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I. INTRODUCTION

The problem of traffic monitoring and parameter estimation using camera networks has at-

tracted a lot of attention during recent years. This is due tothe fact that many large camera

networks have been built along roadways for operator aided traffic monitoring. These camera

networks supply traffic monitoring centers with large amounts of real-time data. This information

source can be readily used to automatically extract traffic parameters, such as its intensity

or velocity, without any additional costs involved just by using image processing techniques.

However, in many practical situations this traffic estimation goal is not so easy to achieve

as it might seem from the first glance. For example, data from cameras along the roads are

often compressed to a very low resolution and low frame rate video before they are sent to

traffic monitoring center. Thus data available to potentialend users in the person of image

processing and computer vision community is often of very low quality. This distinctive feature

of the problem often makes it impossible to apply existing computer vision techniques to traffic

estimation directly. Notwithstanding the potential problems outlined above, most of the work in

the field of traffic estimation is made under the assumptions of high resolution and high frame

rate video available for optical flow analysis and feature extraction. These methods mostly rely

on geometrical methods for the extraction of traffic speed vectors and availability of good vehicle

models that can be used to detect and even identify cars on theroad. All these features move

aforementioned methods down into the class of deterministic algorithms that can deal only with

cases when data are not noisy, highly informative and objects of interest transform into sensor

data obeying almost completely deterministic relationship between physical reality and sensor

output.

In this report we study some properties of particle filter as astatistically consistent tool for

multiple frame low-resolution video information fusion. We apply it to vehicle movement model

parameter estimation. Some experimental results presented in the report show that particle filter

is able to track and detect moving objects even if very loose assumptions are made regarding the

appearance of the objects and the values of motion model parameters. These results indicate that

particle filter is able to learn movement model of a vehicle object even if availability of good
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prior information regarding the values of these parametersis not assumed. Thus the estimated

parameters of the motion model such as velocity can be used for traffic analysis.

A. Related work

Santini [1] suggests that most of the information regardingtraffic behaviour is enclosed in the

differences between adjacent frames. He notes also that changes in camera viewpoint and lighting

conditions have rather profound effect on image differences. However, he concludes that changes

due to traffic i. e. due to cars appearing and disappearing from images have local nature, whereas

changes in lighting conditions and camera position cause global change in variance of inter-frame

differences. Santini proposes to use 2-D inter-frame sample variance as a sufficient statistic for

traffic flow estimation system. To assess the global status ofthe traffic using the measurements

of traffic from separate cameras located at different crossroads he uses network tomography

approach. The drawback of this approach is that it provides only qualitative characterization of

the traffic flow.

An example of work dealing with data driven camera calibration and velocity estimation is

given in [2]. What makes this work interesting is that instead of estimating motion vectors

necessary for traffic velocity estimation from coded imagesof possibly low quality Mbonye

and Ferrie [2] use partial decoding of MPEG stream to use motion vectors readily available

within this stream. This procedure relies on an existing algorithm by Coimbra and Davies [3]

that is able to extract one motion vector for each16 × 16 MPEG macroblock. The application

of this algorithm results in fast extraction of smoothed motion field. Kalman filter is used to

track the velocity field estimate from frame to frame. However, for this method to work properly

some assumptions regarding the road structure should hold.For example, there should be two

lanes with the opposite directions of traffic flow. In some cases such assumptions may be too

restrictive.

The algorithm proposed by Dailey et al. [4] belongs to the class of geometric algorithms relying

on the availability of high frame rate video streams. Its main value is that before this algorithm

was introduced little work had been done on velocity estimation using un-calibrated cameras.

Camera calibration is very hard to handle in practice as was pointed out in [4]. This is especially
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true when dealing with highway cameras that change their viewpoints several times every day

to allow operator to better observe traffic conditions. Thisalgorithm overcomes the difficulty

by inferring calibration parameters directly from traffic images using relationship between the

distribution of car sizes in pixels extracted from image sequence and some a priory known

distribution of car sizes in meters. It uses three successive frames to form the differences between

adjacent frames and extract edges using Sobel edge detector. To estimate the speed of moving

cars, relationships between bounding boxes in three subsequent frames are established. This

means that overall this algorithm requires the moving object to be present in five consecutive

frames. The weak spots of the algorithm are as follows. First, it is necessary to make direct

correspondence between object features appearing in threesubsequent frames. These features

may be very unstable because of the non-rigidity of the motion, camera jitter and noise, especially

when low-resolution video is used for feature extraction. Second, some universal car length

distribution that is applicable to a wide variety of traffic conditions should be specified.

