm ‖·‖. Previous algorithms for DOI [11], [21] have
normalized in step 6 by the `2 norm of vk, estimated by K iterations of consensus, and step 9 previously required
an additional K iterations to calculate ‖WvK‖2 and ‖vK‖2. In addition, because the initial random vectors in [11],
[21] are not zero-mean, these algorithms must apply additional consensus operations to eliminate the bias (otherwise
vK converges to 1). Previous algorithms thus have O(K2) complexity, where K is the topology-dependent number
of consensus iterations needed to achieve accurate convergence to the average value. For example, for a random
geometric graph, one typically needs K ∝ N .

The main innovations of Algorithm 1 are in line 2, which ensures that the initial random vector is zero mean, in
line 6, where normalization is done (after every L applications of the consensus update) using the supremum norm,
and line 9, here the supremum norm is also used in lieu of the `2 norm2 (based on the Gelfand’s formula [22]
we have limK→∞ ‖WvK‖∞/‖vK‖∞ = ρ(W − J)). The maximum entry of the vector vK can be calculated
using a maximum consensus algorithm, wherein every node updates its value with the maximum of its immediate
neighbours: xi(t) = maxj∈Ni xj(t − 1). Maximum consensus requires at most N iterations to converge for any
topology; more precisely it requires a number of iterations equal to the diameter, D, of the underlying graph,
which is often much less than N (and much less than K). Equally importantly, maximum consensus achieves

2We have not observed any penalty for using the `∞ norm in our experiments. This observation is supported by the theoretical equivalence
of `p norms in the consensus framework [18].
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Algorithm 1: Spectral radius estimation (Input: foundational weight matrix W)
Choose random vector v ;1

Set v0 = Wv − v ; Generate zero-mean random vector2

for k = 1 to K do3

vk = Wvk−1 ; Apply W to converge to second-largest eigenvector4

if k mod L = 0 then5

vk = vk/||vk||∞ ; Normalize by supremum norm every L iterations6

endif7

endfor8

Let λ̂2(W) = ‖WvK‖∞/‖vK‖∞ ;9

perfect agreement. In the algorithms of [11], [21] each node normalizes by a slightly different value (there are
residual errors in the consensus procedure). In Algorithm 1, all nodes normalize by the same value, and this leads
to much better estimation accuracy. Taken together, these innovations lead to an algorithm that is only O(K)
(with the appropriate choice of L). In particular, the complexity of Algorithm 1 is clearly O(K + DK/L + D).
Choosing L ∝ D (assuming that λ2(W)D � ∆, where ∆ is machine precision) we obtain an O(K) algorithm.
The proposed initialization algorithm has significantly smaller computation/communication complexity than the
initialization algorithm proposed for the distributed computation of optimal matrix in [11].

IV. NUMERICAL EXPERIMENTS AND DISCUSSION

This section presents simulation results for two scenarios. In the first simulation scenario, network topologies are
drawn from the family of random geometric graphs of N nodes [23]. In this model, N nodes are randomly assigned
coordinates in the unit square, and links exist between nodes that are at most a distance

√
2 logN/N . (This scaling

law for the connectivity radius guarantees the network is connected with high probability [23].) Two models for
the initial node measurements, x(0), are considered. In the “Slope” model, the initial value xi(0) at node i is just
the sum of its coordinates in the unit square. In the “Spike” model, all nodes are initialized to 0, except for one
randomly chosen node whose initial value is set to one. All simulation results are generated based on 300 trials (a
different random graph and node initialization is generated for each trial). The initial values are normalized so that
the initial variance of node values is equal to 1. The second simulation scenario is for the N -node chain topology.
Intuitively, this network configuration constitutes one of the most challenging topologies for distributed averaging
algorithms since the chain has the longest diameter and weakest connectivity of all graphs on N . For this topology,
we adopt analogous versions of the “Slope” and “Spike” initializations to those described above; for the “Slope”,
xi(0) = i/N , and for the “Spike”, we average over all locations of the one.

We run the algorithm N times with different initializations of the eigenvalue estimation algorithm to investigate
the effects of initializing α? with an imperfect estimate of λ2(W). In simulations involving the calculation of
convergence time we have fixed the required accuracy of computations, ε, at the level −100 dB (i.e., a relative
error of 1× 10−5). For predictor parameters, we use (θ1, θ2, θ3) = (−ε, 0, 1 + ε), ε = 1/2, as these were shown to
be asymptotically optimal in Section III-B.

We compare our algorithm with two memoryless approaches, the Metropolis-Hastings (MH) weight matrix, and
the optimal weight matrix of Xiao and Boyd [10]. MH weights are attractive because they can be calculated by each
node simply using knowledge of its own degree and its neighbors’ degrees. We also compare to two approaches
from the literature that also make use of memory at each node to improve the rate of convergence: polynomial
filtering [14], and finite-time consensus [16].

We first plot the MSE decay curves as a function of the number of consensus iterations t for network size N = 200,
RGG topology and different initializations. Figure 1 compares the performance of the proposed algorithm with the
algorithms using the MH or the optimal weight matrix of Xiao and Boyd [10]. It can be seen that our decentralized
initialization scheme does not have a major influence on the performance of our approach, as the method initialized
using a decentralized estimate for λ2(W) (the curve labelled MH-ProposedEst) and the method initialized using
precise knowledge of λ2(W) (labelled MH-Proposed) coincide nearly exactly since the procedure discussed in
Section III-D provides a good estimate of λ2(W) (to within 10−3 maximum relative error for a 200 node RGG).
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Fig. 1. MSE vs. iterations for 200-node random geometric graphs. The algorithms compared are: optimal weight matrix of Xiao and
Boyd [10] (Opt): +; MH weights (MH): 4; proposed method with oracle λ2(W) and MH matrix (MH-Proposed): �; proposed with
decentralized estimate of λ2(W) (MH-ProposedEst): ×; accelerated consensus, with oracle λ2(W) and optimal matrix (Opt-Proposed): �.
(a) Slope initialization. (b) Spike initialization.
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(b) Chain

Fig. 2. MSE vs. iteration for 200-node topologies, Slope initialization. The algorithms compared are: optimal weight matrix of Xiao and
Boyd [10] (Opt): +; polynomial filter with 3 taps (MH-PolyFilt3): 5 and 7 taps (MH-PolyFilt7): .; proposed method with oracle λ2(W)
and MH matrix (MH-Proposed): �; proposed method with decentralized estiamte of λ2(W) (MH-ProposedEst): ×.

It is also clear that the proposed algorithm outperforms both the memoryless MH matrix and the optimal weight
matrix of Xiao and Boyd [10]. In this experiment we fixed K = 2N and L = 10. Note that the results in Figure 1
and all subsequent figures do not account for initialization costs. The initialization cost is relatively small. For the
200-node RGG it is equal to about 3N = 600 consensus iterations (if we bound the diameter of the 200-node RGG
by 20). If we desire a relative error of 10−3, our algorithm gains approximately 70 iterations over memoryless MH
consensus, based on Fig. 2(b). For this desired accuracy, the initialization overhead is thus recovered after less than
10 consensus operations.

Figure 2 compares the MSE curves for the proposed algorithm with two versions of polynomial filtering
consensus [14], one using 3 taps and the other using 7 taps. We see that in the RGG scenario, our algorithm
outperforms polynomial filtering with 3 memory taps and converges at a rate similar to that of the 7-tap version
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Fig. 3. Averaging time characterization, random geometric graph topologies. The algorithms compared are: optimal weight matrix of Xiao
and Boyd [10] (Opt): +; polynomial filter with 3 taps (MH-PolyFilt3): 5, and 7 taps (MH-PolyFilt7): .; proposed method with oracle
λ2(W) and MH matrix (MH-Proposed): �; proposed method with MH matrix and decentralized estimate of λ2(W) (MH-ProposedEst):
×. (a) Averaging time as a function of the network size. (b) Ratio of the averaging time of the non-accelerated algorithm to that of the
associated accelerated algorithm.
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Fig. 4. Averaging time characterization, chain topology. The algorithms compared are: optimal weight matrix of Xiao and Boyd [10] (Opt):
+; polynomial filter with 3 taps (MH-PolyFilt3): 5, and 7 taps (MH-PolyFilt7): .; proposed method with oracle λ2(W) and MH matrix
(MH-Proposed): �. (a) Averaging time as a function of the network size. (b) Improvement due to the accelerated consensus: ratio of the
averaging time of the non-accelerated algorithm to that of the associated accelerated algorithm.

of polynomial filtering3. Decentralized calculation of topology-adapted polynomial filter weights also remains an
open problem. We conclude that for random geometric graphs, our algorithm has superior properties with respect to
polynomial filtering since it has better error performance for the same computational complexity, and our approach
is suitable for completely distributed implementation. Moving our attention to the chain topology only emphasizes
these points, as our accelerated algorithm significantly outperforms even 7-tap polynomial filtering. Note that
decentralized initialization of our algorithm also works well in the chain graph scenario. However, to obtain this
result we have to increase the number of consensus iterations in the eigenvalue estimation algorithm, K, from 2N
to N2. This increase in the complexity of the distributed optimization of accelerated consensus algorithm is due to

3Calculating optimal weights in the polynomial filtering framework quickly becomes ill-conditioned with increasing filter length, and we
were not able to obtain stable results for more than 7 taps on random geometric graph topologies. Note that the original paper [14] also focuses
on filters of length no more than 7. We conjecture that this ill-conditioning stems from the fact that the optimal solution involves pseudo-
inversion of a Vandermonde matrix containing powers of the original eigenvalues. Since, for random geometric graph topologies, eigenvalues
are not described by a regular function (e.g., the cosine, as for the chain graph) there is a relatively high probability (increasing with N )
that the original weight matrix contains two similar-valued eigenvalues which may result in the Vandermonde matrix being ill-conditioned.
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Fig. 5. MSE at the point when finite time consensus of Sundaram and Hadjicostis [16] has enough information to calculate the exact
average at all nodes. The algorithms compared are: optimal weights (Opt): +; polynomial filter with 3 taps (MH-PolyFilt3): 5, and 7
taps (MH-PolyFilt7): .; proposed method with oracle λ2(W) and MH matrix (MH-Proposed): �. (a) Random geometric graph. (b) Chain
topology.

the properties of the power methods [24] and related eigenvalue estimation problems. The accuracy of the second
largest eigenvalue computation depends on the ratio λ3(W)/λ2(W), and this ratio increases much more rapidly
for the chain topology as N grows than it does for random geometric graphs.

