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Abstract—Although particle filters are extremely effective al-
gorithms for object tracking, one of their limitations is a re-
liance on an accurate model for the object dynamics and ob-
servation mechanism. The limitation is circumvented to some
extent by the incorporation of parameterized models in the
filter, with simultaneous on-line learning of model parame-
ters, but frequently, identification of an appropriate paramet-
ric model is extremely difficult. This paper addresses this
problem, describing an algorithm that combines Kernel Re-
cursive Least Squares and particle filtering to learn a func-
tional approximation for the measurement mechanism whilst
generating state estimates. The paper focuses on the specific
scenario when a training period exists during which supple-
mentary measurements are available from a source that can be
accurately modelled. Simulation results indicate that thepro-
posed algorithm, which requires very little information about
the true measurement mechanism, can approach the perfor-
mance of a particle filter equipped with the correct observa-
tion model.

1. INTRODUCTION

Particle filters have proved to be an extremely effective
methodology in tracking applications, particularly when the
dynamics of the tracked object are highly non-linear or the
observations are corrupted by non-Gaussian noise. One ma-
jor shortcoming, however, is the need for a reasonably accu-
rate model both of object dynamics and observation mech-
anisms. Performance can deteriorate dramatically if an in-
correct model is applied. One approach to this issue is to
incorporate a parametric model, thereby expanding the ap-
plicability of the filter, and to learn the model parameters
online [1–7]. Successful application of these approaches re-
quires that the true model is a member, or is at least closely
approximated by a member, of the parameterized class of
models.

When there is little or noa priori knowledge about the object
dynamics or measurement mechanism, practitioners gener-
ally must resort to alternative methods that construct a model
during their operation. A powerful such method that has been
recently proposed is kernel recursive least squares (KRLS),
which migrates the familiar recursive least squares algorithm
into a kernel-space, allowing the method to capture non-linear
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dynamics [8]. KRLS uses the data to learn a dictionary of
support vectors; the model dynamics are described as a func-
tional mapping of the current state and these support vectors.
Although KRLS can be applied to non-linear tracking prob-
lems, it is not as effective as particle filtering, particularly in
noisy environments. Moreover, standard implementations of
KRLS do not account for unobserved state parameters.

In this paper we combine kernel recursive least squares and
particle filtering, addressing the “supervised learning” sce-
nario, in which we assume that there is an initial training
period during which additional measurements are available
from a measurement device with known characteristics. An
example of such a scenario arises in sensor network track-
ing, when accurate, but energy-expensive, range-finding or
global-positioning devices can be activated for a short bursts
of time to calibrate sensors. During these bursts, we ap-
ply KRLS to generate a dictionary and learn an observa-
tion model for secondary sensors. The secondary sensors are
much less accurate but also consume much less energy. Sub-
sequently, we use a particle filter based on this model that we
have learned. This approach captures the best aspects of both
algorithms — the learning power of KRLS and the robustness
of particle filters to noise and missing observations.

We demonstrate through simulations of tracking scenarios
how the combination of KRLS and particle filtering results
in superior performance to a straightforward application of
KRLS and approaches that of particle filtering when the
model is known beforehand. For concreteness, we focus on
the application of bearings-only tracking.

Related Work

The idea of online estimation of model parameters has re-
ceived much attention since the introduction by Gordon of
the sample roughening technique [9]. However, it was rec-
ognized in [6, 7] that the application of sample roughening
to static parameters of the model may (and often does) lead
to inadequate diffusion of posterior distributions and diver-
gence. Kernel smoothing of parameters, as introduced by
West [5], is used to address this problem in [7]. Recently,
a more elegant and mathematically sound solution based
on marginalization of the particle space with respect to un-
known system parameters was proposed in [6]. In an alterna-
tive approach, Roweis and Ghahramani use the Expectation-
Maximization algorithm to address uncertainty in a paramet-
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ric model [1]. In their two-step algorithm they first use an Ex-
tended Kalman Smoother to estimate the approximate state
distribution given the previous set of model parameters and
then utilize a Radial Basis Network as a nonlinear regressor
of model parameters given the approximate state estimate.
Miguez at al. [2–4] recently introduced an alternative para-
metric technique for dealing with uncertainties in the state
model. Their “Cost-Reference Particle Filter” uses a cost-
reference function to address uncertainty in the system noise
distribution. The function governing the system equation is
parameterized with respect to a set of basis functions and
the parameters of this basis representation are learned online
via the Recursive Least Squares (RLS) algorithm. In con-
trast to these approaches, we strive in this work to avoid the
introduction of a parametric model, and attempt to learn a
non-parametric kernel representation of the unknown mea-
surement function.

