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ABSTRACT 

We studied a class of Service Overlay Network (SON) capacity 

allocation problem with Grade of Service (GoS) constraints. 

Similar problems in the literature are typically formulated as 

either a Maximum Profit (MP) optimization problem or a 

Minimum Cost (MC) optimization problem. In this article we 

investigate the relationship between the MP and MC formulations.  

When the service charges are zero, the MP and MC formulations 

are obviously equivalent. By using the set of Lagrange multipliers 

from the MC formulation as a tool, we investigate the extent that 

this equivalence holds with respect to the service charges. The 

same set of multipliers also acts as thresholds for service charges 

so that the SON operator will be happy to provide adequate 

service level even if he/she is not obligated to do so. A key 

contribution of this paper is the provision of insight into the 

solution nature of the MP and the MC formulations under 

different service charge parameters, thereby giving guidelines to 

the proper formulation should be chosen. The second contribution 

is the use of the Lagrange multipliers in providing pricing 

information to the network operators.  
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1. INTRODUCTION 
It is not uncommon that in formulating network design problems, 

one may be confronted with the choice of choosing whether to 

minimize the investment or to maximize the profit from the 

network. While this choice of the criterion of optimization could 

have profound influence on the final solution obtained, we note 

that in the literature the choices are usually made in a somewhat 

undisclosed manner without giving the detailed background 

rationale to the readers. A natural question is: Since the MC and 

MP formulations optimize different objectives, how do their 

solutions compare? Or to be specific, for a given set of parameters, 

which formulation should be picked and how do the solutions 

compare. This paper addresses the objective function choice 

problem faced by the operator for a class of Service Overlay 

Network (SON) capacity allocation problems. We identify the 

region such that Maximum Profit (MP) and Minimum Cost (MC) 

formulations offer the same solution. We also identify the region 

such that MP gives different solutions than the MC formulation. It 

is shown that the set of Lagrange multipliers from the MC 

formulation plays an important role in separating the aforesaid 

regions. When the service charges are lower than the set of 

multipliers, the MC and MP formulations will give the same 

solution. When the service charges are higher than the multipliers, 

the solutions will be different. The same set of Lagrange 

multipliers also acts as thresholds for the service charges so that 

the SON operator would provide adequate service levels under the 

MP formulation. All these observations will be elaborated shortly. 

This paper is structured as follows: section 2 is the description of 

the problem assumptions and the employed analytic models, 

section 3 discusses the major results, section 4 shows the relation 

between this study and the pricing of services with GoS 

guarantees, a simple example illustrating the obtained results will 

be provided in section 5, and section 6 is the conclusion section 

that discusses the results obtained and possible future extensions. 

2. PROBLEM DESCRIPTION 
The SON network operates in a manner similar to a virtual 

network. The SON operator owns the SON gateways which are 

placed in strategic locations. To realize the SON network, the 

SON operator leases bandwidths with QoS guarantees from the 

underlying Autonomous Systems, (ASes) in the form of Service 

Level Agreements (SLAs). The leased bandwidths provide logical 

connections to the overlay network. Once the bandwidths are in 

place, the SON is realized and is ready to offer end-to-end QoS 

guarantees for the value-added services it provides (i.e. VoIP, 

Video On Demand services, etc). Users with access to the Internet 

can access the service gateways and use the value-added services. 

The SON connections are classified by the source and the 

destination gateways. Users pay the service charge based on the 

sources and destinations of their connections as well as their 

connection durations. To deploy a SON, a major challenge faced 

by the SON operator would be the optimal amount of bandwidth 

to be leased on each of the logical links. The allocated bandwidths 

should provide the operator with maximum economic benefit yet 

meet the user expectation regarding the connection acceptance 

ratio.  This acceptance ratio is also known as the Grade of Service 

requirements (GoS) which are usually represented in the form of 

connection blocking probabilities. The problem confronting the 

SON operator is: given a set of SON gateways, decide the optimal 

bandwidths to be leased on the logical links when the traffic 

intensities and the gateway locations are known, and the service 

charges as well as GoS requirements are given. 
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The maximum profit formulation of this problem is given by the 

expression in (1).  