To investigate the robustness and scalability properties of the proposed algorithm, we next examine the averaging
time, Tave(Φ3[α∗]), as defined in (10), and the ratio Tave(W)/Tave(Φ3[α∗]), for random geometric graphs (Fig. 3)
and the chain topology (Fig. 4). We establish through simulation that the scaling behaviour of the ratio that can be
measured experimentally matches very well with the asymptotic result established theoretically for the processing
gain, τasym(W)/τasym(Φ3[α∗]). We see from Fig. 3 that in the random geometric graph setting, the proposed
algorithm always outperforms consensus with the optimal weight matrix of Xiao and Boyd [10] and polynomial
filter with equal number of memory taps, and our approach scales comparably to 7-tap polynomial filtering. On the
other hand, in the chain graph setting (Fig. 4) the proposed algorithm outperforms all the competing algorithms.
Another interesting observation from Fig. 4 is that the gains of the polynomial filter and optimal weight matrix
remain almost constant with varying network size while the gain obtained by the proposed algorithm increases
significantly with N . This linear improvement with N matches well with the asymptotic behavior predicted by
Theorem 3.

Finally, we compare the proposed algorithm with the linear observer approach of Sundaram and Hadjicostis [16],
which works by remembering all of the consensus values, xi(t), seen at a node i (unbounded memory). After enough
updates, each node is able to perfectly recover the average by locally solving a set of linear equations. To compare
the method of [16] with our approach and the other asymptotic approaches described above, we determine the
topology-dependent number of iterations that the linear-observer method must execute to have enough information
to exactly recover the average. We then run each of the asymptotic approaches for the same number of iterations
and evaluate performance based on the MSE they achieve. Figure 5 depicts results for both random geometric graph
and chain topologies. For random geometric graphs of N ≥ 100 nodes, we observe that the proposed algorithm
achieves an error of at most 10−12 (roughly machine precision), by the time the linear observer approach has
sufficient information to compute the average. For the chain topology the results are much more favourable for
the linear-observer approach. However, the linear observer approach requires significant overhead to determine the
topology-dependent coefficients that define the linear system to be solved at each node and does not scale well to
large networks.

V. PROOFS OF MAIN RESULTS AND DISCUSSION

A. Limiting ε-convergence time

To begin, we need to motivate choosing α to minimize the spectral radius ρ(Φ3[α] − J) since, unlike in the
memoryless setting, it does not bound the step-wise rate of convergence. In fact, since Φ3[α] is not symmetric,
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Φ3[α]t does not even converge to J as t→∞, as in the memoryless setting. However, we will show that: (i) for
the proposed construction, Φ3[α]t does converge to a matrix Φ̄; (ii) that the limiting convergence time is governed
by ρ(Φ3[α]− Φ̄); and (iii) that ρ(Φ3[α]− Φ̄) = ρ(Φ3[α]− J).

Before stating our first result we must introduce some notation. For now, assume we are given a matrix Φ ∈ Rn×n

with Φ̄ = limt→∞Φt. We will address conditions for existence of the limit below. For a given initialization vector
x(0) ∈ Rn, let x̃(0) = Φ̄x(0), and define the set of non-trivial initialization vectors X0,Φ , {x(0) ∈ Rn : x(0) 6=
x̃(0)}. Since we have not yet established that x̃(0) = x̄(0) , Jx(0), we keep the discussion general and use the
following definition of the convergence time:

Tc(Φ, ε) = inf
τ≥0
{τ : ||x(t)− x̃(0)||2 ≤ ε||x(0)− x̃(0)||2 ∀ t ≥ τ, ∀ x(0) ∈ X0,Φ} (16)

We now prove a result relating the spectral radius and the ε-convergence time for general non-symmetric averaging
matrices Φ, which we will then apply to our particular construction, Φ3[α].

Theorem 4. Let Φ ∈ Rn×n be given, with limit limt→∞Φt = Φ̄, and assume that ρ(Φ− Φ̄) > 0. Then

lim
ε→0

Tc(Φ, ε)
log ε−1

=
1

log ρ(Φ− Φ̄)−1
. (17)

Proof: The limit limt→∞Φt = Φ̄ exists if and only if (see [25]) Φ can be expressed in the form

Φ = T
[

Iκ 0
0 Z

]
T−1 (18)

where Iκ is the identity matrix of dimension κ, Z is a matrix with ρ(Z) < 1 and T is an invertible matrix. It
follows that in the limit we have [15],

Φ̄ = lim
t→∞

Φt = T
[

Iκ 0
0 0

]
T−1. (19)

By linear algebra, ΦΦ̄ = Φ̄Φ = Φ̄ and ΦtΦ̄ = Φ̄. Using these facts it is trivial to show (Φ − Φ̄)t = Φt − Φ̄,
implying (Φ− Φ̄)t(x(0)− x̃(0)) = x(t)− x̃(0). Taking the norm of both sides we have

||x(t)− x̃(0)||2 = ||(Φ− Φ̄)t(x(0)− x̃(0))||2, (20)

and therefore

Tc(Φ, ε) = inf
τ≥0

{
τ :
||(Φ− Φ̄)t(x(0)− x̃(0))||2

||x(0)− x̃(0)||2
≤ ε ∀ t ≥ τ, ∀ x(0) ∈ X0,Φ

}
. (21)

By the definition of Tc(Φ, ε) above we have:

||(Φ− Φ̄)Tc(Φ,ε)(x(0)− x̃(0))||2
||x(0)− x̃(0)||2

≤ ε, ∀x(0) ∈ X0,Φ. (22)

This implies: ( sup
x(0)∈X0,Φ

||(Φ− Φ̄)Tc(Φ,ε)(x(0)− x̃(0))||2
||x(0)− x̃(0)||2

)1/Tc(Φ,ε)
Tc(Φ,ε)

≤ ε, (23)

and so, using the definition of the induced operator norm, which is simply ||Φ − Φ̄||2 = supx(0)∈X0,Φ
||(Φ −

Φ̄)(x(0)− x̃(0))||2/||x(0)− x̃(0)||2, after taking the logarithm on both sides of (62), we have4

Tc(Φ, ε) ≥
log ε

log ||(Φ− Φ̄)Tc(Φ,ε)||1/Tc(Φ,ε)
2

. (24)

4Since we are interested in asymptotic behaviour of the type ε→ 0, there is no loss of generality in supposing that ε is sufficiently small
so that the following holds: log ε < 0, log ||(Φ− Φ̄)Tc(Φ,ε)||1/Tc(Φ,ε)

2 < 0, and log ||(Φ− Φ̄)Tc(Φ,ε)−1||1/(Tc(Φ,ε)−1)
2 < 0
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Since [22] ρ(Φ− Φ̄) ≤ ||(Φ− Φ̄)t||1/t2 for any t ≥ 0, it follows that

Tc(Φ, ε) ≥
log ε

log ρ(Φ− Φ̄)
. (25)

from which it is also clear that Tc(Φ, ε)→∞ as ε→ 0.
Now, by the definition of Tc(Φ, ε) in (60) we also have

∃x(0) ∈ X0,Φ,
||(Φ− Φ̄)Tc(Φ,ε)−1(x(0)− x̃(0))||2

||x(0)− x̃(0)||2
> ε, (26)

implying, for the operator norm of (Φ− Φ̄)Tc(Φ,ε)−1:

||(Φ− Φ̄)Tc(Φ,ε)−1||2 > ε. (27)

Thus using (66) and (62) we can always pick β ∈ [0, 1) such that the following holds:

β||(Φ− Φ̄)Tc(Φ,ε)−1||2 + (1− β)||(Φ− Φ̄)Tc(Φ,ε)||2 = ε. (28)

Using the notation CTc = ||(Φ− Φ̄)Tc(Φ,ε)||2/||(Φ− Φ̄)Tc(Φ,ε)−1||2 for the bounded5 number CTc we conclude

||(Φ− Φ̄)Tc(Φ,ε)−1||2(β + (1− β)CTc) = ε. (29)

Using the technique used to switch from (62) to (63) we obtain:

(Tc(Φ, ε)− 1) log ||(Φ− Φ̄)Tc(Φ,ε)−1||1/(Tc(Φ,ε)−1)
2 = log ε− log(β + (1− β)CTc). (30)

Dividing through by log ε−1 log ||(Φ− Φ̄)Tc(Φ,ε)−1||1/(Tc(Φ,ε)−1)
2 , and taking the limit as ε→ 0 we have

lim
ε→0

Tc(Φ, ε)
log ε−1

= lim
ε→0

−1

log ||(Φ− Φ̄)Tc(Φ,ε)−1||1/(Tc(Φ,ε)−1)
2

− lim
ε→0

log(β + (1− β)CTc)

log ||(Φ− Φ̄)Tc(Φ,ε)−1||1/(Tc(Φ,ε)−1)
2 log ε−1

+ lim
ε→0

1
log ε−1

. (31)

Moving the limits on the right under the logs and using the fact that Tc(Φ, ε) → ∞ as ε → 0, we may employ
Gelfand’s formula [22], limt→∞ ||(Φ− Φ̄)t||1/t = ρ(Φ− Φ̄), along with the boundedness of CTc to complete the
proof:

lim
ε→0

Tc(Φ, ε)
log ε−1

=
−1

log lim
ε→0
||(Φ− Φ̄)Tc(Φ,ε)−1||1/(Tc(Φ,ε)−1)

2

− lim
ε→0

log(β + (1− β)CTc)− 1

log lim
ε→0
||(Φ− Φ̄)Tc(Φ,ε)−1||1/(Tc(Φ,ε)−1)

2 log ε−1

=
1

log ρ(Φ− Φ̄)−1
+ lim
ε→0

log(β + (1− β)CTc)− 1
log ρ(Φ− Φ̄)−1 log ε−1

=
1

log ρ(Φ− Φ̄)−1
(32)

In order to apply the above result, we must establish that Φ3[α] satisfies the conditions of Theorem 5. In doing
so, we will also show that (i) for Φ = Φ3[α] and X(0) defined in (6), the limit Φ̄X(0) = JX(0), so our approach
indeed converges to the average consensus, and (ii) that the limiting convergence time is characterized by a function
of ρ(Φ3[α]−J), which motivates choosing α to optimize this expression. (Recall, in this setting J is the 2N ×2N
matrix with all entries equal to 1/2N .) Note that the condition on α is necessary for Φ3[α]t to have a limit as
t→∞, as will be established in Section V-B.