Condensation algorithm was introduced in [5]. It belongs tothe class of particle filtering

algorithms that are capable of approximately solving general Bayesian state estimation problem.

This algorithm is capable of tracking moving objects in image sequences using static feature

extraction. However, it relies on availability of good initialization for object locations and

parameters of movement model. This algorithm by itself is not suitable for movement model

parameter estimation.

B. Outline of the report

This report is organized as follows. Section II reviews the general nonlinear state-space model

that is adopted in Bayesian state estimation framework, particle filtering as an efficient Monte

Carlo approximation of Bayesian solution to state estimation, and discusses feature extraction

mechanism, dynamical and observation models used in Condensation algorithm. Section III pro-

vides a concrete statement of the particular problem and motivation behind this study. Section IV

outlines modifications to the standard particle filter that make it possible to use this algorithm

as a vehicle velocity estimator. Section V describes simulation experiments and discusses the

results. Section VI provides concluding remarks.
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II. BACKGROUND

A. Nonlinear state-space model

Many problems in object tracking may be solved by the application of a state-space estimation

framework [5]. The state-space estimation approach is based on the following signal model:

xt = fx(xt−1) + vt (1)

yt = fy(xt) + ut (2)

where t = 1, 2, . . . is the discrete time,xt denotes the state vector, andyt indicates the

measurement obtained at timet. The state of the system evolves according to the stochastic

difference equation (1) characterized by the nonlinear mapping fx : R
x → R

x and excited by

white random noisevt. The state vectorxt is observed through the measurement vectoryt, which

is functionally related toxt via the functionfy : R
x → R

y and corrupted by white random noise

ut. This framework can be applied to Computer Vision object tracking problems if we assume

that equation (1) describes dynamics of some object in the sequence of images and equation

(2) provides the link between the unobserved statext and feature vectoryt we extract from the

image sequence.

B. Particle filtering

As discussed in [5], a practical Bayesian approach to the estimation of unobservable state

xt from the collection of measurementsy1:t , {y1, . . . ,yt} available up to timet consists

in sequential construction of prediction and update densities. This approach is very similar to

Kalman filtering concept except for the fact that very loose assumptions regarding nature of

noise and transition functions are made.

To derive recursive Bayesian filtering equations we need to suppose that posterior distribution

from the previous filtering stepp(xt−1|y1:t−1) is available and we can use it to construct a prior

density for current filtering step by prediction:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (3)
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It should be noted, however, that strictly speakingp(xt|y1:t−1) is not a prior density at time

step t. It is more reasonable to consider this density as a prediction of state distribution from

posterior density using state dynamicsp(xt|xt−1) arising from state transition equation (1)

p(xt|xt−1) =

∫
p(xt|xt−1,vt−1)p(vt−1|xt−1)dvt−1 (4)

Using Bayes rule and Markov assumption embodied in equation(1) updated posterior density

of state can be obtained after measurementyt has arrived

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
. (5)

Here normalizing constantp(yt|y1:t−1) has the following form:

p(yt|y1:t−1) =

∫
p(yt|xt)p(xt|y1:t−1)dxt (6)

Likelihood p(yt|xt) of statext can be evaluated using known measurement noise distribution:

p(yt|xt) =

∫
p(yt|xt,ut)p(ut)dut (7)

Equations (3) and (5) constitute the basis of recursive Bayesian state estimation framework.

However, closed form solutions to these recursions can be found for a limited class of state-space

models including linear Gaussian models and finite state-space representations of the Markovian

model (1). In all other cases approximate numerical methodsmust be used.

Monte Carloparticle filtersbelong to the class of sequential approximation algorithmscapable

of solving (approximately) the problem (3), (5) by direct numerical simulation [6]. In this class

of algorithms, the filtering distribution (5) is represented by the empirical point mass function

of the particle set

p(xt|y1:t) ≈
N∑

i=1

wi
tδ(xt − xi

t) ,
N∑

i=1

wi
t = 1 (8)

where δ(·) is the Dirac delta function andwi
t denotes the normalized weight of each particle

xi
t. The particle filter is initialized with a random sample{xi

0}N
i=1 drawn from a known prior
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distributionp(x0). Subsequent propagation of this particle set using the equations (3), (5) yields

at every time step the approximation of state vector by a discrete statistical measure of the form