(1 ) ( )

0 (1)
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ij ij
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Where λ
ij is the poissonian connection arrival rate for the node 

pair ij (i.e. source node is i, destination node is j), wij is the 

expected reward generated by an admitted ij connection, both λij 

and wij are assumed to be given parameters. The variable Bij is the 

blocking probability for traffic pairs ij, which is a value returned 

by the routing layer. The GoS constraint for each OD pair ij is 

given by ij
L  which specifies the maximum allowed connection 

blocking probability, it is assumed that the Erlang B equation is 

employed to quantify the blocking probabilities. The capacity of a 

link s is denoted by Ns and it is a decision variable of this problem. 

The function Cs(.) is the cost function that quantifies the cost rate 

of allocating Ns units of capacities on link s and it is assumed to 

be a linear function of the variable Ns. The variables uij and zs are 

the Lagrange multipliers with respect to the constraints. The 

minimum cost formulation of the same problem is given by (2). 
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It is important to mention that the blocking variable Bij donates 

the theoretical blocking probabilities of the OD pair ij and these 

probabilities are dependent on the routing scheme employed and 

its performance model. For the same network configuration (same 

allocated capacities), different routing schemes may give different 

Bij values. A routing scheme that utilizes the network resources 

efficiently may return lower Bij values than a simple and primitive 

routing scheme even with the same set of allocated capacities.  

3. THE MP AND MC FORMULATIONS 

3.1 The Equivalence of MP and MC 

Formulations 
From (1) and (2) the Maximum Profit (MP) and the Minimum 

Cost (MC) formulations are identical if the wij’s are all zero. 

Intuitively when the wij ’s gradually increase, the cost would still 

dominate the objective until a threshold is hit. In other words, the 

MP and MC formulations should be equivalent when the wij’s are 

smaller than some thresholds. In this section we formally 

investigate this and show the conditions that the MP and MC 

formulations are equivalent. The results rely on the non-negative 

nature of a set of multipliers. The strictly convex property of the 

Erlang B equation is also employed to make the proof clearer. 

Only the results for the cases where the MC formulation has a 

unique solution are shown, and this is assumed throughout the 

whole article. The results for the multiple-solution cases will be 

included in an extended version of the paper. 

 

Before showing the main result, we need to prove a lemma that 

establishes the uniqueness of the allocated capacity with respect to 

the cost, a set of real values vij (which mimic the Lagrange 

multipliers corresponding to the GoS constraints) and the link 

traffic intensity (i.e. offered traffic intensity)  vector Λ. 

 

Lemma 1: 

For positive constants vij, cs, and fixed Λ, there exists at most one 

Ns on the link s that satisfies the following equation: 

( ) (3)
s

ij

s ij

ij s

B
c v

Nθ∈

∂
= −

∂
∑

 

Where 
s

θ  is a set containing the indexes of all Origin-Destination 

pairs that have link s in their routes, Ns is the capacity of link s 

and it is relaxed to be a continuous variable, cs is the cost of 

allocating one unit of capacity on link s, vij are some positive real 

numbers, Λ is the vector of traffic intensities on the links as 

designated by some optimal routing rules. 

 

Proof: 

Assume the continuous extension of Erlang B equation suggested 

in [1] is being employed. Bij can be written as (4), where Rij is a 

set that contains all the links being used by the routes of traffic ij, 

the functions f1
ij(.) and f2

ij(.) are to characterize the blocking of 

traffic ij due to links other than link s in the routes, therefore they 

are both non-negative. The function Es(.) is the Erlang B equation 

that quantifies the blocking due to lack of resource on link s. The 

values λs are the elements of Λ which denotes the offered traffic 

intensity on link s. The idea for (4) is that the blocking probability 

of the traffic pair ij involves terms that are independent of link s 

and also terms that are dependent on link s.  This idea is rather 

general and the expression (4) is valid for various routing schemes 

like the alternate routing scheme [3], [4], the load sharing routing 

scheme [5],  and extended versions of  the load sharing/alternate 

routing schemes [6]. Note that for expression (4) to be valid, the 

condition s∈Rij is needed. If this condition is not satisfied, (4) can 

be still employed but f2
ij(.) becomes zero.. 