Proposition 1. Let Φ3[α] be defined as in (7), assume that the assumptions of Theorem 6 hold, and α ∈ [0,−θ−1
1 ).

Then:
(a) Φ̄3[α] = limt→∞Φ3[α]t exists, with Φ̄3[α]X(0) = JX(0) for all X(0) defined in (6),

5The boundedness of this number follows from the sub-multiplicativity of the operator norm, ||(Φ − Φ̄)Tc(Φ,ε)||2 ≤ ‖Φ − Φ̄‖2||(Φ −
Φ̄)Tc(Φ,ε)−1||2 yielding 0 < CTc ≤ ‖Φ− Φ̄‖2
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(b) ρ(Φ3[α]− Φ̄3[α]) > 0, and
(c) lim

ε→0

Tc(Φ3[α],ε)
log ε−1 = 1

log ρ(Φ3[α]−J)−1 .

Proof: Proof of part (a). In Theorem 1 in [15], Johansson and Johansson show that the necessary and sufficient
conditions for the consensus algorithm of the form Φ3[α] to converge to the average are (JJ1) Φ3[α]1 = 1;
(JJ2) gTΦ3[α] = gT for vector gT = [β11Tβ21T ] with weights satisfying β1 + β2 = 1; and (JJ3) ρ(Φ3[α] −
1
N 1gT ) < 1. If these conditions hold then we also have Φ̄3[α] = 1

N 1gT [15] implying X̃(0) = X̄(0). Condition (JJ1)
is easily verified after straightforward algebraic manipulations using the definition of Φ3[α] in (7), the assumption
that θ1 + θ2 + θ3 = 1, and recalling that W satisfies W1 = 1 by design. To address condition (JJ2), we set
β1 = 1/(1 + αθ1) and β2 = αθ1/(1 + αθ1). Clearly, β1 + β2 = 1, and it is also easy to verify condition (JJ2) by
plugging these values into the definition of g, and using the same properties of Φ3[α], the θi’s, and W as above.

In order to verify that condition (JJ3) holds, we will show here that ρ(Φ3[α] − 1
N 1gT ) = ρ(Φ3[α] − J). In

Section V-B we show that ρ(Φ3[α] − J) < 1 if α ∈ [0,−θ−1
1 ), and thus condition (JJ3) is also satisfied under

the assumptions of the proposition. To show that ρ(Φ3[α] − 1
N 1gT ) = ρ(Φ3[α] − J), we prove a stronger result,

namely that Φ3[α]− 1
N 1gT and Φ3[α]−J have the same eigenspectra. Consider the eigenvector vi of Φ3[α] with

corresponding eigenvalue λi(Φ3[α]). This pair solves the eigenvalue problem, Φ3[α]vi = λi(Φ3[α])vi. Equivalently,
expanding the definition of Φ3[α], we have[

W3[α] αθ1I
I 0

]
vi = λi(Φ3[α])

[
I 0
0 I

]
vi. (33)

We observe that (33) fits a modification of the first companion form of the linearization of a Quadratic Eigenvalue
Problem (QEP) (see Section 3.4 in [26]). The QEP has general form (λ2M + λC + K)u = 0, where u is the
eigenvector associated with this QEP. The linearization of interest to us has the form:[

−C −K
I 0

] [
λu
u

]
− λ

[
M 0
0 I

] [
λu
u

]
= 0. (34)

The correspondence is clear if we make the associations: M = I, C = −W3[α] and K = −αθ1I, λ = λi(Φ3[α])
and vi = [λi(Φ3[α])uTuT ]T . Eigenvectors vi that solve (33) thus have special structure and are related to ui, the
solution to the QEP,

(λi(Φ3[α])2I− λi(Φ3[α])W3[α]− αθ1I)ui = 0. (35)

Because the first and third terms above are scaled identity matrices and the definition of W3[α] (see (5)) also
involves scaled identity matrices, we can simplify this last equation to find that any solution ui must also be an
eigenvector of W.

We have seen above, when verifying condition (JJ1), that 1 is an eigenvector of Φ3[α] with corresponding
eigenvalue λi(Φ3[α]) = 1. Observe that, from the definition of g and because β1 +β2 = 1, we have ( 1

N 1gT )1 = 1.
Thus, (Φ3[α] − 1

N 1gT )1 = 0. Similarly, recalling that J = 1
2N 11T , we have J1 = 1, and thus (Φ3[α] − J)1 =

0. By design, W is a doubly stochastic matrix, and all eigenvectors u of W with u 6= 1 are orthogonal to
1. It follows that ( 1

N 1gT )vi = 0 for corresponding eigenvectors vi = [λi(Φ3[α])uTuT ]T of Φ3[α], and thus
(Φ3[α] − 1

N 1gT )vi = Φ3[α]vi = λi(Φ3[α])vi. Similarly, Jvi = 0 if vi 6= 1, and (Φ3[α] − J)vi = λi(Φ3[α])vi.
Therefore, we conclude that the matrices (Φ3[α] − Φ̄3[α]) and (Φ3[α] − J) have identical eigenspectra, and thus
ρ(Φ3[α]− 1

N 1gT ) = ρ(Φ3[α]− J).
In Section V-B we show that ρ(Φ3[α]− J) < 1 if α ∈ [0,−θ−1

1 ), and thus the assumptions of the proposition,
taken together with the analysis just conducted, verify that condition (JJ3) is also satisfied. Therefore, the limit
limt→∞Φ3[α]t = Φ̄3[α] = 1

N 1gT exists, and Φ̄3[α]X(0) = JX(0) for all X(0) defined in (6).
Proofs of parts (b) and (c). In the proof of Lemma 1 (see Section V-B), it is shown that ρ(Φ3[α]−J]) ≥ −αθ1.

Thus, if α > 0 and θ1 < 0, then part (b) holds. The assumptions θ1 + θ2 + θ3 = 1, θ3 ≥ 1, and θ2 ≥ 0 imply that
θ1 ≤ 0, and by assumption, α ≥ 0. If α = 0 or θ1 = 0, then the proposed predictive consensus scheme reduces to
memoryless consensus with weight matrix W (and the statement follows directly from the results of [10], [11]).
Thus, part (b) of the proposition follows from the assumptions and the analysis in Lemma 1 below. By proving parts
(a) and (b), we have verified the assumptions of Theorem 5 above. Applying the result of this Theorem, together
with the equivalence of ρ(Φ3[α] − 1

N 1gT ) and ρ(Φ3[α] − J), gives the claim in part (c), thereby completing the
proof.



15

B. Proof of Theorem 6: Optimal Mixing Parameter

In order to minimize the spectral radius of Φ3[α] we need to know its eigenvalues. These can be calculated by
solving the eigenvalue problem (33). We can multiply (35) by uTi on the left to obtain a quadratic equation that
links the individual eigenvalues λi(Φ3[α]) and λi(W3[α]):

uTi (λi(Φ3[α])2I− λi(Φ3[α])W3[α]− αθ1I)ui = 0

λi(Φ3[α])2 − λi(W3[α])λi(Φ3[α])− αθ1 = 0. (36)

Recall Φ3[α] is a 2N × 2N matrix, and so Φ3[α] has, in general, 2N eigenvalues – twice as many as W3[α].
These eigenvalues are the solutions of the quadratic (71), and are given by

λ∗i (Φ3[α]) =
1
2

(
λi(W3[α]) +

√
λi(W3[α])2 + 4αθ1

)
λ∗∗i (Φ3[α]) =

1
2

(
λi(W3[α])−

√
λi(W3[α])2 + 4αθ1

)
. (37)

With these expressions for the eigenvalues of Φ3[α], we are in a position to formulate the problem of minimizing
the spectral radius of the matrix (Φ3[α] − J), α? = arg min

α
ρ(Φ3[α] − J). It can be shown that this problem is

equivalent to

α? = arg min
α≥0

ρ(Φ3[α]− J) (38)

The simplest way to demonstrate this is to show that ρ(Φ3[α] − J) ≥ ρ(Φ3[0] − J) for any α < 0. Indeed, by
the definition of the spectral radius we have that ρ(Φ3[α] − J) ≥ λ∗2(Φ3[α]) and ρ(Φ3[0] − J) = λ2(W). The
latter is clear if we plug α = 0 into (72). Hence it is enough to demonstrate λ∗2(Φ3[α]) ≥ λ2(W). Consider
the inequality λ∗2(Φ3[α]) − λ2(W) ≥ 0. Replacing λ∗2(Φ3[α]) with its definition according to (72), rearranging
terms and squaring both sides gives αθ1 ≥ λ2(W)2 − λ2(W)λ2(W3[α]). From the definition of W3[α] in (5),
it follows that λ2(W3[α]) = (1 − α + αθ3)λ2(W) + αθ2. Using this relation leads to the expression α(θ1 +
(θ3 − 1)λ2(W)2 + θ2λ2(W)) ≥ 0. Under our assumptions, we have θ3 − 1 ≥ 0, θ2 ≥ 0 and θ1 ≤ 0. Thus
θ1 + (θ3 − 1)λ2(W)2 + θ2λ2(W) ≤ θ1 + θ3 − 1 + θ2 = 0 since λ2(W) < 1. This implies that if α < 0, the
last inequality holds leading to λ∗2(Φ3[α]) ≥ λ2(W). Thus for any α < 0 the spectral radius ρ(Φ3[α]− J) cannot
decrease, and so we may focus on optimizing over α ≥ 0.