(8). Given the approximation of posterior distribution in the form of pmf the estimate of any

moment of the posterior can be expressed in the following form:

Ê{g(xt)|y1:t} =

N∑

i=1

wi
tg(xi

t) (9)

The assumption in (8) is that it is possible to draw samples directly from posterior distribution

p(xt|y1:t). However, in most practical situations it is impossible. That is why in practice particles

are drawn from some easy to sample distributionq(xt|y1:t), which is called a proposal distribu-

tion. The required property of proposal distribution is that its support should be at least equal

to the support of the true posterior distribution. It is possible to include proposal distribution

into particle propagation steps (3) and (5) and derive a rulefor sequential particle weight update

based on Markovian assumption and importance sampling:

w̃t = wt−1
p(yt|xt)p(xt|xt−1)

q(xt|x0:t,y1:t)
(10)

This technique for particle weight update is called Sequential Importance Sampling (SIS). It is

shown for example in [6] that the unconditional variance of particle weights grows with time

when SIS is used to update weights. This in turn leads to the increase of the variance of state

estimate. The solution to this problem was found in the form of Sampling Importance Resampling

(SIR) particle filter. In SIR particle filter a resampling step is introduced to substitute particles

with low importance weightswi
t by the particles with high importance weights. Resampling

transforms current pmf approximation{xi
t, w

i
t}N

i=1 with normalized weights{wi
t}N

i=1 to the equally

weighted pmf{x∗i
t , 1

N
}N

i=1. Here the probability of each particle representation of posterior state

pdf before resampling step{xi
t}N

i=1 being resampled and included into particle representation

of posterior state pdf after resampling step{x∗i
t }N

i=1 is equal to the value of corresponding

normalized weight{wi
t}N

i=1.

C. Particle filtering in image processing: Condensation
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1) Feature extraction:Feature extraction is an indispensable part of the Condensation al-

gorithm. At every time step features are extracted from a still image. The sequence of such

features is then tracked using observation and dynamics densities introduced in section II-B.

The authors [5] propose to use a B-spline model to parameterize tracked objects. Within this

framework objects are modeled as curves that can be parameterized in terms of B-splines in the

following manner:

r(s, t) = (B(s) · Qx(t),B(s) ·Qy(t)) for 0 ≤ s ≤ L (11)

whereB(s) = (B1(s), B2(s), . . . , BNB
(s))T is a B-spline basis vector,Qx andQy are B-spline

control point vectors, andL is the number of spans. Parametrization in the form (11) allows

representation of an object as a deformation of some template curve.

2) Dynamical Model:Object dynamics in Condensation algorithm are modeled according to

a linear model corresponding to the following 2nd order difference equation:

xt − x̄ = A(xt−1 − x̄) + Bvt , xt =


 Xt−1

Xt


 (12)

wherex̄ is the mean value of the state vector,A is the deterministic transition matrix, andB is

the matrix defining the way in which random excitationvt interacts with the deterministic part

of the dynamic system. It can be seen that model (12) is a special case of non-linear model (1).

Linear model was chosen by the authors because it is simple and a variety of techniques exists

for learning it on-line.

3) Observation Model:The observation model that is used in Condensation algorithm includes

a probabilistic mapping between point features in the imageand B-spline curve parameters. In

practice it is assumed that there exists some mappingg(s) between measured featuresy(s) and

normals to the curver(g(s)) such that a discrete approximation to the 2-D likelihood function

p(y|x) can be written in the following form:

p(y|x) ∝ exp

(
− 1

2rM

M∑

m=1

f(y1(sm) − r(sm); µ)

)
(13)
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Here sm = m/M , µ =
√

2σ log(1/
√

2πασ) is the spatial scale constant, andf is defined

as followsf(ν; µ) = min(ν2, µ2). This parametrization of likelihood function is obtained by

the authors using the assumptions that the clutter can be modeled as a Poisson process and

measurement is an unbiased estimator of the true feature location having Gaussian pdf and

varianceσ2 = rM . It should be noted that the measurement process parametrization used in

the Condensation algorithm does not take into account the fact that tracked objects move from

frame to frame. On the one hand, this static feature extraction approach is reasonable because

it is not affected by the effects of camera movement when the whole scene may be moving. On

the other hand, vision system of many animals that chase after moving prey does use movement

information for feature extraction and object detection. For example, frogs are almost blind if

objects in the scene do not move. Roughly speaking, frogs cansee only those objects that move

because of the peculiarities in their retina scanning process, to be precise, because of the absence

of this scanning process. Nevertheless, and may be in many respects owing to this, frogs are

excellent hunters. In this sense, static feature extraction can even be considered a counterintuitive

measure to detect moving objects.

