
DISTRIBUTED AVERAGE CONSENSUS WITH INCREASED CONVERGENCE RATE

Boris N. Oreshkin, Tuncer C. Aysal and Mark J. Coates

Department of Electrical and Computer Engineering, McGillUniversity

ABSTRACT

The average consensus problem in the distributed signal
processing context is addressed by linear iterative algorithms,
with asymptotic convergence to the consensus. The conver-
gence of the average consensus for an arbitrary weight matrix
satisfying the convergence conditions is unfortunately slow
restricting the use of the developed algorithms in applications.
In this paper, we propose the use of linear extrapolation meth-
ods in order to accelerate distributed linear iterations. We pro-
vide analytical and simulation results that demonstrate the va-
lidity and effectiveness of the proposed scheme. Finally, we
report simulation results showing that the generalized version
of our algorithm, when a grid search for the unknown op-
timum value of mixing parameter is used, significantly out-
performs the optimum consensus algorithm based on weight
matrix optimization.

Index Terms— distributed signal processing, average con-
sensus, linear prediction.

1. INTRODUCTION

A major drawback of the developed average consensus al-
gorithms [1–3] is the number of iterations required to con-
verge to consensus often refraining the use of them in prac-
tical scenarios. Much of the research addressing with con-
sensus algorithm acceleration has been conducted by Boyd
et. al. [1, 2]. They showed that it is possible to formulate
the problem of asymptotic convergence time minimization as
a convex semidefinite weight matrix optimization problem.
The disadvantages of this approach are twofold. First, the ap-
proach is based on a convex optimization paradigm and the
time or computational resources necessary to set up the net-
work may be substantial. Second, this approach requires the
connectivity pattern to be known in advance and thus assumes
that there is a fusion center or some distributed mechanism
that is aware of the global network topology. To combat the
second problem, iterative optimization using the subgradient
algorithm is proposed in [2]. However, the resulting algo-
rithm is extremely demanding in terms of time, computation,
and communication. Another approach to weight matrix op-
timization, called “best constant” [1], is to set the neighbor-
ing edge weights to a constant and optimize this constant to
achieve maximum possible convergence rate. The subopti-

mality of the best constant weight matrix stems from the fact
that all the edge weights are constrained to be the same.

In this paper, we propose accelerating the convergence
rate of distributed average consensus by using a convex com-
bination of the values obtained by a linear predictor and the
standard consensus operation. Unlike previous methods, we
do not burden the nodes with extra computational load since
the prediction is linear and its parameters can be calculated
offline. We present a general framework for accelerating the
consensus, but focus on a special case to gain further insight.
For this case, we derive the optimal convex combination pa-
rameter that maximizes asymptotic convergence rate. The op-
timal parameter requires knowledge of the second largest and
the smallest eigenvalues of the weight matrix. We therefore
derive suboptimal solutions that need much less information
and are easily implementable in practical scenarios. Finally,
we assess the performance of the general proposed algorithm
via simulations.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the distributed average consensus problem.
Section 3 details the proposed algorithm, along with its prop-
erties and the optimal mixing parameter for the special case.
It also specifies the achieved improvement in rate of conver-
gence, and describes practical suboptimal solutions. We re-
port the results of numerical simulations testing the proposed
algorithms in Section 4. Section 5 concludes the paper.

2. PROBLEM STATEMENT

We define a graphG = (V , E) as 2–tuple, consisting of a set
V with |V| = N vertices, where| · | denotes the cardinality,
and a setE of edges. We denote an edge between verticesi
andj as an unordered pair(i, j) ∈ E . We assume connected
network topologies and the connectivity pattern of the graph
is given by theN × N adjacency matrixΦ = [Φij], where
Φij = 1 if (i, j) ∈ E andΦij = 0 otherwise. Moreover, we
denote the neighborhood of the nodei by Ni , {j ∈ V :
(i, j) ∈ E}. The degree of the nodei is denoteddi , |Ni|.

We consider a set of nodes of a network, each with an ini-
tial real valued scalarxi(0), wherei = 1, 2, . . . , N . Let 1
denote the vector of ones. The goal is to develop a distributed
iterative algorithm that computes, at every node in the net-
work, the valuex , (N)−1

1
T
x(0). In standard distributed

consensus, at each step, each node updates its state with a

linear combination of its own state and the states at its neigh-
bors,x(t+1) = Wx(t) wherex(t) denotes the network state
vector andW is a weight matrix that is constructed to satisfy
topology constraint, that isWij = 0 wheneverΦij = 0. The
weight matrix,W, needs to satisfy the following conditions
to ensure asymptotic average consensus [1]:

W1 = 1, 1
T
W = 1

T, ρ(W − J) < 1 (1)

whereρ(·) denotes the spectral radius of a matrixρ(W) ,
maxi{|λi| : i = 1, 2, . . . , N}. Here {λi}N

i=1 denote the
eigenvalues ofW. In this paper, without loss of generality,
we assume that, in the modulus, the second largest eigenvalue
of the weight matrix isλ(2), i.e., λ(2) > |λ(N)|, whereλ(i)

denotes thei–th ranked eigenvalue.