Now, the proof of Theorem 6 boils down to examining how varying α affects the eigenvalues of Φ3[α] on a
case-by-case basis. We first show that the first eigenvalues, λ∗1(Φ3[α]) and λ∗∗1 (Φ3[α]), are smaller than all the
others. Then, we demonstrate that the second eigenvalues, λ∗2(Φ3[α]) and λ∗∗2 (Φ3[α]), dominate all other pairs,
λ∗j (Φ3[α]) and λ∗∗j (Φ3[α]), for j > 2, allowing us to focus on the second eigenvalues, from which the proof
follows. Along the way, we establish conditions on α which guarantee stability of the proposed two-tap predictive
consensus methodology.

To begin, we reformulate the optimization problem in terms of the eigenvalues of Φ3[α]. We first consider
λ∗1(Φ3[α]) and λ∗∗1 (Φ3[α]). Substituting λ1(W3[α]) = (1−α+αθ3)+αθ2 we obtain the relationship

√
λ2

1(W3[α]) + 4αθ1 =
|1 + αθ1| and using the condition θ1 ≤ 0, we conclude that

λ∗1(Φ3[α]), λ∗∗1 (Φ3[α]) =
{

1,−αθ1 if 1 + αθ1 ≥ 0⇒ α ≤ −θ−1
1

−αθ1, 1 if 1 + αθ1 < 0⇒ α > −θ−1
1 .

(39)

We note that α > −θ−1
1 implies |λ∗∗1 (Φ3[α])| > 1, leading to divergence of the linear recursion involving Φ3[α],

and thus conclude that the potential solution is restricted to the range α ≤ −θ−1
1 . Focusing on this setting, we write

λ∗1(Φ3[α]) = 1 and λ∗∗1 (Φ3[α]) = −αθ1. We can now reformulate the problem (74) in terms of the eigenvalues of
Φ3[α]:

α? = arg min
α≥0

max
i=1,2,...N

Ji[α, λi(W)] (40)

where

Ji[α, λi(W)] =

{
|λ∗∗1 (Φ3[α])|, i = 1
max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|) i > 1.

(41)
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We now state a lemma that characterizes the functions Ji[α, λi(W)].

Lemma 1. Under the assumptions of Theorem 6,

Ji[α, λi(W)] =

{
α1/2(−θ1)1/2 if α ∈ [α∗i , θ

−1
1 ]

1
2

(
|λi(W3[α])|+

√
λi(W3[α])2 + 4αθ1

)
if α ∈ [0, α∗i )

(42)

where

α∗i =
−((θ3 − 1)λi(W)2 + θ2λi(W) + 2θ1)− 2

√
θ2

1 + θ1λi(W) (θ2 + (θ3 − 1)λi(W))
(θ2 + (θ3 − 1)λi(W))2 (43)

Over the range α ∈ [0,−θ−1
1 ], Ji[α, λi(W)] ≥ J1[α, λ1(W)] for i = 2, 3, . . . , N .

Proof: For i = 2, 3, . . . N , the eigenvalues λ∗i (Φ3[α]) and λ∗∗i (Φ3[α]) can admit two distinct forms; when the
expression under the square root in (72) is less then zero, the respective eigenvalues are complex, and when this
expression is positive, the eigenvalues are real. In the region where the eigenvalues are complex,

max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|) =
1
2

[
λi(W3[α])2 + ı2

(√
λi(W3[α])2 + 4αθ1

)2
]1/2

= α1/2(−θ1)1/2. (44)

We note that (77) is a strictly increasing function of α. Recalling that λi(W3[α]) = (1 + α(θ3 − 1))λi(W) + αθ2

and solving the quadratic λi(W3[α])2 + 4αθ1 = 0, we can identify region, [α∗i , α
∗∗
i ], where the eigenvalues are

complex. The upper boundary of this region is

α∗∗i =
−((θ3 − 1)λi(W)2 + θ2λi(W) + 2θ1) + 2

√
θ2

1 + θ1λi(W) (θ2 + (θ3 − 1)λi(W))
(θ2 + (θ3 − 1)λi(W))2 (45)

Relatively straightforward algebraic manipulation of (79) and (80) leads to the following conclusion: if λi(W) ∈
[−1, 1], θ2 ≥ 0 and θ3 ≥ 1, then 0 ≤ α∗i ≤ −θ

−1
1 ≤ α∗∗i . This implies that (77) holds in the region [α∗i ,−θ

−1
1 ].

On the interval α ∈ [0, α∗i ), the expression under the square root in (72) is positive, and the corresponding
eigenvalues are real. Thus,

max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|) =
1
2


∣∣∣λi(W3[α]) +

√
λi(W3[α])2 + 4αθ1

∣∣∣ if λi(W3[α]) ≥ 0∣∣∣−λi(W3[α]) +
√
λi(W3[α])2 + 4αθ1

∣∣∣ if λi(W3[α]) < 0,
(46)

or equivalently, max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|) = 1
2

(
|λi(W3[α])|+

√
λi(W3[α])2 + 4αθ1

)
. These results estab-

lish the expression for Ji[α, λi(W)] in the lemma.
It remains to establish that J1[α, λ1(W)] is less than all other Ji[α, λi(W)] in the region α ∈ [0,−θ−1

1 ]. In the
region α ∈ [α∗i ,−θ

−1
1 ], we have −αθ−1

1 ≤ 1, implying that α1/2(−θ1)1/2 ≥ −αθ1 = J1[α, λ1(W)]. In the region
α ∈ [0, α∗i ), note that λi(W3[α])2 + 4αθ1 > 0⇒ |λi(W3[α])| ≥ 2(−αθ1)1/2, which implies that

1
2

(
|λi(W3[α])|+

√
λi(W3[α])2 + 4αθ1

)
≥ 1

2

(
2(−αθ1)1/2 + 0

)
≥ (−αθ1)1/2 ≥ −αθ1 = J1[α, λ1(W)], (47)

thereby establishing the final claim of the lemma.
The previous lemma indicates that we can remove J1[α, λ1(W)] from (76), leading to a simpler optimization

problem, α? = arg min
α≥0

max
i=2,3,...N

Ji[α, λi(W)]. The following lemma establishes that we can simplify the optimiza-

tion even further and focus solely on J2[α, λ2(W)].

Lemma 2. Under the assumptions of Theorem 6, Ji[α, λi(W)] ≤ J2[α, λ2(W)] and α∗i [λi(W)] ≤ α∗2[λ2(W)] for
i = 3, 4, . . . , N over the range α ∈ [0,−θ−1

1 ].
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Proof: Consider the derivative of α∗i [λi(W)] in the range λi(W) ∈ [0, 1]:

∂

∂λi(W)
α∗i [λi(W)] =

1
(θ2 + (θ3 − 1)λi(W))3 ×

[
[4θ1 (θ3 − 1)− θ2 (θ2 + (θ3 − 1)λi(W))]

+
θ1

(
−θ2

2 + 4θ1 (θ3 − 1) + θ2 (θ3 − 1)λi(W) + 2 (θ3 − 1)2 λi(W)2
)

√
θ1 (θ1 + λi(W) (θ2 + (θ3 − 1)λi(W)))


It is clear that the multiplier outside the square brackets in the first line above is positive in the range λi(W) ∈ [0, 1].
Furthermore, the first summand is negative. Under the conditions θ2 ≥ 0, θ3 ≥ 1, it can be established that the
second summand is positive and exceeds the first summand in magnitude (Appendix B for a complete derivation).
We conclude that the derivative is positive, and thus α∗i [λi(W)] is an increasing function over λi(W) ∈ [0, 1]. This
implies that α∗i [λi(W)] ≤ α∗2[λ2(W)] for any λi ≥ 0.

Algebraic manipulation of (79) leads to the conclusion that α∗i [−λi(W)] ≤ α∗i [λi(W)] for λi(W) ∈ [0, 1].
This implies that for negative λi, we have α∗i [−λi(W)] ≤ α∗i [λi(W)] ≤ α∗2[λ2(W)]. We have thus shown that
α∗i [λi(W)] ≤ α∗2[λ2(W)] for any 3 ≤ i ≤ N under the assumption |λN (W)| ≤ λ2(W).

Next we turn to proving that Ji[α, λi(W)] ≤ J2[α, λ2(W)] for any 3 ≤ i ≤ N . We consider this problem
on three distinct intervals: α ∈ [0, α∗i [λi(W)]), α ∈ [α∗i [λi(W)], α∗2[λ2(W)]) and α ∈ [α∗2[λ2(W)],−θ−1

1 ]. From
the condition α∗i [λi(W)] ≤ α∗2[λ2(W)] and (92) it is clear that on the interval α ∈ [α∗2[λ2(W)],−θ−1

1 ] we
have Ji[α, λi(W)] = J2[α, λ2(W)] = α1/2(−θ1)1/2. On the interval α ∈ [α∗i [λi(W)], α∗2[λ2(W)]) we have
Ji[α, λi(W)] = α1/2(−θ1)1/2 and J2[α, λ2(W)] = 1

2

(
|λi(W3[α])|+

√
λi(W3[α])2 + 4αθ1

)
. From (47), we see

that Ji[α, λi(W)] ≤ J2[α, λ2(W)].
On the first interval α ∈ [0, α∗i [λi(W)]), we examine the derivative of Ji[α, λi(W)] w.r.t. λi(W):

∂

∂λi(W)
Ji[α, λi(W)] =

1 + α(θ3 − 1)
2

 λi(W) + α (θ2 + (θ3 − 1)λi(W))√
−4α (θ2 + θ3 − 1) + (λi(W) + α (θ2 + (θ3 − 1)λi(W)))2

+ sgn [λi(W) + α (θ2 + (θ3 − 1)λi(W))]

)
(48)

We observe that the multiplier 1+α(θ3−1)
2 is positive, and the expression under the square root is positive because

α ∈ [0, α∗i [λi(W)]). Additionally, λi(W) + α (θ2 + (θ3 − 1)λi(W)) ≥ 0 under the assumption λi(W) ≥ 0 and
θ2 ≥ 0, θ3 ≥ 1. Thus ∂

∂λi(W)Ji[α, λi(W)] ≥ 0 for any λi(W) ≥ 0 and we have Ji[α, λi(W)] ≤ J2[α, λ2(W)] for
any 0 ≤ λi(W) ≤ λ2(W). Finally, we note from (92) that Ji[α, λi(W)] is an increasing function of |λi(W3[α])| =
|(1 + α(θ3 − 1))λi(W) + αθ2|. Thus, to show that Ji[α,−λi(W)] ≤ Ji[α, λi(W)] for 0 ≤ λi(W) ≤ λ2(W) it is
sufficient to show that | − (1 +α(θ3− 1))λi(W) +αθ2| ≤ |(1 +α(θ3− 1))λi(W) +αθ2|. Under our assumptions,
we have

|(1 + α(θ3 − 1))λi(W) + αθ2|2 − | − (1 + α(θ3 − 1))λi(W) + αθ2|2

= 4(1 + α(θ3 − 1))λi(W)αθ2 ≥ 0. (49)

This implies that Ji[α, λi(W)] ≤ J2[α, λ2(W)] on the interval α ∈ [0, α∗i [λi(W)]), indicating that the condition
applies on the entire interval α ∈ [0,−θ−1

1 ], which is what we wanted to show.
The remainder of the proof of Theorem 6 proceeds as follows. From Lemmas 1 and 2, the optimization problem

(69) simplifies to: α? = arg min
α≥0
J2[α, λ2(W)]. We shall now show that α∗2 is a global minimizer of this function.