III. PROBLEM STATEMENT AND STUDY MOTIVATION

In this report we would like to explore the potentials of a particle filter as a standalone

velocity estimator, moving object tracker, and detector. An interesting application for such

an algorithm would be vehicle traffic estimation in low resolution image sequences obtained

from camera networks that exist along many highway lanes. Because of the low quality of

image sequences that are often available for processing in practice, static feature extraction and

object detection in such sequences may be difficult and unreliable. More than this, standard

approaches to velocity estimation in traffic data often use geometrical velocity measurement

based on calibrated cameras and Kalman filter relying on Gaussian measurement error to smooth

measurements. In low resolution images camera calibrationand geometrical velocity estimators

may be very unreliable and measurement error may have very heavy tailed distribution. In this

situation even the applicability of Kalman filter may becomequestionable. On the other hand,

particle filter is a statistically consistent procedure formultiple frame information fusion that is
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Fig. 1. Concentration of particles in the areas supporting already tracked objects prevents the detection of an object newly
entering the scene. Taken from [5] in a modified form

necessary in situation when every frame or measurement by itself may bear little information.

The core benefits of using particle filters for tracking and parameter estimation in low resolution

video sequences are their ability to automatically recoverafter missing measurements and track

loss, inherent ability to track multiple targets simultaneously within single filter, and applicability

of the filter to any observation model.

Thus it is of interest to see how particle filter can handle parameter estimation and tracking of

multiple moving objects in low resolution video scenario. To be able to detect and track moving

objects we would like to use some inter-frame information encapsulating the assumption that

objects are moving, i.e. change their position from frame toframe. In this case observation model

might represent the likelihood of every pixel or a group of pixels being a part of a moving object

footprint. If particle filter is able to generate the spikes of posterior density around moving objects

in feature space then moving object locations as well as movement parameters can be extracted



12

directly from the particle approximation to posterior density. However, standard particle filtering

algorithm that is widely known in image processing under thename Condensation assumes that

a good initialization for object locations and movement model is available. Once it converges

to tracking objects already present in the scene it is often not able to take into account objects

newly entering into the scene. This happens because objectsthat are already tracked concentrate

most of the particles around themselves thus making new object detection very improbable.

This situation is illustrated in Fig. 1 showing the propagation of the discrete posterior density

approximation resulting in the blanking of a new object.

In this report we present a particle filtering algorithm thatovercomes the problem of unknown

movement parameters and absence of good initialization formoving object locations by the

application of a specific sampling strategy and movement model parameter estimation. As a

byproduct of this modification we obtain and study the procedure for vehicle velocity estimation.

This velocity estimator can then be used for traffic intensity assessment. In traffic intensity

assessment we can use the ratio of instantaneous velocity tothe maximum traffic velocity

estimated during long periods of traffic analysis to characterize current traffic state. This kind

of traffic state characterization does not require camera calibration that can be difficult or even

impossible in many situations.

IV. PARTICLE FILTER FOR VELOCITY ESTIMATION

A. Dynamical model

We modify the linear dynamical model outlined in equation (12) in the following way. First

of all, we do not assume that any prior information is available as to what the mean state vector

x̄ might be. Thus our model takes the following form:

xt = Fxt−1 + Gξt (14)

Second, as we are interested in velocity estimation, the target state vector is appended with the

vector of unknown velocities. This technique is often used in joint recursive state and parameter
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estimation [7]. Thus the exact parametrization of (14) is asfollows:

xt =




x1,t

x2,t

v1,t

v2,t




, F =




1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1




(15)

ξt =


 ξ1,t

ξ2,t


 , G =




1
2

0

0 1
2

1 0

0 1




(16)

Herex1,t andx2,t arex andy coordinates of the target correspondingly,v1,t andv2,t arex and

y velocity components, andξ1,t andξ2,t arex andy acceleration components.

Each particlei that is used in trackingi = 1, . . . , NT is then assigned a state vectorx
(i)
t

corresponding to some pixel neighborhoodNi and tracking is performed on a neighborhood by

neighborhood basis. We assume that objects perform rigid motion in feature space. Although in

general this is not true in practice, our experiments show that particle filter is still able to capture

average pixel dynamics during the tracking of non-rigidly moving object footprints in feature

space. Which means that even if the object’s appearance in feature space changes randomly

from frame to frame, particle filter is still able to estimatevelocity of this object with reasonable

estimation error.