3. PREDICTOR–BASED DISTRIBUTED AVERAGE
CONSENSUS (PBDAC)

We modify the above consensus algorithm to increase its con-
vergence speed in the following way:

xW
i (t) = wix(t − 1), xP

i (t; k) = Θ
T
zi(t), (2a)

xi(t) = αxP
i (t) + (1 − α)xW

i (t). (2b)

wherewi denotes thei–th row of W. Here the state value
xi(t) is a convex combination of the valuesxW

i (t) andxP
i (t; k),

i.e., α ∈ (0, 1). Note thatxW(t) results from the standard
consensus procedure. Moreover,xP

i (t) ≡ xP
i (t; k) is a k–

step prediction of future node states obtained fromM previ-
ous local node states stacked into the vectorzi(t) = [xi(t −
M + 1), . . . , xi(t − 1), xW

i (t)]T . It is shown that using lin-
ear least squares techniques that optimum predictor weights
can be expressed asΘ = A

†T
t
P,k, whereA† is the Moore-

Penrose pseudoinverse ofA, andA andtP,k have the follow-
ing form [4],

A ,

[

1 · · · 1 1
1 · · · M − 1 M

]T

t
P,k ,

[

M + k
1

]

(3)

Notice from (2a) thatxP
i (t) is a linear combination ofM

previous local consensus values. Thus the consensus acceler-
ation mechanism outlined in equations (2a–2b) is fully local if
it is possible to find the optimum value ofα in (2b) that with-
out global knowledge. The parameters inΘ can be calculated
offline for anyM, k pair.

In the general case, the analysis of the proposed algorithm
is complicated (we assess the performance of the algorithm
at its most general case and at its full potential with simula-
tions in Section 4). In order to gain further insight into the
algorithm’s performance we analyze an important case when
the algorithm (2) is based on one step extrapolator of node
state operating on two previous node states,i.e., k = 1 and
M = 2. In this caseΘ = [−1, 2]T hencexP

i (t) is expressed
as follows:

xP
i (t) = 2xW

i (t) − xi(t − 1). (4)

Substituting (4) into (2b) we get the following expression for
x(t) in matrix form as:

x(t) = W[α]x(t − 1) (5)

whereW[α] is the weight matrix modified by the proposed
predictor based distributed average consensus (PBDAC) al-
gorithm:

W[α] , (1 + α)W − αI. (6)

The following proposition describes some properties ofW[α].
Proofs are omitted due to space constraints but can be found
in [4].

Proposition 1 SupposeW satisfies the necessary conditions
for the convergence of the standard consensus algorithm. More-
over, letλ(1) ≥ λ(2) ≥ . . . ≥ λ(N) denote the eigenvalues
associated with eigenvectorsu1,u2, . . . ,uN and letλ(i)[α]
denote the ranked eigenvalues ofW[α].

(i) If λ(N) ≥ 0, thenW[α] satisfies the required conver-
gence conditions for allα. If λ(N) < 0, thenW[α] is a
doubly stochastic matrix. Moreover,ρ(W − J) < 1 if

α < (1 − λ(N))
−1(1 + λ(N)). (7)

(ii) W[α] has the same eigenvectors and its eigenvalues
are related to the eigenvalues ofW via the relation-
ship:

λ(i)[α] = (1 + α)λ(i) − α (8)

for anyα andi.

In the following, we consider optimization ofα to maxi-
mize the asymptotic (worst–case) rate of convergence for al-
gorithmic structure (2) and theM = 2, k = 1 case.

Theorem 1 PBDAC withM = 2 andk = 1 has the fastest
asymptotic worst–case convergence rate if

α = α∗ , argmin
α

ρ(W[α] − J) =
λ(N) + λ(2)

2 − λ(N) − λ(2)
. (9)

To see to what extent the proposed algorithm (2) yields
performance improvement over the conventional consensus,
we consider the ratio of the spectral radius of corresponding
matrices that gives the lower bound on performance improve-
mentγ[α] , ρ(W − J)/ρ(W[α] − J).

Proposition 2 In the optimal case,i.e., whenα = α∗, the
performance improvement factor is given by

γ[α∗] =
λ(2)(2 − λ(2) − λ(N))

λ(2) − λ(N)
. (10)

Although (9) provides an expression for optimum mix-
ing factor resulting in fastest asymptotic convergence rate, the
calculation of this optimum value requires knowledge of the
second and the last eigenvalues of matrixW. Therefore it is
of interest to derive suboptimum choices forα that result in
less performance gain but require considerably less informa-
tion at the node level.