Outline of Paper

This paper is organized as follows. Section 2 reviews the
nonlinear state-space model we adopt and discusses parti-
cle filtering as an efficient numerical approach to recursive
Bayesian estimation. It also outlines the KRLS algorithm,
which we apply to the problem of particle filtering with un-
known observation mechanisms. Section 3 provides a con-
crete statement of the particular problem considered in this
paper, and Section 4 outlines the KRLS-particle filter, our
proposed algorithm for jointly performing function learning
and estimation (tracking). Section 5 addresses the bearings-
only tracking problem and describes how the KRLS-particle
filter can be applied in this setting. Section 6 describes sim-
ulation experiments and discusses the results. Section 7 pro-
vides concluding remarks and describes ongoing work.

2. BACKGROUND

Nonlinear State-Space Model

Many problems in signal processing may be solved by the
application of a state-space estimation framework [10]. The
state-space estimation approach is based on the following sig-
nal model:

xt = fx(xt−1) + vt (1)

yt = fy(xt) + ut (2)

wheret = 1, 2, . . . is the discrete time,xt denotes the state
vector, andyt indicates the measurement obtained at timet.
The state of the system evolves according to the stochastic
difference equation (1) characterized by the nonlinear map-
ping fx : R

x → R
x and excited by white random noisevt.

The state vectorxt is observed through the measurement vec-
tor yt, which is functionally related toxt via the function
fy : R

x → R
y and corrupted by white random noiseut.

Particle Filtering

As discussed in [11], a practical Bayesian approach to the
estimation of unobservable statext from the collection of

measurementsy1:t , {y1, . . . ,yt} available up to timet
consists in sequential construction of prediction densities

p(xt+1|y1:t) =

∫
p(xt|y1:t)p(xt+1|xt)dxt (3)

and filtering densities

p(xt+1|y1:t+1) =
p(yt+1|xt+1)p(xt+1|y1:t)

p(yt+1|y1:t)
(4)

However, closed form solutions to these recursions can be
found only for linear Gaussian models and finite state-space
representations of the Markovian model (1). In all other cases
approximate numerical methods must be used.

Monte Carloparticle filtersbelong to the class of sequential
approximation algorithms capable of solving (approximately)
the problem (3), (4) by direct numerical simulation [12]. In
this class of algorithms, the filtering distribution (4) is rep-
resented by the empirical point mass function of the particle
set

p(xt|y1:t) ≈

N∑

i=1

ωi
tδ(xt − xi

t) ,

N∑

i=1

ωi
t = 1 (5)

where δ(·) is the Dirac delta function andωi
t denotes the

weight of each particlexi
t. The particle filter is initialized

with a random sample{xi
0}

N
i=1 drawn from a known prior

distributionp(x0). Subsequent propagation of this particle
set using the equations (3), (4) yields at every time step the
approximation of state vector by a discrete statistical measure
of the form (5). Many practical approaches to the problem of
effective particle propagation have been developed duringre-
cent years (see [13,14]).

Kernel Recursive Least Squares

The Kernel Recursive Least Squares algorithm was intro-
duced in [8] and has a conceptual foundation related to Prin-
ciple Component Analysis and Support Vector Machines. In
contrast to these methods, KRLS is a fully online algorithm
designed to operate in real-time environments where data be-
come available one sample at a time. The KRLS algorithm
can be used in nonlinear regression problems, time series pre-
diction, and nonlinear adaptive filtering, but in the present
work we exploit its function learning capabilities.

In our setting, KRLS is presented with input-output pairs
(xi, yi) arising from an unknown mappingfy : R

x → R
y.

These form the sequenceVt of available data:

Vt = {(x1, y1), . . . , (xt, yt)}.