B. Image preprocessing

As was mentioned earlier, in our work we do not rely on a staticfeature extraction mechanism.

Instead, we try to use the inter-frame information to estimate the likelihood of each pixel being a

part of moving object footprint. As the direct identification and tracking of objects in low quality

images is often impossible we first transform the sequence ofthe images into the feature space.

The result of feature extraction should show how probable itis that pixel with coordinates

(x1, x2) pertains to some moving object with state vectorxo
t = [xo

1, x
o
2, v

o
1, v

o
2]

T . Here vo
1, v

o
2

are x and y components of its velocity vector. We assume that the intensity of each pixel
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y(x1, x2) can be modeled as a Gaussian random variable with some unknown meanµp and

varianceσ2
p : y(x1, x2) ∼ N (µp, σ

2
p). We assume also that if pixel with coordinates(x1, x2) in a

sequence of frames pertains to a still object then the meanµp for this pixel in these frames is

the same. If, however, this pixel pertains to the footprint of a moving object, the mean of this

pixel corresponding to the frame at the time instantt − 1 is µt−1
p and µt

p at the time instantt.

Therefore, the best feature extraction procedure would implement an optimum statistical test to

differentiate between the two hypotheses

H0 : µt
p = µt−1

p (17)

H1 : µt
p 6= µt−1

p (18)

given the measurements

yt(x1, x2) = µt
p(x1, x2) + ζ(x1, x2) (19)

whereζ(x1, x2) ∼ N (0, σ2
p) is Gaussian random variable with zero mean.

However, it is known that the best optimum (uniformly most powerful) statistical test to

differentiate between the two hypotheses (17) whenµt−1
p andµt

p are arbitrary and unknown does

not exist [8]. The following suboptimum test statistic and decision rule that are equivalent to the

frame differencing and thresholding are used for feature extraction:

Λ(yt(x1, x2), yt−1(x1, x2)|x1, x2) ∝ 1 − exp

(
−(yt(x1, x2) − yt−1(x1, x2))

2

2 · 2σ2
p

)
(20)

Λ(yt(x1, x2), yt−1(x1, x2)|x1, x2)
H1

≷
H0

η1 (21)

C. Observation model

After the feature extraction, what we observe is the binary image that is formed as a result

of the test (21) performed on successive frames:

zt(x1, x2) =





1 if Λ(yt(x1, x2), yt−1(x1, x2)|x1, x2) > η1

−1 if Λ(yt(x1, x2), yt−1(x1, x2)|x1, x2) < η1

(22)
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Simply following the observation model (13) used in Condensation algorithm we can reformulate

it to fit our concrete case as follows:

p(z(x1, x2)|s(x1, x2), x1, x2) ∝ exp

(
− 1

2∆lMNi

∑

x1,x2∈Ni

(z(x1, x2) − s(x1, x2))
2

)
(23)

WhereMNi
is the number of pixels in the neighbourhoodNi, ∆l is the width of the likelihood

kernel ands(x1, x2), x1, x2 ∈ Ni is the true appearance (footprint) of the tracked object in feature

space. It is clear that (24) can be reformulated in a more concise way:

p(z(x1, x2)|s(x1, x2), x1, x2) ∝ exp

(
− 1

∆l

(1 − ρ)

)
(24)

where

ρ =
1

MNi

∑

x1,x2∈Ni

s(x1, x2)z(x1, x2) (25)

is the generalization of the so called Hough Transform (HT).Whens(x1, x2) ≡ 1 ∀x1, x2 ∈ Ni,

(25) exactly represents the idea of HT. Also, (25) can be considered as an expression for a

correlation coefficient betweens(x1, x2) andz(x1, x2).

It should be noted that the conditional distributionp(z(x1, x2)|s(x1, x2), x1, x2) is not at all

Gaussian and (24) is at best an approximation of the real observation density. However, our

experiments show that even with this rough approximation ofobservation density particle filter

works reasonably well. More than this,p(z(x1, x2)|s(x1, x2), x1, x2) can be calculated exactly,

given all the previous assumptions and comparison of the filter with optimum observation density

and approximation (24) would be an interesting thing to do.