Proposition 3 The PBDAC has asymptotic worst-case con-
vergence rate faster than that of conventional consensus ifthe
value of mixing parameter satisfies:0 < α ≤ α∗.

To ensure thatγ[α] > 1, and remove the need of weight
matrix information, we proceed to derive bounds onα∗ satis-
fying the range defined by Proposition 3. The mentioned con-
straints indicate thatα∗ needs to be lower–bounded, which
implies that we need to derive a lower bound forλ(2) + λ(N).

Proposition 4 If W satisfies the convergence conditions and
its eigenspectrum is a convex function of the eigenvalue index
thenλ(2) + λ(N) ≥ ξ, where

ξ ,
2(tr(W) − 1)

(N − 1)
(11)

andtr(·) denotes the trace of its argument.

Proposition 4 provides an upper bound for the mixing pa-
rameterα in terms of the trace of weight matrixW:

α ≤
ξ

2 − ξ
, Λ(ξ). (12)

Centralized calculation oftr(W) is a far less complicated op-
eration than computing eigenvalues to find the optimum mix-
ing parameter. Moreover, it can be calculated in a distributed
fashion. However, the convexity assumption appears to be
strong and unnecessary in many cases and the upper bound
still requires knowledge of the diagonal elements ofW.

We now consider the special, but important, case of ran-
dom geometric graphs, which can act as good topological
models of wireless sensor networks, one of the promising ap-
plication domains for consensus algorithms. For this case,
we show that there exists an asymptotic upperboundΛ∞(ξ)
for α that can be calculated off–line. The random geometric
graph is defined as follows:N nodes (vertices) are distributed
in an areaD according to a point process with known spatial
distributionpx,y(x, y). Two nodesi andj are connected, i.e.
Φij = 1, if the Euclidean distanceri,j between them is less
then some predefined connectivity radiusrc. The indicator
functionI{r2

i,j ≤ r2
c} = 1 wheneverr2

i,j ≤ r2
c holds.

We consider weight matricesW constructing according
to a rule of the following form:

Wij =

{

I{r2
i,j ≤ r2

c}L(di, dj), i 6= j
1 −

∑

j∈Ni
Wij , i = j

(13)

whereL(di, dj) is some function of the local connectivity de-
greesdi anddj of nodesi andj. For such a graph and weight
matrix, the following proposition provides an asymptotic up-
per bound on the value of mixing parameterα in terms of the
expectation ofI{r2

i,j ≤ r2
c}L(di, dj) for the popular Max–

degree weights [1].

Proposition 5 Consider the Max–degree weight design scheme
whereL(di, dj) , N−1 for (i, j) ∈ E andWii = 1−Ni/N ,
then, we have

ξ∞ , lim
N→∞

ξ
a.s.
−→

N→∞
2(1 − E{ζ}) = 2(1 − p) (14)

whereE{ζ} = p is the probability that two nodes in the net-
work are connected.

The valuep can be analytically derived for a given con-
nectivity radius and distribution of the nodes [4]. Substituting
this into (12) gives

α ≤
1 − p

p
. (15)

This provides an intuition indicating that, for highly (sparsely)
connected graphs,i.e., large (small)p, a small (large)α is fa-
vored. In turn, a small (large)α implies more (less) weight is
associated with the predictor output.

4. NUMERICAL EXAMPLES

We consider a set ofN = 50 nodes uniformly distributed
on the unit square. The nodes establish bidirectional linksto
each other if the Euclidean distance between them is smaller
than the connectivity radius,

√

log N/N . Initial node mea-
surements are generated asx = θ + n whereθ = 1 and
n is Gaussian distributed withσ = 1. Then, we regular-
ize the data such thatx = 1. First of all, we compare the
convergence time results of the algorithm we propose for the
theoretically analyzedM = 2 andk = 1 case, against the
algorithms presented in [1, 2]. Let us introduce the following
notation: MD and MH are the standard consensus algorithms
based on maximum degree and Metropolis–Hastings weight
matrices [1,2], respectively; OPT is the optimum and BC the
best constant algorithm from [1,2]; MD–OM , MD–SM , and
MD–SAM denote the PBDAC using the maximum degree
weight matrix and optimumα, suboptimumα chosen accord-
ing to the trace bound (12), and suboptimumα chosen ac-
cording to the asymptotic bound (15), respectively; MH–OM
and MH–SM denote the PBDAC using Metropolis–Hastings
weight matrix, optimumα and suboptimumα chosen accord-
ing to trace bound (12), respectively. In this notationM is an
integer number showing how many past samples are used in
the predictor.

