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Abstract—Although particle filters are extremely effective al- dynamics [8]. KRLS uses the data to learn a dictionary of
gorithms for object tracking, one of their limitations is& r support vectors; the model dynamics are described as a func-
liance on an accurate model for the object dynamics and oltional mapping of the current state and these support v&ctor
servation mechanism. The limitation is circumvented tosom Although KRLS can be applied to non-linear tracking prob-
extent by the incorporation of parameterized models in théems, it is not as effective as particle filtering, particltytan

filter, with simultaneous on-line learning of model parame-noisy environments. Moreover, standard implementatidns o
ters, but frequently, identification of an appropriate paes  KRLS do not account for unobserved state parameters.

ric model is extremely difficult. This paper addresses this

problem, describing an algorithm that combines Kernel Rein this paper we combine kernel recursive least squares and
cursive Least Squares and particle filtering to learn a funcparticle filtering, addressing the “supervised learningé-s
tional approximation for the measurement mechanism whilshario, in which we assume that there is an initial training
generating state estimates. The paper focuses on the specifieriod during which additional measurements are available
scenario when a training period exists during which supplefrom a measurement device with known characteristics. An
mentary measurements are available from a source that can brample of such a scenario arises in sensor network track-
accurately modelled. Simulation results indicate thafptee  ing, when accurate, but energy-expensive, range-finding or
posed algorithm, which requires very little informatioroab  global-positioning devices can be activated for a shorstsur
the true measurement mechanism, can approach the perfaf time to calibrate sensors. During these bursts, we ap-
mance of a particle filter equipped with the correct observaply KRLS to generate a dictionary and learn an observa-
tion model. tion model for secondary sensors. The secondary sensors are
much less accurate but also consume much less energy. Sub-
sequently, we use a particle filter based on this model that we
have learned. This approach captures the best aspectdof bot
Particle filters have proved to be an extremely effectivealgorithms — the learning power of KRLS and the robustness
methodology in tracking applications, particularly whéet of particle filters to noise and missing observations.

dynamics of the tracked object are highly non-linear or the

observations are corrupted by non-Gaussian noise. One m¥/e demonstrate through simulations of tracking scenarios
jor shortcoming, however, is the need for a reasonably acculiow the combination of KRLS and particle filtering results
rate model both of object dynamics and observation mechin superior performance to a straightforward applicatién o
anisms. Performance can deteriorate dramatically if an inKRLS and approaches that of particle filtering when the
correct model is applied. One approach to this issue is tanodel is known beforehand. For concreteness, we focus on
incorporate a parametric model, thereby expanding the aphe application of bearings-only tracking.

plicability of the filter, and to learn the model parameters

online [1-7]. Successful application of these approackes r Related Work

quires that the true model is a member, or is at least closel¥

X . he idea of online estimation of model parameters has re-
approximated by a member, of the parameterized class of . : . . .
models. ceived much attention since the introduction by Gordon of

the sample roughening technique [9]. However, it was rec-
ognized in [6, 7] that the application of sample roughening

When there is little or na priori knowledge about the object :
: ) s to static parameters of the model may (and often does) lead
dynamics or measurement mechanism, practitioners gener-

. to inadequate diffusion of posterior distributions andediv

ally must resort to alternative methods that construct aghod . :

. . . ence. Kernel smoothing of parameters, as introduced by
during their operation. A powerful such method that has bee : ) .

; ; lest [5], is used to address this problem in [7]. Recently,

recently proposed is kernel recursive least squares (KRLS ) .

: . o ; . more elegant and mathematically sound solution based
which migrates the familiar recursive least squares dlgori

. : . on marginalization of the particle space with respect to un-
into a kernel-space, allowing the method to capture nogalin 9 P P : b
known system parameters was proposed in [6]. In an alterna-

1-4244-0525-4/07/$20.0@)2007 IEEE tive gpproz_ﬂch, Rowels and Ghahramani use th_e Expectation-
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ric model [1]. In their two-step algorithm they first use anEx measurementg;.; = {yi,...,y:} available up to time
tended Kalman Smoother to estimate the approximate statonsists in sequential construction of prediction degesiti
distribution given the previous set of model parameters and

then utilize a Radial Ba'_sis Network as a nonlinear regressor p(xpat|yi) = /p(xt|y1:t)p(xt+1|xt)dxt 3)
of model parameters given the approximate state estimate.