D. Sampling scheme

Often in practical particle filters and also in Condensationalgorithm, transition densityp(xt|xt−1)

is picked as a proposal densityq(xt|y1:t). In our experiments we use a slightly modified sampling

scheme that is depicted in Fig. 2. The difference here is thattwo distinct particle clouds are

used to track and detect moving objects. As was mentioned earlier, existing moving targets

attract most of the particles to their locations preventingthe exploration of other spatial areas

of the image sequence. To overcome this difficulty in the setting where no prior information is
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Fig. 2. Sampling scheme that is used in particle filter with simultaneous detection and tracking of moving targets

available regarding the location of every new object appearing in the tracked scene we introduced

a separate search cloud uniformly distributed over the entire image area. This cloud supplements

tracking cloud that contains the information about those objects that are already tracked. Both

clouds undergo particle weight evaluation using observation mechanism outlined in section IV-

C. In general they contain different number of particles. Aswas mentioned earlier, the track

cloud containsNT particles. At the same time, search cloud containsND particles. After weight

evaluation and before weight normalization weight vectorsof both clouds are appended. Thus

during the resampling process particles with significant weights originating from the search

cloud substitute those with low weights originating from the track cloud. Generally speaking,

the mixture of these two clouds can be implemented by the appropriate choice of the proposal

distribution. However, it might be more intuitive to imagine this mixture as two dedicated clouds.

E. Velocity estimation

We have already mentioned earlier that velocity of the moving object can be estimated by the

particle filter if this velocity is included into the state vector as an unknown variable [7]. This

technique is sometimes called sample roughening. It was recognized in [7] that the application

of sample roughening to static parameters of the model may (and often does) cause inadequate
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diffusion of posterior particle distribution leading to the large variance of velocity estimator and

even filter divergence. Therefore, it might be beneficial to try and treat velocity as an unknown

parameterθ(x1, x2) in transition density. Whereθ(x1, x2) is a matrix, that is, it is defined as a

field over the entire image area. We further assume that at anypoint (x1, x2) θ(x1, x2) assumes

some arbitrary value independent of all the others. A valid way to estimate this parameter then

is to find the argument maximizing evidence [9]:

pθ(yt|y1:t−1) =

∫∫
p(yt|xt)pθ(xt|xt−1)pθ(xt−1|y1:t−1)dxt−1:t (26)

One way to deal with such recursive maximization is to consider the Monte Carlo approximation

of (26) that is a simple sum of unnormalized importance weights:

p̂θ(yt|y1:t−1) =

NT∑

i=1

w
(i)
t (27)

Using the properties of Monte Carlo density approximation we can show that asNT → ∞, the

maximization of (27) is almost surely equivalent to the maximization of (26). Thus we can use

the following problem statement to find a recursive estimator of θ:

θt = arg max
θt

NT∑

i=1

w
(i)
t (28)

Now, if we recall the way in whichθ comes into the play inpθ(xt|xt−1) (14) and apply the

velocity field independence assumption, then instead of (28) we can solve a simpler problem:

θt(x1, x2) = arg max
θt(x1,x2)

w
(i)
t (x1, x2) (29)

Where x1, x2 are x, y components of particle state vector. To solve (29) using Monte Carlo

technique, we can approximate the filtering densitypθ(xt−1|y1:t−1) by NT particles and during

the update step we can expand this particle cloud by generating Nv diffused particles from every

particle of posterior density. After that, we can easily solve the problem (29) by just selecting

the particle with the largest weight and discarding all the restNv − 1 particles.

Using the steps outlined above we generate the particle approximation of the velocity estimator.

In order to estimate velocity at any desired pointxd, yd of the image we apply kernel smoothing
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step [7] as described below. Normalized importance weightsof the track cloud:

w̃i
(T )t =

wi
(T )t∑NT

j=1 wj

(T )t

(30)

and kernel weights reflecting the closeness of every particle to the desired location:

wi
(k)t = exp

(
−(x

(i)
1,t − xd)

2 + (x
(i)
2,t − yd)

2

4∆k

)
(31)

where∆k is kernel width equal to 6 pixels are multiplied and velocityestimation weights are

obtained:

wi
(v)t = w̃i

(T )tw
i
(k)t (32)

Smoothed velocity estimator at desired positionvd
j,t is then formed as a weighted sum of particle

velocities:

vd
j,t =

1
∑NT

p=1 wp

(v)t

NT∑

i=1

wi
(v)tv

(i)
j,t (33)

F. Algorithm

In this section we summarize the algorithm of particle filtering for velocity estimation. This

algorithm is presented in Fig. 3
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For t = 0,1,2,. . .