Figure 1 compares the convergence times of the algorithms.
Here the algorithm (2) is simulated for the case that was an-
alyzed analytically in Section 3,i.e., M = 2 andk = 1. It
is clear from Fig. 1 that although our algorithm is extremely
simple and does not require any global optimization, it per-
forms almost as well as the optimum algorithm from [1, 2].
It outperforms the best constant algorithm when used in con-
junction with the Metropolis–Hastings weight matrix. When
Max–degree is utilized in the proposed algorithm, its asymp-
totic convergence time is very similar to that of the optimized

10 20 30 40 50
10

1

10
2

 N

A
sy

m
pt

ot
ic

 c
on

ve
rg

en
ce

 ti
m

e

MD
MD−O2
MD−S2
MD−SA2
OPT
BC
MH
MH−O2
MH−S2

Fig. 1. Asymptotic convergence time for, MD:△, MD–O2:
+, MD–S2: ×, MD–SA2: ◦, BC: ♦, OPT:�, MH: ⋆, MH–
O2: ⊳, MH–S2:⊲.

best constant approach from [2]. Moreover, the solution ob-
tained using Proposition 5 performs similarly to the subopti-
mal solution derived using knowledge of the trace ofW.

Figure 2 shows the evolution with iteration of the mean-
squared error (MSE)

MSE(t) =
1

N

N
∑

i=1

(xi(t) − x)2 (16)

for PBDAC and (optimized) standard consensus algorithms.
The PBDAC approaches employ Metropolis–Hastings weight
matrices. The intent is to depict the potential of PBDAC, so
in order to obtain the results for our algorithm whenM = 3
andk = 1 we used a0.1 grid for the unknown parameterα
and evaluated the MSE of our algorithm at every value ofα
during each of the trials. For each trial, we selected theα
that achieved the minimum MSE at iteration50. The results
are ensemble average of 500 trials. We draw two conclusions
from Fig. 2: (i) the performance of our algorithm withM = 2
andk = 1 is very close to the optimum in terms of step-wise
MSE decay; and (ii) our algorithm withM = 3 andk = 1
has the potential to significantly outperform the worst–case
optimum algorithm [1, 2] in terms of step-wise MSE decay.
The performance depicted in Fig. 2 is not currently attainable
for the M = 3 case, because we do not have a method for
identifying the optimumα. However, the results underline the
enormous potential for improvement if an optimum mixing
parameter for the caseM = 3 can be specified analytically.

We have also conducted simulations evaluating the per-
formance of the algorithm for varyingM ∈ {2, 3, . . . , 6} and
k ∈ {1, 2, 3}. The best results are obtained for the case shown
here,i.e., M = 3 andk = 1. Varyingk has little effect on the
proposed algorithm’s performance. The results, not depicted
here, can be found in [4].

20 40 60 80 100

−70

−60

−50

−40

−30

−20

−10

Time step

M
S

E
, d

B

MH
MH−O2
MH−S2
MH−O3
OPT
BC

Fig. 2. MSE versus time step for, MH:△, MH–O2: +, MH–
S2:×, MH–O3: ⊲, BC: ♦, and OPT:�.

5. CONCLUDING REMARKS

We have presented a general, predictor–based framework to
improve the rate of convergence of distributed average con-
sensus algorithms. In contrast to previous acceleration ap-
proaches, the proposed algorithm is simple, fully linear, and
parameters can be calculated offline. To gain further insight
into the proposed algorithm, we focused on a special case,
presenting theoretical and simulation results. In its mostsim-
ple case, the proposed algorithm outperforms the optimal best
constant algorithm from [1] and performs almost as well as
the worst–case–optimal design algorithm of [2]. Simulation
studies shows that the proposed algorithm has the potentialto
outperform significantly the worst–case–optimal algorithm,
but in order for this potential to be realized, we must devise
a scheme for specifying an optimal (or close-to-optimal)α
value for the caseM > 2, and this is the subject of our cur-
rent research efforts.

6. REFERENCES

[1] L. Xiao and S. Boyd, “Fast linear iterations for distributed
averaging.”Systems and Control Letters, vol. 53, no. 1,
pp. 65–78, Sep. 2004.

[2] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Ran-
domized gossip algorithms.”IEEE Trans. Inf. Theory,
vol. 52, no. 6, pp. 2508–2530, Jun. 2006.

[3] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Dis-
tributed sensor fusion using dynamic consensus,” inPro-
ceedings of the 16th IFAC World Congress, 2005.

[4] T. C. Aysal, B. N. Oreshkin, and M. J. Coates,
“Accelerated distributed average consensus via
localized node state prediction,” ECE Dept.,
McGill University, Tech. Rep., Oct. 2007,
www.tsp.ece.mcgill.ca/Networks/Publications.html.