The first step in KRLS involves the choice of a positive def-
inite kernel functionk(x,x′) = 〈φ(x), φ(x′)〉, which is de-
fined as an inner product〈·, ·〉 of a possibly infinite dimen-
sional mappingφ : R

x → H that transforms the input vector
into a Hilbert feature space.
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KRLS attempts to learn an approximation to the mapping
fy(x) in the form of a weighted linear sum of the kernels
k(x,xi), where{xi}

t
i=1 are the training data points up to

time t. This approximation,

f̂y(x) =

t∑

i=1

αi k(xi,x) , (6)

is trained using the standard recursive least squares algorithm
to minimize the squared error

L(αt) =

t∑

i=1

(
yi − f̂y(xi)

)2

. (7)

In order to reduce the number of adjustable parameters in (6),
KRLS employs a form ofonline constructive sparsification.
The sparsification methodology only permits the addition of
a training sample into the approximation (6) if it is approxi-
mately linearly independent of the preceding training samples
(in the feature space). The input vectors that are included in
the approximation form adictionaryDt = {x̃j}

mt

j=1, which is
sequentially constructed only from the samplesxt that satisfy
anapproximate linear dependence (ALD)test

δt = min
a

∥∥∥∥∥∥

t−1∑

j=1

ajφ(x̃j) − φ(xt)

∥∥∥∥∥∥

2

≤ ν . (8)

Hereν is the dictionary inclusion threshold that determines
the accuracy of approximation (6). The coefficientsa =
(a1, . . . , amt−1)

> can be determined by solving (8):

at = K̃−1
t−1k̃t−1(xt) (9)

where[K̃t−1]i,j = k(x̃i, x̃j) and [k̃t−1(xt)]i = k(x̃i,xt).
The weightsαt = (α1, . . . , αmt−1)

> are learned by KRLS
over time through successive minimization of the approxima-
tion errors (7) in the least-squares sense.

3. PROBLEM STATEMENT

In standard particle filtering settings it is assumed that the
transition functionsfx andfy in (1) and (2) are completely
known. In some extensions the assumption is relaxed to allow
the inclusion of models with unknown parameters [1–7]. In
many practical settings, the measurement model is unknown
and even identification of a parametric model is challenging.

We consider the case where there is an initial training period,
t = 1, . . . , K, during which measurements are available ac-
cording to a known modelfz:

zt = fz(xt) + u′
t

whereu′
t is additive noise of distributionpu′ . Throughout

the learning period, but also subsequently, we have measure-
ments derived from an unknown mapping functionfy:

yt = fy(xt) + ut

whereut is additive noise ofknowndistributionpu. Our goal
is to use the measurementszt to learn an approximation to
fy that can be used to process theyt measurements after the
training period is over and form estimates of the statext.

As a special case, we can consider the scenario of bias or non-
linear distortion, in which theyt measurements are corrupted
versions of thezt measurements. In this case, the unknown
mapping function is a composition of the known mappingfz

and an unknown contaminating functiongy : R
z → R

y:

fy = gy ◦ fz . (10)

In general, we anticipate that the training measurementszt

are generated by a high-precision measurement device, so the
varianceσ2

u′ of the associated noise is much smaller thanσ2
u.

4. FUNCTION APPROXIMATION AND
FILTERING ALGORITHM

In this section we describe the KRLS-particle filter, which
combines the function approximation capabilities of KRLS
and the tracking power of particle filtering to address uncer-
tainty in the measurement model. Algorithm 1 provides a
high-level description of the algorithm. During the firstK

time steps, a standard particle filter is applied to the measure-
mentszt to form estimateŝxt. These estimates are passed to
the KRLS algorithm, which constructs a dictionary to learn an
approximationf̂y to the functionfy. After time stepK, the
resulting dictionaryD and expansion coefficientsα are deliv-
ered to the particle filter algorithm, which now processes the
yt measurements. In this second stage, the true likelihood
p(yt|xt) is not available, sopu(yt − f̂y(xt)) is used as an
approximation. We assume that the distributionpu is known.

In the special case where (10) applies and the measurements
yt are corrupted versions ofzt, KRLS is used to form an
estimate of the corrupting functiongy. This approach is
adopted because the structure ofgy is often simpler to learn
than that offy. We then approximate the likelihood as
pu(yt − ĝy(fz(xt))).