Miguez at al. [2—4] recently introduced an alternative para
metric technique for dealing with uncertainties in the estat
model. Their “Cost-Reference Particle Filter” uses a cost- D(For1 [ Ko )P (Ko [Y1:2)
reference function to address uncertainty in the systersenoi P(Xeg1|y1igr) =~ DAL (4)
distribution. The function governing the system equat®n i P(yeralys)

parameterized with respect to a set of basis functions anfiowever, closed form solutions to these recursions can be
the parameters of this basis representation are learngaonl ;5,,nd only for linear Gaussian models and finite state-space

via the Recursive Least Squares (RLS) algorithm. In contepresentations of the Markovian model (1). In all otheesas
trast to these approaches, we strive in this work to avoid th%pproximate numerical methods must be used.

introduction of a parametric model, and attempt to learn a
non-parametric kernel representation of the unknown meayonte Carloparticle filtersbelong to the class of sequential

and filtering densities

surement function. approximation algorithms capable of solving (approxirhate
] the problem (3), (4) by direct numerical simulation [12]. In
Outline of Paper this class of algorithms, the filtering distribution (4) ispr

This paper is organized as follows. Section 2 reviews théesented by the empirical point mass function of the particl
nonlinear state-space model we adopt and discusses par§et
cle filtering as an efficient numerical approach to recursive N
Bayesian estimation. It also outlines the KRLS algorithm, ~ i i i _
which we apply to the problem of particle filtering with un- P(xelyi) ;wté(xt x) Zwt e
known observation mechanisms. Section 3 provides a con-
crete statement of the particular problem considered ® thiwhere §(-) is the Dirac delta function and; denotes the
paper, and Section 4 outlines the KRLS-particle filter, ourweight of each particleci. The particle filter is initialized
proposed algorithm for jointly performing function leamgi ~ with a random sampléx}~ , drawn from a known prior
and estimation (tracking). Section 5 addresses the bearingdistribution p(x). Subsequent propagation of this particle
only tracking problem and describes how the KRLS-particleset using the equations (3), (4) yields at every time step the
filter can be applied in this setting. Section 6 describes simapproximation of state vector by a discrete statisticalsuea
ulation experiments and discusses the results. Section-7 prof the form (5). Many practical approaches to the problem of
vides concluding remarks and describes ongoing work. effective particle propagation have been developed dugng
cent years (see [13, 14]).
2. BACKGROUND

Nonlinear State-Space Model Kernel Recursive Least Squares

Many problems in signal processing may be solved by thél’he Kernel Recursive Least Squares algorithm was intro-

application of a state-space estimation framework [10je Th duced in [8] and has a conceptual foundation related to Prin-

state-space estimation approach is based on the follovgng s ciple Component Analysis and Support Vector.Machlne.s. In
nal model: contrast to these methods, KRLS is a fully online algorithm

designed to operate in real-time environments where data be
X, = folxi—1)+ve (1) come available one sample at a time. The KRLS algorithm

can be used in nonlinear regression problems, time seges pr
yo = fyba)t+w (2) diction, and nonlinear adaptive filtering, but in the presen

wheret = 1,2, ... is the discrete timex; denotes the state work we exploit its function learning capabilities.

vector, andy; indicates the measurement obtained at time ] . o ]
The state of the system evolves according to the stochastl@ our setting, KRLS is presented with input-output pairs
difference equation (1) characterized by the nonlinear-map(Xi- ¥:) arising from an unknown mapping, : R* — RY.
ping f. : R* — R and excited by white random noise. These form the sequentg of available data:

The state vectax, is observed through the measurement vec-

tor y¢, which is functionally related tx; via the function Ve = {(x1,91)5 - (%6, 40)}-

fy : R — R¥ and corrupted by white random noiag The first step in KRLS involves the choice of a positive def-

inite kernel functiork(x, x’) = (¢(x), #(x")), which is de-
fined as an inner produgt, -) of a possibly infinite dimen-
As discussed in [11], a practical Bayesian approach to thsional mapping : R* — H that transforms the input vector
estimation of unobservable statg from the collection of into a Hilbert feature space.
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KRLS attempts to learn an approximation to the mappingwhereu, is additive noise oknowndistributionp,,. Our goal

fy(x) in the form of a weighted linear sum of the kernels is to use the measurememsto learn an approximation to

k(x,x;), where{x;}!_, are the training data points up to f, that can be used to process fiemeasurements after the

timet. This approximation, training period is over and form estimates of the state

A ¢ As a special case, we can consider the scenario of bias or non-

fy(x) = Z ai k(xi,x) , () Jinear distortion, in which theg, measurements are corrupted
=t versions of thez; measurements. In this case, the unknown

is trained using the standard recursive least squaresthigor mapping function is a composition of the known mappjiag
to minimize the squared error and an unknown contaminating functign: R* — RY:

t

L) =3 (- fx0) ™) fo=gyF. . (10)

i=1

In order to reduce the number of adjustable parameters,in (6)n general, we anticipate that the training measurements
KRLS employs a form obnline constructive sparsification are generated by a high-precision measurement devicegso th
The sparsification methodology only permits the addition ofvariances?2, of the associated noise is much smaller than

a training sample into the approximation (6) if it is approxi

mately linearly independent of the preceding training Sasp 4. FUNCTION APPROXIMATION AND

(in the feature space). The input vectors that are included i FILTERING ALGORITHM

the approximation form dictionaryD; = {x;}}*,, whichis
sequentially constructed only from the samptgshat satisfy
anapproximate linear dependence (AL@¥t

In this section we describe the KRLS-particle filter, which
combines the function approximation capabilities of KRLS
and the tracking power of particle filtering to address uncer

i1 2 tainty in the measurement model. Algorithm 1 provides a
8; = min Z a;6(%;) — d(xi)|| <v . (8) high-level description of th.e algorithm. D_uring the firkt
| Pt time steps, a standard patrticle filter is applied to the nteasu

mentsz; to form estimates;. These estimates are passed to
Herewv is the dictionary inclusion threshold that determinesthe KRLS algorithm, which constructs a dictionary to leann a
the accuracy of approximation (6). The coefficieats=  approximationf, to the functionf,. After time stepk’, the

(ai,...,am,—1)" can be determined by solving (8): resulting dictionaryD and expansion coefficientsare deliv-
L ered to the particle filter algorithm, which now processes th
a, =K, ' ki_1(x) (9)  y: measurements. In this second stage, the true likelihood

_ _ p(y:|x¢) is not available, s, (y: — f,(x:)) is used as an
where[K;_1];; = k(X;,%;) and [k;—1(x¢)]; = k(X;,x¢).  approximation. We assume that the distributigris known.

The weightsx; = (ay,...,am,,—1) " are learned by KRLS
over time through successive minimization of the approximaln the special case where (10) applies and the measurements
tion errors (7) in the least-squares sense. y: are corrupted versions of;, KRLS is used to form an
estimate of the corrupting functiog,. This approach is
3. PROBLEM STATEMENT adopted because the structureygfis often simpler to learn

In standard patrticle filtering settings it is assumed that th than thaAt offy. We then approximate the likelihood as
transition functionsf, and f,, in (1) and (2) are completely Pu(yt = gy (f=(x4)))-
known. In some extensions the assumption is relaxed to allow
the inclusion of models with unknown parameters [1-7]. In
many practical settings, the measurement model is unknown
and even identification of a parametric model is challenging As a clarifying example, we focus on the problem of
bearings-only tracking. We consider a scenario where eight
We consider the case where there is an initial training gerio stationary sensors measure the bearings of a target and as-
t =1,...,K, during which measurements are available acsume that the position of each sensor is known (Figure 1).
cording to a known modef.: The target movement is modeled according to a standard
model with random Gaussian acceleration:

5. MULTIPLE OBSERVER BEARINGS-ONLY
TRACKING

zy = f.(x¢) + U

whereu; is additive noise of distributiop,,,. Throughout x; = Fx,_1 + Gvy, (11)
the learning period, but also subsequently, we have measure

ments derived from an unknown mapping functin - _ _
whereF, G are transition matrices; is a state vector of the

v = fy(xe) +wy target,v; is a random acceleration vector. These matrices and



Algorithm 1: Outline of Function Approximation and Filter-

ing Algorithm
1 Set KRLS threshold;
[+ Initialize particle filter */
2 Xp ~ pu(X0);
3 fort=1,2,...,Kdo
/* Hi gh-precision nmeasurenents */
4 Data: z;
/* Low- precision neasurenments */
5 Data: y;
I+ Sanpl e from proposal */
6 Xi~q(xi_y,214);
/* Evaluate particle weights */
7 @zzt = pu (2t — fz(Xi))(ﬂ%tJT:t)) zztlfl;
>
[+ Calculate estimate of state * |
9 it = x:wt;
I+ Resanpl e o */
10 xi = Resample(x}, w});
/+* Run KRLS al gorithm * |
1 (Dy, o) = KRLS(X¢, Y1, Di—1, ¢t —1)
eendfor
/* KRLS out put: */
13 Data: (D, x)
1 fort=K+1,K+2,...do
[+ Sanpl e from proposal */
15 let ~ Q(let—layl:t);
/+ Evaluate particle weights */
6 O =puly - f () FEEe L
17 wp = —Nitl 7L
/+ Calculate estimate of state * |
18 ﬁt = x?wt,
/+ Resanpl e o */
19 xt = Resample(x}, w});
20
21endfor
vectors are of the following form:
T4 10T 0
Y o1 o T
S cF=1001 0 (12)
vy? 00 0 1
T2
o z 0
_ [ Y _ 0 =
Vt_(vfz) , G= T (2) (13)
0o T

Observers are fixed with the state of thth observer being:

1

i
T2
R,=| "
0

(14)

1 x 10
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E
N
<
_05 L
_1 L L L
-1 -0.5 0 0.5 1

X]_ (m) x 10*

Figure 1. Outline of experimental setup: eight stationary
observers measure the bearings of the target. Observers are
marked a$] and target is marked as.

For the firstK time stepg we record the bearings of the tar-
get. These measurements are corrupted by independent iden-
tically distributed additive white Gaussian noisg

z: = f.(x¢) + uj, (15)
Top—132
tanfl(im?t_rjm )
fa(x¢) = Zo—T (16)
(xt) tanfl(;,t_rg;)

We also have low-precision measuremeptderived from an
unknown measurement functigiy(x;). We impose the as-
sumption that the measuremeptsare corrupted versions of
the true bearings, s, = g, o f.. Note that this assump-
tion implies that the influence of the actual coordinateshen t
measurement process is solely through the bearings. For ex-
ample, according to this model, the distance from the sensor
has no effect on the nature of the measurement. The algo-
rithm described in the previous section is used to learn the
measurement functiog, on-line. For this specific case, we
utilize a Gaussian kernel with varianeg within the KRLS
algorithm. At each time step, KRLS takes as input pairs
{(z],y]);7 = 1,...,8} and updates its dictionar®; and
function approximation coefficients.. The algorithm places

no restrictions on the nature of the particle filter (impoc@a
sampling function, resampling strategies, etc.).

6. SSIMULATION RESULTS

To evaluate the performance of proposed online function
learning technique we conducted a set of simulation experi-
ments based on the bearings-only tracking problem destribe



in Section 5. Matlab code implementing the algorithm is  Table 1. MSE performance of particle filter in three
available at [15]. different settings: PF-IDEAL, PF-KRLS, and

PF-UNAWARE. Variance of low-precision measurement
device iso? = 2.78 x 1074,

| 9y(y) | y+o01 y® eV
05 ] PF-IDEAL, 0.19 0.15 0.14
PF-KRLS 1.34 5.86 42.99
% of ] PF-UNAWARE || 9120.90 | 51099.76 | 143510.54

Table 2. MSE performance of particle filter in three
-0.5¢ 1 different settings: PF-IDEAL, PF-KRLS, and
PF-UNAWARE. Variance of low-precision measurement
A device iso2 = 2.78 x 1073,

= 05 0 05 1

oo th yf | 9y(¥) | y+001 y® eV
Figure 2. An example of the function approximation capa-
bility of KRLS. The Functiory, (y) = y* is learned from 50 PF-IDEAL, 5.13 3.28 3.66
time steps of noisy data with varianeg, = 2.78 x 10~*. PF-KRLS 6.62 24.03 7.93
The actual function is the solid line; the approximatiorhie t PE-UNAWARE || 11.30 | 43766.17 | 17342.11
dashed line.