1) Get image:yt

2) Image preprocessing

• Calculate decision statistic (frame differencing):

Λ(yt(x1, x2), yt−1(x1, x2)|x1, x2) = 1 − exp
(
− (yt(x1,x2)−yt−1(x1,x2))2

2·2σ2
p

)

• Calculate feature space (thresholding):

zt(x1, x2) =





1 if Λ(yt(x1, x2), yt−1(x1, x2)|x1, x2) > η1

−1 if Λ(yt(x1, x2), yt−1(x1, x2)|x1, x2) < η1

3) Particle filtering

• Generate search cloud: Fori = 1 to ND, xi
t ∼ [U(0, w), U(0, h), 0, 0]T ;

• Evaluate likelihood of the search cloud: Fori = 1 to ND,

ρ
(i)
(D)t = 1

MNi

∑

x
(i)
1 ,x

(i)
2 ∈Ni

st(x
(i)
1 , x

(i)
2 )zt(x

(i)
1 , x

(i)
2 );

w
(i)
(D) = exp

(
− 1

∆l
(1 − ρ

(i)
(D)t)

)
;

• Propagate track cloud and estimate velocity:

For i = 1 to NT ,

For j = 1 to Nv,

x
(i,j)
t = Fx

(i)
t−1 + Gξ

(i)
t ;

x
(i,j)+
t = Fx

(i)
t ;

– Evaluate likelihood of the track cloud:

ρ
(i,j)
(T )t = 1

MNi

∑

x
(i,j)
1 ,x

(i,j)
2 ∈Ni

st(x
(i,j)
1 , x

(i,j)
2 )zt(x

(i,j)
1 , x

(i,j)
2 );

ρ
(i,j)
(T )t+1 = 1

MNi

∑

x
(i,j)+
1 ,x

(i,j)+
2 ∈Ni

zt(x
(i,j)
1 , x

(i,j)
2 )zt+1(x

(i,j)+
1 , x

(i,j)+
2 );

w
(i,j)
(T ) = exp

(
− 1

∆l
(1 − ρ

(i,j)
(T )t)

)
exp

(
− 1

∆l
(1 − ρ

(i,j)
(T )t+1)

)
;

x
(i)
t = arg max

x
(i,1...Nv)
t

w
(i,1...Nv)
(T ) ;

• Estimate velocity at particle locations using (30)–(33)

• Append and normalize weight vectors:wt = [wT
(D)t, w

T
(T )t]

T ;

For i = 1 to ND + NT : w̃i
t =

wi
t∑ND+NT

j=1 w
j
t

;

• Resample

Fig. 3. Summary of particle filtering for velocity estimation
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(a) Synthetic data,̺ = 0.2 (b) Real data

Fig. 4. The example image of feature space generated using the simulator (left) and real camera data (right)

V. EXPERIMENTS

A. Synthetic model description

In our experiments we use the following synthetic model. Thetarget is represented by a square

set of pixels having size15 × 15 pixels. Each time a target is generated, part of the pixels is

marked as detected and part of them as not detected. During the movement of the target its pixels

may switch from one state to the other with probabilityps according to a markov model. The

movement of the target obeys linear constant velocity model. Noise in the image is generated

as false alarms uniformly distributed over the entire imagearea with density̺ . After this first

stage image is generated, we apply image smoothing and afterthat second stage thresholding

to get rid of the small artifacts and to close moving target contours. The example image of

feature space generated using the simulator is shown in Fig.4 (left). The image of feature space

generated using real data is shown in Fig. 4 (right) for comparison. For a more comprehensive

comparison we also supplement this report with a video example ”feat sp compare.avi”. This

example contains the recording showing feature space generated by the simulator described above

in the left pane and the feature space generated using real data by the image preprocessing step

described in section IV-C.
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Fig. 5. Dependency of the MSE of velocity estimation from thenumber of particles in the search cloudNT

B. Experiments with synthetic data

To assess the performance of the velocity estimation algorithm depicted in Fig. 3 a series of

experiments on synthetic data was performed. The results ofthese experiments are presented in

Fig. 5–9.

The dependency of the MSE of velocity estimation from the number of particles in the search

cloudNT is shown in Fig. 5. As expected, the estimation error reducesas the number of particles

increases.