5. MULTIPLE OBSERVER BEARINGS-ONLY
TRACKING

As a clarifying example, we focus on the problem of
bearings-only tracking. We consider a scenario where eight
stationary sensors measure the bearings of a target and as-
sume that the position of each sensor is known (Figure 1).
The target movement is modeled according to a standard
model with random Gaussian acceleration:

xt = Fxt−1 + Gvt, (11)

whereF, G are transition matrices,xt is a state vector of the
target,vt is a random acceleration vector. These matrices and
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Algorithm 1: Outline of Function Approximation and Filter-
ing Algorithm

Set KRLS thresholdν;1

/* Initialize particle filter */
xi

0 ∼ pu′(x0);2

for t = 1, 2, . . ., K do3

/* High-precision measurements */
Data: zt4

/* Low-precision measurements */
Data: yt5

/* Sample from proposal */
xi

t ∼ q(xi
t−1, z1:t);6

/* Evaluate particle weights */

ω̃i
t = pu′(zt − fz(x

i
t))

p(xt|xt−1)
q(xi

t−1
,z1:t)

ωi
t−1;7

ωi
t =

ω̃i
t∑

N
i=1

ω̃i
t

;8

/* Calculate estimate of state */
x̂t = x>

t ωt;9

/* Resample */
xi

t = Resample(xi
t, ω

i
t);10

/* Run KRLS algorithm */
(Dt, αt) = KRLS(x̂t, yt,Dt−1, αt−1)11

endfor12

/* KRLS output: */
Data: (D, α)13

for t = K + 1, K + 2, . . . do14

/* Sample from proposal */
xi

t ∼ q(xi
t−1, y1:t);15

/* Evaluate particle weights */

ω̃i
t = pu(yt − f̂y(x

i
t))

p(xt|xt−1)
q(xi

t−1
,y1:t)

ωi
t−1;16

ωi
t =

ω̃i
t∑

N
i=1

ω̃i
t

;17

/* Calculate estimate of state */
x̂t = x>

t ωt;18

/* Resample */
xi

t = Resample(xi
t, ω

i
t);19

20

endfor21

vectors are of the following form:

xt =





x1,t

x2,t

vx1

t

vx2

t



 , F =





1 0 T 0
0 1 0 T

0 0 1 0
0 0 0 1



 (12)

vt =

(
vx1

t

vx2

t

)
, G =





T 2

2 0

0 T 2

2
T 0
0 T



 (13)

Observers are fixed with the state of thej-th observer being:

Rj =





rx1

j

rx2

j

0
0



 (14)
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Figure 1. Outline of experimental setup: eight stationary
observers measure the bearings of the target. Observers are
marked as� and target is marked as×.

For the firstK time stepst we record the bearings of the tar-
get. These measurements are corrupted by independent iden-
tically distributed additive white Gaussian noiseu′

t:

zt = fz(xt) + u′
t, (15)

fz(xt) =





tan−1(
x2,t−r

x2

1

x1,t−r
x1

1

)

...

tan−1(
x2,t−r

x2

j

x1,t−r
x1

j

)

...




(16)

We also have low-precision measurementsyt derived from an
unknown measurement functionfy(xt). We impose the as-
sumption that the measurementsyt are corrupted versions of
the true bearings, sofy = gy ◦ fz. Note that this assump-
tion implies that the influence of the actual coordinates on the
measurement process is solely through the bearings. For ex-
ample, according to this model, the distance from the sensor
has no effect on the nature of the measurement. The algo-
rithm described in the previous section is used to learn the
measurement functiongy on-line. For this specific case, we
utilize a Gaussian kernel with varianceσ2 within the KRLS
algorithm. At each time step, KRLS takes as input pairs
{(zj

t ,y
j
t ); j = 1, . . . , 8} and updates its dictionaryDt and

function approximation coefficientsαt. The algorithm places
no restrictions on the nature of the particle filter (importance
sampling function, resampling strategies, etc.).

6. SIMULATION RESULTS

To evaluate the performance of proposed online function
learning technique we conducted a set of simulation experi-
ments based on the bearings-only tracking problem described
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in Section 5. Matlab code implementing the algorithm is
available at [15].

−1 −0.5 0 0.5 1
−1

−0.5
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0.5

1

y

g y(y
)

Figure 2. An example of the function approximation capa-
bility of KRLS. The Functiongy(y) = y3 is learned from 50
time steps of noisy data with varianceσ2

u′ = 2.78 × 10−4.
The actual function is the solid line; the approximation is the
dashed line.