Consider the derivative of J2[α, λ2(W)] w.r.t. α on [0, α∗2):

∂

∂α
J2[α, λ2(W)] =

2θ1 + (θ2 + (θ3 − 1)λ2(W)) (λ2(W) + α (θ2 + (θ3 − 1)λ2(W)))√
4αθ1 + (λ2(W) + α (θ2 + (θ3 − 1)λ2(W)))2

+ (θ2 + (θ3 − 1)λ2(W)) sgn [λ2(W) + α (θ2 + (θ3 − 1)λ2(W))] .

Denote the first term in this sum by ϕ1(λ2(W), α) and the second by ϕ2(λ2(W), α). It can be shown that
|ϕ1(λ2(W), α)| ≥ |ϕ2(λ2(W), α)| for any λ2(W) ∈ [−1, 1] and α ∈ [0, α∗2) by directly solving the inequality.
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We conclude that the sign of the derivative on α ∈ [0, α∗2) is completely determined by the sign of ϕ1(λ2(W), α)
for λ2(W) ∈ [−1, 1]. On α ∈ [0, α∗2), the sign of ϕ1(λ2(W), α) is determined by the sign of its numerator. The
transition point for the numerator’s sign occurs at:

α+ = −2θ1 + λ2(W)(θ2 + (θ3 − 1)λ2(W))
(θ2 + (θ3 − 1)λ2(W))2

,

and by showing that α+ ≥ −θ−1
1 , we can establish that this transition point is at or beyond α∗2. This indicates that

ϕ1(λ2(W), α) ≤ 0 if α ∈ [0, α∗2). We observe that J2[α, λ2(W)] is nonincreasing on α ∈ [0, α∗2) and nondecreasing
on α ∈ [α∗2,−θ

−1
1 ) (as established in Lemma 1). We conclude that α∗2 is a global minimum of the function

J2[α, λ2(W)], thereby proving Theorem 6 and establishing J2[α?, λ2(W)] = |λ∗2(Φ3[α?])| =
√
−α?θ1.

Note that the last argument also implies that J2[α, λ2(W)] ≤ λ2(W) on α ∈ [0, α∗2] and J2[α, λ2(W)] < 1
on α ∈ (α∗2,−θ

−1
1 ) since J2[α, λ2(W)] is non-increasing on the former interval, it is non-decreasing on the latter

interval and J2[−θ−1
1 , λ2(W)] = 1. This fact demonstrates that the matrix Φ3[α] is convergent if α ∈ [0,−θ−1

1 )
in the sense that we have ρ(Φ3[α]− J) < 1.

C. Proof of Theorem 2: Convergence Rate

Proof: According to the discussion in Sections III-A and V-B , we have

ρ(Φ3[α?]− J) = |λ∗2(Φ3[α?])| = (α?|θ1|)1/2

=

[
−((θ3 − 1)λ2

2 + θ2λ2 + 2θ1)− 2
√
θ2

1 + θ1λ2 (θ2 + (θ3 − 1)λ2)
(θ2 + (θ3 − 1)λ2)2 |θ1|

]1/2

.

In order to prove the claim, we consider two cases: λ2(W) = 1−Ψ(N), and λ2(W) < 1−Ψ(N).
First, we suppose that λ2(W) = 1 − Ψ(N) and show that ρ(Φ3[α?] − J)2 − (1 −

√
Ψ(N))2 ≤ 0. Denoting

Ψ(N) = δ and substituting λ2(W) = 1− δ and θ1 = 1− θ2 − θ3, we obtain

ρ(Φ3[α?]− J)2 − (1−
√

Ψ(N))2 = −
(√

δ − 1
)2

×
(θ3 − 1) (δ2 − δ) + 2

√
δ (θ3 + θ2 − 1)− 2

√
δ (θ2 + (2− δ) (θ3 − 1)) (θ3 + θ2 − 1)

[(2− δ)δ + 1](1− θ3)− (1 + δ)θ2 − 2
√
δ (θ3 + θ2 − 1) ((θ3 − 1)(2− δ) + θ2)

.

It is clear from the assumptions that the expressions under square roots are non-negative. Furthermore, the de-
nominator is negative since 1 − θ3 < 0, θ2 > 0 and δ ∈ (0, 1). Finally, note that (θ3 − 1) (δ2 − δ) ≤ 0 and
2
√
δ (θ3 + θ2 − 1) ≥ 0. Thus, to see that the numerator is non-positive, observe that

[
√
δ (θ3 + θ2 − 1)]2 −

[√
δ (θ2 + (2− δ) (θ3 − 1)) (θ3 + θ2 − 1)

]2

= (δ − 1)δ(θ3 − 1)(θ3 + θ2 − 1) ≤ 0. (50)

Thus, we have ρ(Φ3[α?] − J)2 − (1 −
√

Ψ(N))2 ≤ 0, implying that ρ(Φ3[α?] − J) ≤ 1 −
√

Ψ(N) if λ2(W) =
1−Ψ(N).

Now suppose λ2(W) < 1 − Ψ(N). We have seen in Lemma 2 that α∗i [λi(W)] is an increasing function of
λi(W), implying α∗2[λ2(W)] ≤ α∗2[1 − Ψ(N)]. Since ρ(Φ3[α?] − J) = (α?|θ1|)1/2 = (α∗2[λ2(W)]|θ1|)1/2 is an
increasing function of α∗2[λ2(W)], the claim of theorem follows.

D. Proof of Theorem 3: Expected Gain

Proof: First, condition on a particular realization of the graph topology, and observe from the definition of
τasym(·) that

τasym(W)
τasym(Φ3[α?])

=
log ρ(Φ3[α?]− J)

log ρ(W − J)
. (51)
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Next, fixing ρ(W − J) = 1− ψ, where Ψ(N) = E{ψ}, and using Theorem 2, we have

τasym(W)
τasym(Φ3[α?])

≥ log(1−
√
ψ)

log(1− ψ)
. (52)

Let f(x) = log(1−
√
x)/ log(1− x). Taking the Taylor series expansion of f(x) at x = 0, we obtain

f(x) =
1√
x

+
1
2
− 1

6
x1/2 − 1

20
x3/2 − . . . . (53)

Noting that x > 0 we conclude that the following holds uniformly over x ∈ [0, 1]: f(x) ≤ 1√
x

+ 1
2 . At the same

time, taking the Taylor series expansions of the numerator and denominator of f(x), we obtain

f(x) =
√
x+ x

2 + x3/2

3 + x2

4 + x5/2

5 + . . .

x+ x2

2 + x3

3 + . . .
. (54)

Noting that 1/6 + 1/3 = 1/2, 2/15 + 1/5 = 1/3, we can express this as

f(x) =
1√
x

√
x+ x

2 + x3/2

3 + x2

4 + x5/2

5 + . . .
√
x+ x3/2

6 + x3/2

3 + 2x5/2

15 + x5/2

5 + . . .
, (55)

and using the fact that 1/2x ≥ 1/6x3/2, 1/4x2 ≥ 2/15x5/2 , . . . uniformly over x ∈ [0, 1], we conclude that f(x) ≥
1√
x

. Thus, 1√
x
≤ f(x) ≤ 1√

x
+ 1

2 , where both bounds are tight. Finally, observe that ∂2

∂x2x−1/2 = 3/4x−5/2 > 0
if x > 0, implying that 1/

√
x is convex. To complete the proof we take the expectation with respect to graph

realizations and apply Jensen’s inequality to obtain

E
{

τasym(W)
τasym(Φ3[α?])

}
≥ E

{
1√
ψ

}
≥ 1√

E {ψ}
. (56)

VI. CONCLUDING REMARKS

This paper provides theoretical performance guarantees for accelerated distributed averaging algorithms using
node memory. We consider acceleration based on local linear prediction and focus on the setting where each node
uses two memory taps. We derived the optimal value of the mixing parameter for the accelerated averaging algorithm
and discuss a fully-decentralized scheme for estimating the spectral radius, which is then used to initialize the optimal
mixing parameter. An important contribution of this paper is the derivation of upper bounds on the spectral radius of
the accelerated consensus matrix. This bound relates the spectral radius growth rate of the original matrix with that
of the accelerated consensus matrix. We believe that this result applies to the general class of distributed averaging
algorithms using node state prediction, and shows that, even in its simplified form and even at the theoretical level,
accelerated consensus may provide considerable processing gain. We conclude that this gain, measured as the ratio
of the asymptotic averaging time of the non-accelerated and accelerated algorithms, grows with increasing network
size. Numerical experiments confirm our theoretical conclusions and reveal the feasibility of online implementation
of the accelerated algorithm with nearly optimal properties. Finding ways to analyze the proposed algorithm in
more general instantiations and proposing simpler initialization schemes are the focus of ongoing investigation.