Next we present the plot showing the MSE of velocity estimation as a function of the number of

particlesNv in velocity estimation step. During this experiment we keepthe number of particles in

the expanded cloud constant and equal to 4500. The number of particlesNv in velocity estimation

step changes from 1 to 9 and the number of particles representing the posterior density changes
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Fig. 6. MSE of velocity estimation as a function of the numberof particlesNv in velocity estimation step

inversely toNv, NT = 4500/Nv. It is clear that in terms of computational complexity filters

with different Nv are equivalent. It is interesting to note, that first the estimation error reduces

asNv grows, because this allows for better velocity estimation at every time step. But whenNv

becomes greater than 5, MSE starts to increase. This can be attributed to the fact that further

increase in the number of velocity estimation particles leads to the depletion of the number of

particles that effectively represent the posterior filtering density, which in its turn leads to larger

positioning (tracking) errors.

After that we study the influence of the absolute value of estimated velocity on the estimation

error. The relative MSE decreases with the increasing absolute value of the velocity. Thus we can

conclude that absolute MSE is approximately constant. Thismeans that the described velocity

estimation technique is suitable for the estimation of velocity in a practical range.
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Fig. 7. MSE of velocity estimation as a function of the numberof the absolute value of the velocity

Next we study the influence of the number of simultaneously tracked targets on the relative

MSE. The relative MSE increases with the increasing number of tracked moving objects. This is

an expected result, because each target requires a number ofparticles to be tracked. Thus each

new target appearing in the scene reduces the number of particles per target and thus the error

increases according to Fig. 5.

Finally, we present the plot of MSE versus the noise density.Noise density is the percentage

of false alarms uniformly distributed over the image area inevery frame. It can be seen in

Fig. 9 that as noise density increases MSE of velocity estimation also increases. This can be

explained by the following. First, the presence of noise makes object movements deformable.

That is, the object’s appearance in the next frame is always different from its appearance in the

previous frame. Thus the target constantly looses some of the tracking particles because they
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Fig. 8. MSE of velocity estimation as a function of the numberof simultaneously tracked targets

assume low importance weights in the areas where deformablemotion leads to the distortion

of the true velocity profile. Second, when the noise level is relatively high, large noisy areas

distract some particles from tracking cloud making the total number of particles useful for object

tracking less. Also the nature of the error dependency from noise level suggests that tracking

algorithm’s performance deteriorates slowly as noise level increases and therefore suggested

velocity estimation algorithm is robust to the presence of noise in data.

C. Experiments with real data

To experiment with the described particle filter for velocity estimation based on real data we

used traffic monitoring data available on-line [10]. The concrete scene that was used during the

simulation is shown in Fig. 10. In Fig. 11 we present the maximum absolute velocity profile
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Fig. 9. MSE of velocity estimation as a function of the numberof the absolute value of the velocity

learned by the particle filter while tracking the vehicles moving in this area. Also we supplement

this report with the tracking video sequence ”trackresults.avi”. Original image sequence is

depicted in the higher left corner of this video. Original image sequence with the tracking

results is shown in the higher right corner of this video. Here red dots depict particles from the

search cloud and green dots depict particles from the track cloud. The appearance of the feature

space corresponding to the video sequence is shown in lower right corner and the estimated

velocity profile appears in the lower left corner. It can be seen from the tracking video sequence

that although the amount of the prior information we use to construct the tracking model is

small, particle filter is still able to autonomously detect moving objects marking them by red

particles, assign green particles to track them and learn movement model as they move along the

tracking area. All this confirms the validity of experimental results regarding velocity estimation
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Fig. 10. The scene that was used during the simulation with real data

that were obtained using the simplified, but fully controlled synthetic model.

VI. CONCLUSION

In this report we experimented with particle filtering algorithm for velocity estimation in

image sequences. In particular, we considered a situation where little a priory knowledge was

used to parameterize exact appearance of the tracked objects and movement model was not

initialized using good prior knowledge that is sometimes available from object detection step.

However, particle filter was able to handle this situation and automatically allocate tracking

resources to the moving objects newly entering the scene, estimate the velocity of moving

objects on-line, and localize moving objects by creating posterior density spikes in the areas

of the image corresponding to the objects of interest. We obtained useful experimental results

using both synthetic and real data. These results can be usedto assess the applicability of the
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Fig. 11. Maximum absolute velocity profile learned by the particle filter while tracking the vehicles moving in the area shown
in Fig. 10

studied algorithm to some particular situation and optimize the performance of the algorithm by

choosing the optimum values of its parameters.
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