We evaluate mean square error (MSE) performance of parti-
cle filtering algorithms with and without the KRLS function
approximation step. Our comparison is based on the follow-
ing absolute MSE measure:

ε̄2 =
1

L(M − 1 − K)

L∑

i=1

M∑

t=K+1

(xt,i− x̂t,i)
2 +(yt,i− ŷt,i)

2

(17)
whereL is the number of independent trials andM is the
length of target trajectory. Three variants of particle filter
configuration are compared:

1. a particle filter with complete knowledge of both measure-
ment and contaminating functions (PF-IDEAL)
2. a particle filter with knowledge of measurement func-
tion and KRLS approximation to contaminating function (PF-
KRLS)
3. a particle filter with knowledge of measurement function
and with no knowledge of contaminating function or KRLS
approximation step (PF-UNAWARE)

We usedL = 50 trials to generate the results, fixing the tra-
jectory length toM = 80 samples and the learning period to
K = 50 samples. In our experiments we utilized basic par-
ticle filter configuration with sampling from prior, residual
resampling, andN = 1000 particles. We considered two val-
ues for the noise variance of the low-precision measurements
yt: σ2

u = 2.78× 10−4 andσ2
u = 2.78× 10−3. The MSE per-

formance results for these two cases are presented in Tables
1 and 2, respectively. We investigated the performance of the
algorithms for three different contaminating functionsg(y):
bias in measurementsgy(y) = y + 0.01, nonlinear distortion
of polynomial typegy(y) = y3, and nonlinear distortion of

Table 1. MSE performance of particle filter in three
different settings: PF-IDEAL, PF-KRLS, and

PF-UNAWARE. Variance of low-precision measurement
device isσ2

u = 2.78 × 10−4.

gy(y) y + 0.01 y3 ey

PF-IDEAL, 0.19 0.15 0.14

PF-KRLS 1.34 5.86 42.99

PF-UNAWARE 9120.90 51099.76 143510.54

Table 2. MSE performance of particle filter in three
different settings: PF-IDEAL, PF-KRLS, and

PF-UNAWARE. Variance of low-precision measurement
device isσ2

u = 2.78 × 10−3.

gy(y) y + 0.01 y3 ey

PF-IDEAL, 5.13 3.28 3.66

PF-KRLS 6.62 24.03 7.93

PF-UNAWARE 11.30 43766.17 17342.11

exponential typegy(y) = ey. Figure 3 illustrates the func-
tion approximation capability of the KRLS algorithm. With
50 samples to learn from, KRLS generates an approximation
to the actual functiongy(y) = y3 that achieves very good
accuracy almost everywhere in the region of interest.

It is clear that the particle filter algorithm is very sensitive
to variations in the measurement function. If the particle fil-
ter is unaware of even a comparatively small biasgy(y) =
y + 0.01 (which represents only 0.5% of the range of the
measurement), then its performance is very poor. The KRLS-
particle filter provides orders-of-magnitude improvementin
MSE performance compared to the particle filter with no
knowledge of the contaminating function. As expected, the
KRLS-particle filter cannot compete in performance with the
particle filter that has complete knowledge of both measure-
ment and contaminating function. Small errors in the function
approximation can induce large errors in state estimation.

Figure 2 shows examples of tracking trajectories correspond-
ing to the MSE results presented in Table 1. Despite its min-
imal assumptions and prior knowledge, the proposed online
function learning approach using KRLS algorithm can offer
reasonably good performance compared to particle filter with
complete knowledge.

7. DISCUSSION AND FUTURE WORK

Although the KRLS-particle filter we have described does a
good job in compensating for unknown distortions or biases
in the measurement model, it has the major shortcoming that
it is reliant on supervised learning, requiring a set of mea-
surements from a well-modelled device. Our primary goal in
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Figure 3. Examples of tracking trajectories corresponding to the MSE results presented in Table 1. Here� denotes result of
tracking the trajectory in PF-IDEAL scenario,× corresponds to PF-UNAWARE scenario, + denotes PF-KRLS scenario, and�
shows real trajectory of the target. Right column of figures shows zoomed versions of figures in the left column.
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future work is to extend the technique to address the unsuper-
vised learning situation, in which KRLS and the particle filter
interact and use the same single set of measurements to learn
the observation model and generate state estimates. Beyond
this, it is highly desirable to consider the situation wherethe
measurement model is well-understood but there is no avail-
able model for the object dynamics.
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