APPENDIX A
SYMMETRIC WEIGHT MATRIX CONSENSUS CONVERGENCE TIME

The following theorem establishes bounds for the convergence time of a consensus algorithm with symmetric
weight matrix. We use the definition of convergence time as defined by Olshevsky and Tsitsiklis (see e.g. [18]).

Tc(W, ε) = inf
τ≥0
{τ : ||x(t)− x̄(0)||2 ≤ ε||x(0)− x̄(0)||2 ∀ t ≥ τ, ∀ x(0)− x̄(0) 6= 0} ,

The interpretation of the next result is clear and intuitive: in the case of symmetric weight matrix the convergence
time of the associated distributed average consensus algorithm is determined by the spectral radius of the weight
matrix.
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Theorem 5. Let W ∈ Rn×n be a symmetric weight matrix satisfying convergence conditions:

W1 = 1, 1TW = 1T , ρ(W − J) < 1, (57)

Then
log ε

log ρ(W − J)
≤ Tc(W, ε) <

log ε
log ρ(W − J)

+ 1. (58)

Proof: Since by our assumption W satisfies convergence conditions, we have JW = WJ = J. Recall that
J = 1

n11T . Thus by linear algebra, (W− J)t = Wt− J, implying (W− J)t(x(0)− x̄(0)) = x(t)− x̄(0). Taking
the norm of both sides we have

||x(t)− x̄(0)||2 = ||(W − J)t(x(0)− x̄(0))||2, (59)

and therefore

Tc(W, ε) = inf
τ≥0

{
τ :
||(W − J)t(x(0)− x̄(0))||2

||x(0)− x̄(0)||2
≤ ε ∀ t ≥ τ, ∀ x(0) ∈ X0,W

}
, (60)

where X0,W , {x(0) ∈ Rn : x(0) 6= x̄(0)} is the set of all non-trivial initializations. By the definition of Tc(W, ε)
above we have:

||(W − J)Tc(W,ε)(x(0)− x̄(0))||2
||x(0)− x̄(0)||2

≤ ε, ∀x(0) ∈ X0,W. (61)

This implies: ( sup
x(0)∈X0,W

||(W − J)Tc(W,ε)(x(0)− x̄(0))||2
||x(0)− x̄(0)||2

)1/Tc(W,ε)
Tc(W,ε)

≤ ε, (62)

and so, using the definition of the induced operator norm, which is simply ||W − J||2 = supx(0)∈X0,W
||(W −

J)(x(0)− x̄(0))||2/||x(0)− x̄(0)||2, after taking the logarithm on both sides of (62), we have6

Tc(W, ε) ≥ log ε

log ||(W − J)Tc(W,ε)||1/Tc(W,ε)
2

. (63)

Since for symmetric W we have ρ(W − J) = ||(W − J)t||1/t2 for any t ≥ 0, it follows that

Tc(W, ε) ≥ log ε
log ρ(W − J)

, (64)

which produces the left hand side in our claim.
Now, by the definition of Tc(W, ε) in (60) we also have

∃x(0) ∈ X0,W,
||(W − J)Tc(W,ε)−1(x(0)− x̄(0))||2

||x(0)− x̄(0)||2
> ε, (65)

implying, for the operator norm of (W − J)Tc(W,ε)−1:

||(W − J)Tc(W,ε)−1||2 > ε. (66)

Using the technique used to switch from (62) to (63) we have:

(Tc(W, ε)− 1) log ||(W − J)Tc(W,ε)−1||1/(Tc(W,ε)−1)
2 > log ε. (67)

Exploiting the fact that for the symmetric W we have ρ(W−J) = ||(W−J)Tc(W,ε)−1||1/(Tc(W,ε)−1)
2 and dividing

through by log ρ(W − J) we have

Tc(W, ε) <
log ε

log ρ(W − J)
+ 1. (68)

This completes the proof.

6Since we are interested in asymptotic behaviour of the type ε→ 0, there is no loss of generality in supposing that ε is sufficiently small
so that the following holds: log ε < 0, log ||(W − J)Tc(W,ε)||1/Tc(W,ε)

2 < 0, and log ||(W − J)Tc(W,ε)−1||1/(Tc(W,ε)−1)
2 < 0
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APPENDIX B
EXTENDED PROOF OF THEOREM 1

Theorem 6 (Optimal mixing parameter). Suppose θ3 + θ2 + θ1 = 1 and θ3 ≥ 1, θ2 ≥ 0. Suppose further that
|λN (W)| ≤ |λ2(W)|. Then the solution of the optimization problem

α? = arg min
α
ρ(Φ3[α]− J) (69)

is given by the following:

α? =
−((θ3 − 1)λ2(W)2 + θ2λ2(W) + 2θ1)− 2

√
θ2

1 + θ1λ2(W) (θ2 + (θ3 − 1)λ2(W))
(θ2 + (θ3 − 1)λ2(W))2 (70)

Proof: In order to minimize the spectral radius of Φ3[α] we need to know its eigenvalues. These can be
calculated by solving the eigenvalue problem (33). We can multiply (35) by uTi on the left to obtain a quadratic
equation that links the individual eigenvalues λi(Φ3[α]) and λi(W3[α]):

uTi (λi(Φ3[α])2I− λi(Φ3[α])W3[α]− αθ1I)ui = 0

λi(Φ3[α])2 − λi(W3[α])λi(Φ3[α])− αθ1 = 0. (71)

Recall Φ3[α] is a 2N × 2N matrix, and so Φ3[α] has, in general, 2N eigenvalues – twice as many as W3[α].
These eigenvalues are the solutions of the quadratic (71), and are given by

λ∗i (Φ3[α]) =
1
2

(
λi(W3[α]) +

√
λi(W3[α])2 + 4αθ1

)
(72)

λ∗∗i (Φ3[α]) =
1
2

(
λi(W3[α])−

√
λi(W3[α])2 + 4αθ1

)
. (73)

With these expressions for the eigenvalues of Φ3[α], we are in a position to formulate the problem of minimizing
the spectral radius of the matrix (Φ3[α] − J), α? = arg min

α
ρ(Φ3[α] − J). It can be shown that this problem is

equivalent to

α? = arg min
α≥0

ρ(Φ3[α]− J) (74)

The simplest way to demonstrate this is to show that ρ(Φ3[α]− J) ≥ ρ(Φ3[0]− J) for any α < 0. Indeed, by the
definition of the spectral radius we have that ρ(Φ3[α]−J) ≥ λ∗2(Φ3[α]) and ρ(Φ3[0]−J) = λ2(W) since Φ3[0] =
W. Hence it is enough to demonstrate λ∗2(Φ3[α]) ≥ λ2(W). Consider the inequality λ∗2(Φ3[α]) − λ2(W) ≥ 0.
Replacing λ∗i (Φ3[α]) with its definition, (72), rearranging terms and squaring both sides gives αθ1 ≥ λ2(W)2 −
λ2(W)λ2(W3[α]). From the definition of W3[α] in (5), it follows that λ2(W3[α]) = (1−α+αθ3)λ2(W) +αθ1.
Using this relation leads to the expression α(θ1 + (θ3 − α)λ2(W)2 + θ1λ2(W)) ≥ 0. Under our assumptions, we
have θ3−1 ≥ 1, θ2 ≥ 0 and θ1 ≤ 0. Thus θ1 +(θ3−1)λ2

2 +θ2λ2 ≤ θ1 +θ3−1+θ2 = 0. This implies that if α < 0,
the last inequality holds leading to λ∗2(Φ3[α]) ≥ λ2(W). Thus for any α < 0 the spectral radius ρ(Φ3[α] − J)
cannot decrease, and so we may focus on optimizing over α ≥ 0.

We start solving problem (74) by finding the eigenvalues λ∗1(Φ3[α]) and λ∗∗1 (Φ3[α]). We first note that√
λ2

1(W[α]) + 4αθ1 = |1 + αθ1|.

Noting that θ1 ≤ 0 we conclude that

λ∗1(Φ3[α]), λ∗∗1 (Φ3[α]) =
{

1,−αθ1 if 1 + αθ1 ≥ 0⇒ α ≤ −θ−1
1

−αθ1, 1 if 1 + αθ1 < 0⇒ α > −θ−1
1

(75)

Abusing notation we write λ∗1(Φ3[α]) = 1 and λ∗∗1 (Φ3[α]) = −αθ1 for all α. Furthermore, condition α > −θ−1
1

implies |λ∗∗1 (Φ3[α])| > 1, leading to divergent Φ3[α], and we conclude that potential solution is restricted to the
range α ≤ −θ−1

1 . Moreover, we reformulate our actual problem (69) in terms of the eigenvalues of Φ3[α]:

α? = arg min
α≥0

max
i=2,3,...N

max [max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|), |λ∗∗1 (Φ3[α])|] (76)
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For i = 2, 3, . . . N eigenvalues λ∗i (Φ3[α]) and λ∗∗i (Φ3[α]) can admit two distinct forms. First, when the expression
under square root in (72) is less then zero, λi(W[α])2 +4αθ1 < 0, the respective eigenvalues are complex. Second,
when this expression is positive, the eigenvalues are real. Thus it follows that in the first case we have:

max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|) =
1
2

[
λi(W[α])2 + ı2

(√
λi(W[α])2 + 4αθ1

)2
]1/2

=
1
2
[
λi(W[α])2 − λi(W[α])2 − 4αθ1

]1/2
=

1
2

[−4αθ1]1/2

= [−αθ1]1/2

= α1/2(−θ1)1/2 (77)

We note that (77) is a strictly increasing function of α. Next, we find the region where (77) holds. Recalling that
λi(W[α]) = (1 + α(θ3 − 1))λi(W) + αθ2 and solving the quadratic:

λi(W[α])2 + 4αθ1 = 0

((θ3 − 1)λi(W) + θ2)2α2 + 2((θ3 − 1)λi(W)2 + θ2λi(W) + 2θ1)α+ λi(W)2 = 0 (78)

we obtain the the bounds of the region:

α∗i =
−((θ3 − 1)λi(W)2 + θ2λi(W) + 2θ1)− 2

√
θ2

1 + θ1λi(W) (θ2 + (θ3 − 1)λi(W))
(θ2 + (θ3 − 1)λi(W))2 (79)