We evaluate mean square error (MSE) performance of parti- ) . )
cle filtering algorithms with and without the KRLS function €xponential typey, (y) = e¥. Figure 3 illustrates the func-

approximation step. Our comparison is based on the followtion approximation capability of the KRLS algorithm. With
ing absolute MSE measure: 50 samples to learn from, KRLS generates an approximation

to the actual functiory,(y) = > that achieves very good

L M i i i
. 1 R . accuracy almost everywhere in the region of interest.
@ TR 2 2 (i #)’ (v —)?
i=1t=K+1 It is clear that the particle filter algorithm is very senasti

7)
where L is the number of independent trials afd is the
length of target trajectory. Three variants of particleefilt
configuration are compared:

to variations in the measurement function. If the partidle fi
ter is unaware of even a comparatively small bjg&y) =

y + 0.01 (which represents only 0.5% of the range of the
measurement), then its performance is very poor. The KRLS-

1. a particle filter with complete knowledge of both measure-parthIe filter provides orders-of-magnitude improvemient

S . MSE performance compared to the particle filter with no
ment and_contqmmat_mg functions (PF-IDEAL) knowledge of the contaminating function. As expected, the
2. a particle filter with knowledge of measurement func-

. L S . KRLS-particle filter cannot compete in performance with the

:g}gr;d KRLS approximation to contaminating function (PF- particle filter that has complete knowledge of both measure-
. ' . . mentand contaminating function. Small errors in the fuoreti

3. a particle filter with knowledge of measurement funct|ona roximation can induce larae errors in state estimation

and with no knowledge of contaminating function or KRLS P 9 '

approximation step (PF-UNAWARE) Figure 2 shows examples of tracking trajectories corredpon

We usedl = 50 trials to generate the results, fixing the tra- ?ng to the MSE results pr(_esented in Table 1. Despite its m_in—
jectory length tal = 80 samples and the Iea;ning period to imal assumptions and prior knowledge, the proposed online
function learning approach using KRLS algorithm can offer

K = 50 samples. In our experiments we utilized basic par- . : ;
: ; ) ) ; . : . reasonably good performance compared to particle filtér wit
ticle filter configuration with sampling from prior, residua

complete knowledge.

resampling, andv = 1000 particles. We considered two val-
ues for the noise variance of the low-precision measuresnent
yi: 02 =278 x 10~*ando?2 = 2.78 x 1073. The MSE per-
formance results for these two cases are presented in Tabl&&hough the KRLS-particle filter we have described does a
1 and 2, respectively. We investigated the performanceef thgood job in compensating for unknown distortions or biases
algorithms for three different contaminating function®): in the measurement model, it has the major shortcoming that
bias in measuremenig(y) = y + 0.01, nonlinear distortion it is reliant on supervised learning, requiring a set of mea-
of polynomial typeg, (y) = 3, and nonlinear distortion of surements from a well-modelled device. Our primary goal in

7. DIscussiON AND FUTURE WORK
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Figure 3. Examples of tracking trajectories corresponding to theEM&sults presented in Table 1. Héfedenotes result of
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future work is to extend the technique to address the unsupefl3] A. Doucet, N. de Freitas, and N. GordoBequential
vised learning situation, in which KRLS and the particle=filt Monte Carlo Methods in Practice Berlin: Springer-
interact and use the same single set of measurements to learn Verlag, 2001.

the observation model and generate state estimates. Beyo['ﬂ] R. Douc, O. Cappe, and E. Moulines, “Comparison of
this, it is highly desirable to consider the situation whire resampli’ng schemes for particle filteri,ng “"Boc. Int.
measurement model is well-understood but there is no avail- Symp. on Image and Signal Proc. and Ar{alyz'agreb

able model for the object dynamics. Croatia, Sept. 2005.
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