α∗∗i =
−((θ3 − 1)λi(W)2 + θ2λi(W) + 2θ1) + 2

√
θ1 (θ1 + λi(W) (θ2 + (θ3 − 1)λi(W)))

(θ2 + (θ3 − 1)λi(W))2 (80)

Now we shall investigate the behaviour of the roots α∗i and α∗∗i depending on the value of λi(W) ∈ [−1, 1].
First, we make sure that the expression under the square root in (79) and (80) is greater then zero. Indeed, a
straightforward calculation shows that if θ2 ≥ 0, θ3 ≥ 1 and λi(W) ∈ [−1, 1] then we have:

θ1(θ1 + λi(W)(θ2 + (θ3 − 1)λi(W)))

= (1− θ3 − θ2)((1− θ3 − θ2) + λi(W)(θ2 + (θ3 − 1)λi(W)))

= (θ3 + θ2 − 1)(θ2(1− λi(W)) + (θ3 − 1)(1− λi(W)2)) ≥ 0 (81)

Second, we find that if θ2 ≥ 0, θ3 ≥ 1 and λi(W) ∈ [−1, 1]:

−((θ3 − 1)λi(W)2 + θ2λi(W) + 2θ1)

= −((θ3 − 1)λi(W)2 + θ2λi(W) + 2(1− θ3 − θ2))

= ((θ3 − 1)(2− λi(W)2) + θ2(2− λi(W))) ≥ 0 (82)

The above arguments make it obvious that α∗∗i ≥ 0 and α∗∗i ≥ α∗i on the interval λi(W) ∈ [−1, 1]. Finally, we
shall prove that α∗i is positive on λi(W) ∈ [−1, 1]. In order to do this we find the range of λi(W) in which the
numerator in the expression for α∗i is positive:

−((θ3 − 1)λi(W)2 + θ2λi(W) + 2θ1) ≥ 2
√
θ2

1 + θ1λi(W) (θ2 + (θ3 − 1)λi(W))(
−((θ3 − 1)λi(W)2 + θ2λi(W) + 2θ1)

)2 ≥ ((2
√
θ2

1 + θ1λi(W) (θ2 + (θ3 − 1)λi(W))
)2

θ2
2λi(W)2 + (−2θ2 + 2θ2θ3)λi(W)3 + (θ3 − 1)2λi(W)4 ≥ 0

λi(W)2(θ2 + (θ3 − 1)λi(W))2 ≥ 0 (83)

We conclude that (83) holds for any λi(W). This and the previous discussion leads us to the conclusion that
0 ≤ α∗i ≤ α∗∗i in the range λi(W) ∈ [−1, 1]. Next we show that −θ−1

1 ≤ α∗∗i . In particular, introducing notation:

α+
i = −2θ1 + λi(W) (θ2 + (θ3 − 1)λi(W))

(θ2 + (θ3 − 1)λi(W))2 (84)
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taking into account (80) and 1 = θ3 + θ2 + θ1 we show that

α+
i − (−θ−1

1 ) =
−((θ3 − 1)λi(W)2 + θ2λi(W) + 2θ1)

(θ2 + (θ3 − 1)λi(W))2 + θ−1
1

=
(θ2 + (θ3 − 1)λi(W))2 − θ1((θ3 − 1)λi(W)2 + θ2λi(W) + 2θ1)

θ1 (θ2 + (θ3 − 1)λi(W))2

=
(λi(W)− 1)(θ2

2 + 2(θ3 − 1)2(λi(W) + 1) + θ2(θ3 − 1)(4 + λi(W)))
(1− θ3 − θ2) (θ2 + (θ3 − 1)λi(W))2

=
(1− λi(W))(θ2

2 + 2(θ3 − 1)2(λi(W) + 1) + θ2(θ3 − 1)(4 + λi(W)))
(θ3 + θ2 − 1) (θ2 + (θ3 − 1)λi(W))2 ≥ 0 (85)

if θ2 ≥ 0, θ3 ≥ 1 and λi(W) ∈ [−1, 1]. Thus it follows from (80) that α∗∗i − (−θ−1
1 ) ≥ 0. Now we shall see that

α∗i ≤ (−θ−1
1 ). We have already demonstrated that α+

i − (−θ−1
1 ) ≥ 0. Thus to demonstrate validity of our current

claim it is enough to show:

α∗i − (−θ−1
1 ) ≤ 0

2
√
θ1 (θ1 + λi(W) (θ2 + (θ3 − 1)λi(W)))

(θ2 + (θ3 − 1)λi(W))2 ≥ α+
i − (−θ−1

1 )[
(1− λi(W))(θ2

2 + 2(θ3 − 1)2(λi(W) + 1) + θ2(θ3 − 1)(4 + λi(W)))
(θ3 + θ2 − 1)

]2

−
[
2
√
θ1 (θ1 + λi(W) (θ2 + (θ3 − 1)λi(W)))

]2
≤ 0

(θ2 + 2(θ3 − 1)) (λi(W)− 1) (θ2 + (θ3 − 1)λi(W))2 (2 (θ3 − 1) (1 + λi(W)) + θ2 (3 + λi(W))) ≤ 0 (86)

Again, we see that the previous inequality holds if θ2 ≥ 0, θ3 ≥ 1 and λi(W) ∈ [−1, 1] proving the claim
α∗i ≤ (−θ−1

1 ). We conclude this part of the investigation by summarizing the results. First, we have 0 ≤ α∗i ≤
−θ−1

1 ≤ α+
i ≤ α∗∗i . Second, recalling α ∈ [0,−θ−1

1 ]⇒ −αθ−1
1 ≤ 1 we have on the interval α ∈ [α∗i ,−θ

−1
1 ]:

max [max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|), |λ∗∗1 (Φ3[α])|]

= max
[√
−αθ−1

1 ,−αθ−1
1

]
=
√
−αθ−1

1

= max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|) (87)

Let us now define partial cost function associated with i-th egenvalue λ∗i (Φ3[α]):

Ji[α, λi(W)] = max [max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|), |λ∗∗1 (Φ3[α])|] (88)

and investigate the behaviour of this function on the interval α ∈ [0, α∗i ]. Recall from the previous discussion that
on this interval λi(W[α])2 + 4αθ1 > 0 and eigenvalues λ∗i (Φ3[α]), λ∗∗i (Φ3[α]) are real. Thus the following holds:

max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|) =
1
2


∣∣∣λi(W[α]) +

√
λi(W[α])2 + 4αθ1

∣∣∣ if λi(W[α]) ≥ 0∣∣∣−λi(W[α]) +
√
λi(W[α])2 + 4αθ1

∣∣∣ if λi(W[α]) < 0
(89)

This can be summarized as follows:

max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|) =
1
2

(
|λi(W[α])|+

√
λi(W[α])2 + 4αθ1

)
(90)

Furthermore, noting λi(W[α])2 + 4αθ1 > 0⇒ |λi(W[α])| ≥ 2(−αθ1)1/2 we see

max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|) =
1
2

(
|λi(W[α])|+

√
λi(W[α])2 + 4αθ1

)
≥ 1

2

(
2(−αθ1)1/2 + 0

)
≥ (−αθ1)1/2 ≥ −αθ1 = |λ∗∗1 (Φ3[α])| (91)
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Thus we have
Ji[α, λi(W)] = max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|)

Based on the previous discussion we conclude that partial cost function is compactly related to the i-th eigenvalue
λi(W) as follows:

Ji[α, λi(W)] =

{
α1/2(−θ1)1/2 if α ∈ [α∗i , θ

−1
1 ]

1
2

(
|λi(W[α])|+

√
λi(W[α])2 + 4αθ1

)
if α ∈ [0, α∗i )

(92)

Based on this, we conclude that instead of (76) we can concentrate on a simpler optimization problem:

α? = arg min
α≥0

max
i=2,3,...N

Ji[α, λi(W)] (93)

Our next goal is to show that under our assumptions on the distribution of eigenvalues λi(W), Ji[α, λi(W)] ≤
J2[α, λ2(W)]. Our first step in this direction is to show that α∗i [λi(W)] ≤ α∗2[λ2(W)] and α∗i [−λi(W)] ≤
α∗i [λi(W)] if λi(W) ∈ [0, λ2(W)]. Combining the two arguments we shall see that α∗i [λi(W)] ≤ α∗2[λ2(W)] for
any 3 ≤ i ≤ N under assumption |λN (W)| ≤ λ2(W).

To show that our first conjecture is true we shall show that the derivative of α∗i [λi(W)] in the range λi(W) ∈ [0, 1]
is positive, and thus the function that we are interested in is nondecreasing. After some algebra we obtain the
following expression for the derivative:

∂

∂λi(W)
α∗i [λi(W)] =

1
(θ2 + (θ3 − 1)λi(W))3

× (4θ1 (θ3 − 1)− θ2 (θ2 + (θ3 − 1)λi(W))

+
θ1

(
−θ2

2 + 4θ1 (θ3 − 1) + θ2 (θ3 − 1)λi(W) + 2 (θ3 − 1)2 λi(W)2
)

√
θ1 (θ1 + λi(W) (θ2 + (θ3 − 1)λi(W)))

) (94)

It is quite obvious that the multiplier in the first line above is positive in the range λi(W) ∈ [0, 1] and we exclude
it from consideration. Furthermore, the first summand is negative in the range λi(W) ∈ [0, 1]. Observing that if
θ2 ≥ 0, θ3 ≥ 1 and λi(W) ∈ [0, 1] then:

θ1(θ2
2 + 4θ1 (θ3 − 1) + θ2 (θ3 − 1)λi(W) + 2 (θ3 − 1)2 λi(W)2)

= (1− θ3 − θ2)(−θ2
2 + 4(1− θ3 − θ2) (θ3 − 1) + θ2 (θ3 − 1)λi(W) + 2 (θ3 − 1)2 λi(W)2)

= (θ3 + θ2 − 1)(θ2
2 + θ2(θ3 − 1)(4− λi(W)) + 2(θ3 − 1)2(2− λi(W)2)) ≥ 0 (95)

by making the substitution θ1 = 1− θ2 − θ3 and rearranging:

θ1

(
−θ2

2 + 4θ1 (θ3 − 1) + θ2 (θ3 − 1)λi(W) + 2 (θ3 − 1)2 λi(W)2
)

(96)

= (θ3 − θ2 − 1)(θ2
2 + θ2(θ3 − 1)(−λi(W) + 4) + 2(θ3 − 1)2(−λ2

i (W) + 2)) (97)

we conclude that the numerator of the second summand is positive in the range λi(W) ∈ [0, 1] and the denominator
is positive by (81). Thus to show that the derivative of α∗i [λi(W)] is positive we only need to show that if θ2 ≥ 0,
θ3 ≥ 1 and λi(W) ∈ [0, 1] then:θ1

(
−θ2

2 + 4θ1 (θ3 − 1) + θ2 (θ3 − 1)λi(W) + 2 (θ3 − 1)2 λi(W)2
)

√
θ1 (θ1 + λi(W) (θ2 + (θ3 − 1)λi(W)))

2

− (4θ1 (θ3 − 1)− θ2 (θ2 + (θ3 − 1)λi(W)))2

=

(
−θ2

2 + 4θ1 (θ3 − 1)
)
λi(W) (θ2 + (θ3 − 1)λi(W))3

θ1 + λi(W) (θ2 + (θ3 − 1)λi(W))

=

(
θ2

2 + 4(θ3 + θ2 − 1) (θ3 − 1)
)
λi(W) (θ2 + (θ3 − 1)λi(W))3

(1− λi(W))θ2 + (θ3 − 1)(1− λi(W)2)
≥ 0 (98)
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and we conclude that our first conjecture holds true. Finally, using usual technique we solve an inequality α∗i [−λi(W)] ≤
α∗i [λi(W)] w.r.t. λi(W) and show that it holds for λ ∈ [0, 1]:

α∗i [−λi(W)] ≤ α∗i [λi(W)]

−((θ3 − 1)(−λi(W))2 + θ2(−λi(W)) + 2θ1)− 2
√
θ2

1 + θ1(−λi(W)) (θ2 + (θ3 − 1)(−λi(W)))
(θ2 + (θ3 − 1)(−λi(W)))2

≤ −((θ3 − 1)λi(W)2 + θ2λi(W) + 2θ1)− 2
√
θ2

1 + θ1λi(W) (θ2 + (θ3 − 1)λi(W))
(θ2 + (θ3 − 1)λi(W))2 (99)

Using the fact that α∗i [λi(W)] ≥ 0 and rearranging terms we obtain an equivalent inequality:

2θ2λi(W)
(
θ2

2 − 4θ1 (θ3 − 1)− (θ3 − 1)2 λi(W)2
)

≤ 2
√
θ2

1 − θ1λi(W) (θ2 − (θ3 − 1)λi(W)) (θ2 + (θ3 − 1)λi(W))2

− 2
√
θ2

1 + θ1λi(W) (θ2 + (θ3 − 1)λi(W)) (θ2 − (θ3 − 1)λi(W))2 (100)

Noting that both sides of the above are positive on λi(W) ∈ [0, 1], squaring both sides and rearranging we obtain:(
−2θ2

1 + θ2
2λi(W)2 − 2θ1 (θ3 − 1)λi(W)2

)
≤ −2

√
θ2

1 − θ1λi(W) (θ2 − (θ3 − 1)λi(W))

×
√
θ2

1 + θ1λi(W) (θ2 + (θ3 − 1)λi(W)) (101)

Observing that both sides of the above are negative on λi(W) ∈ [0, 1], reversing the inequality, squaring both sides
and rearranging we see:

θ2
2

(
θ2

2 − 4θ1 (θ3 − 1)
)
λi(W)4 ≥ 0 (102)

Thus the last sequence of inequalities implies that if λi(W) ∈ [0, 1] then α∗i [−λi(W)] ≤ α∗i [λi(W)] confirming
our second conjecture and leaving us with

α∗i [λi(W)] ≤ α∗2[λ2(W)] ∀ 3 ≤ i ≤ N (103)

under assumption |λN (W)| ≤ λ2(W).
Next we turn to proving Ji[α, λi(W)] ≤ J2[α, λ2(W)] for any 3 ≤ i ≤ N . According to our previous discussion,

we have to consider this problem on three distinct intervals: α ∈ [0, α∗i [λi(W)]], α ∈ [α∗i [λi(W)], α∗2[λ2(W)]]
and α ∈ [α∗2[λ2(W)],−θ−1

1 ]. It is quite obvious from (103) and (92) that on α ∈ [α∗2[λ2(W)],−θ−1
1 ] we have

Ji[α, λi(W)] = J2[α, λ2(W)] = α1/2(−θ1)1/2. On the other hand, on α ∈ [α∗i [λi(W)], α∗2[λ2(W)]] we have
Ji[α, λi(W)] = α1/2(−θ1)1/2 and J2[α, λ2(W)] = 1

2

(
|λi(W[α])|+

√
λi(W[α])2 + 4αθ1

)
. We can see from (91)

that in this case Ji[α, λi(W)] ≤ J2[α, λ2(W)]. Thus we only have to consider the first interval. We shall exploit
the same technique that was used to investigate α∗i [λi(W)], i.e. we shall see that the derivative of Ji[α, λi(W)]
w.r.t. λi(W) in the range λi(W) ∈ [0, 1] is positive, and then demonstrate Ji[α,−λi(W)] ≤ J2[α, λ2(W)] for
any λi(W) ≥ 0. The derivative of Ji[α, λi(W)] has the form:

∂

∂λi(W)
Ji[α, λi(W)] =

1 + α(θ3 − 1)
2

 λi(W) + α (θ2 + (θ3 − 1)λi(W))√
−4α (θ2 + θ3 − 1) + (λi(W) + α (θ2 + (θ3 − 1)λi(W)))2

+ sgn [λi(W) + α (θ2 + (θ3 − 1)λi(W))]) (104)

We observe that the multiplier 1+α(θ3−1)
2 is positive, the expression under square root is positive because α ∈

[0, α∗i [λi(W)]] and λi(W) + α (θ2 + (θ3 − 1)λi(W)) ≥ 0 under the assumption λi(W) ≥ 0 and θ2 ≥ 0, θ3 ≥ 1.
Thus ∂

∂λi(W)Ji[α, λi(W)] ≥ 0 for any λi(W) ≥ 0 and we have Ji[α, λi(W)] ≤ J2[α, λ2(W)] for any 0 ≤
λi(W) ≤ λ2(W). Finally, we note (92) that Ji[α, λi(W)] is an increasing function of |λi(W[α])| = |(1 +α(θ3−
1))λi(W) + αθ2| thus to show that Ji[α,−λi(W)] ≤ Ji[α, λi(W)] for some 0 ≤ λi(W) ≤ λ2(W) it is enough
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to show that | − (1 + α(θ3 − 1))λi(W) + αθ2| ≤ |(1 + α(θ3 − 1))λi(W) + αθ2|. Indeed, under our assumptions
we have:

|(1 + α(θ3 − 1))λi(W) + αθ2|2 − | − (1 + α(θ3 − 1))λi(W) + αθ2|2

= 4(1 + α(θ3 − 1))λi(W)αθ2 ≥ 0 (105)

We have proven that Ji[α, λi(W)] ≤ J2[α, λ2(W)] for any 3 ≤ i ≤ N under assumption |λN (W)| ≤ |λ2(W)|.
Thus optimization problem (93) further simplifies as follows:

α? = arg min
α≥0
J2[α, λ2(W)] (106)

We shall now show that α∗2 is the global minimizer of this function. Consider the derivative of J2[α, λ2(W)]
w.r.t. α on [0, α∗2):

∂

∂α
J2[α, λ2(W)] =

2θ1 + (θ2 + (θ3 − 1)λ2(W)) (λ2(W) + α (θ2 + (θ3 − 1)λ2(W)))√
4αθ1 + (λ2(W) + α (θ2 + (θ3 − 1)λ2(W)))2

+ (θ2 + (θ3 − 1)λ2(W)) sgn [λ2(W) + α (θ2 + (θ3 − 1)λ2(W))]

= ϕ1(λ2(W), α) + ϕ2(λ2(W), α) (107)

We shall show that |ϕ1(λ2(W), α)| ≥ |ϕ2(λ2(W), α)| and thus the sign of the derivative is completely determined
by the sign of ϕ1(λ2(W), α). Indeed, solving the inequality for the range of λ2(W):∣∣∣∣∣∣2θ1 + (θ2 + (θ3 − 1)λ2(W)) (λ2(W) + α (θ2 + (θ3 − 1)λ2(W)))√

4αθ1 + (λ2(W) + α (θ2 + (θ3 − 1)λ2(W)))2

∣∣∣∣∣∣ ≥
|(θ2 + (θ3 − 1)λ2(W)) sgn [λ2(W) + α (θ2 + (θ3 − 1)λ2(W))]| (108)

by moving the square root on the right, squaring both sides and doing some algebra we obtain the quadratic
inequality:

4θ1 (θ1 + λ2(W) (θ2 + (θ3 − 1)λ2(W))) ≥ 0 (109)

that is true under our assumptions for any λ2(W) ∈ [−1, 1] according to (81). We see that |ϕ1(λ2(W), α)| ≥
|ϕ2(λ2(W), α)|, ∀ α ≥ 0. We conclude that the sign of the derivative on α ∈ [0, α∗2) is completely determined
by the sign of ϕ1(λ2(W), α) in the range of λ2(W). Now we investigate the behaviour of ϕ1(λ2(W), α). On
α ∈ [0, α∗2) the sign of this function is determined by the sign of its numerator. We find that the transition point for
the numerator’s sign satisfies: α = α+

2 . Recalling α∗2 ≤ α+
2 leads us to conclusion that ϕ1(λ2(W), α) ≤ 0 if α ∈

[0, α∗2). We observe that J2[α, λ2(W)] is nonincreasing on α ∈ [0, α∗2) and J2[α, λ2(W)] is nondecreasing on
α ∈ [α∗2,−θ

−1
1 ). We conclude that α∗2 is the global minimum of the function J2[α, λ2(W)].
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