1 ' ' 2 ' '

' ' ' '
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By substituting (4) into (3) and by assuming link independence 

we have: 

 

2 ' '

' '
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Since the functions f2
ij(.) are independent of Ns and λs, they can be 

regarded as a non-negative constant functions with values in the 

interval (0,1], note that 0 is not included since ij∈θs. Denote 
( , )

( )s s s

s

E N

N

λ−∂

∂

 by 
3
( , )

s s
f Nλ . It is known that the continuous Erlang B 

formula is a C∞ function [2], which is strictly convex in the 

capacity [1]. Therefore for a fixed λs, the function f3(.) is strictly 

decreasing and continuous in Ns, and there is an one-to-one 

correspondence between the function’s value and Ns for the fixed 

λs. Moreover it can be seen that f3(.) is positive (since when Ns is 

increased by delta, the function -Es(.) always increases if λs is 

fixed ), so for positive constants vij, cs, and fixed offered traffic 

intensity λs on the link, there is a unique Ns that satisfies equation 

(5). There are two special cases for expression (5), first if the LHS 
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of (5) is larger than
3

max( ( , ))
s

s s
N

f Nλ  then Ns does not exist, second 

if the cost cs equals to zero (which is unlikely), then Ns  equals 

infinity.  Q.E.D. 

 

Expression (3) together with the complementary slackness and the 

non-negativity requirement of the multipliers correspond to the 1st 

order necessary conditions of the MC formulation. The physical 

interpretation of lemma 1 is that when the link traffic intensities 

are fixed, then for each set of cs and vij, there is at most one Ns 

value that solves (3) and thereby satisfying the 1st order necessary 

conditions. The result implies that we may write Ns as Ns(cs, vij, Λ). 

This lemma provides a tool for us to show the conditions such that 

the MC and MP formulations are equivalent. The proof of the 

following theorem relies on the non-negativity nature of the 

multipliers corresponding to the GoS.  

 

Theorem 1 (relationship between the minimum cost and maximum 

profit formulation): 

Consider a maximum profit formulation (1) and a minimum cost 

formulation (2) of the SON capacity allocation problem. If a set of 

Lagrange multipliers
*

ijv  exists for (2), and if the connection 

rewards
ij

w satisfy condition (6), then an optimal solution to (2) is 

also an optimal solution to (1). Further if there is a unique set of 
*

ijv  for (2), then (1) and (2) are equivalent.  

*

0 (6)
ijij

ij

v
w ij

λ
≤ ≤ ∀

 

 

Proof: 

The stationary conditions for (1) and (2) are listed in (7) and (8) 

respectively, where 
s

c  is a constant cost for allocation a unit 

bandwidth on link s. Note that (7) and (8) both represent n sets of 

equations where n equals to the number of links in the network. 

Again 
s

θ  in (7) and (8) is a set that contains the indexes of all OD 

*

* *
( )( ) (7)

( )
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ijij ij

s ij p p
ij s

B
c w u

Nθ

λ
∈

−∂
= +

∂ Λ
∑

*

* *
( ) (8)

( )
s

ij

s ij c c
ij s

B
c v

Nθ∈

−∂
=

∂ Λ
∑

pairs that consist of link s in their routes. Note that the 

capacities *c

s
N  and *p

s
N  are represented as functions of the link 

traffic intensities to explicitly indicate the dependence on the 

solution of the routing layer. Suppose *

ij
v  are the Lagrange 

multipliers at optimality for (2). It is easy to see that if (6) is 

satisfied, letting * * 0ij ij

ij ij
u v wλ= − ≥  for all the OD pairs ij in all 

the n equations of (7) would make the values 
*( )

s

ij ij

ij

ij

w u
θ

λ
∈

+∑  equal to *

s

ij

ij

v
θ∈

∑  for all the n equations. If (6) 

is not satisfied, this will not be always possible since *

iju  must be 

non-negative for all ij. Assume a vector of link intensities *

1

c
Λ  is 

designated by some optimal routing rules, and suppose the tuple 

( *

1

c
Λ , * *

1( )c c
N Λ ) is a solution that satisfies (8) and also the 

complementary slackness conditions. Then it is obvious from 

lemma 1 that the solution ( *

1

c
Λ , * *

1( )c c
N Λ ) is unique for the *

1

c
Λ . 

Now if we substitute the solution along with the *

iju into (7), the 

solution should satisfy (7) if it satisfies (8), this is because 

that *( )ij ij

ijw uλ + = *

ij
v  for all ij, and also because that the 

expression 
* *
( )

ij

s

B

N

−∂

∂ Λ

 depends only on *
Λ and * *( )N Λ . The 

complementary slackness conditions are also satisfied since the 

constraints of (1) and (2) are identical. In other words, when (6) is 

satisfied, a solution that satisfies the first order necessarily 

condition of the formulation (2) must also satisfy the 1st order 

necessarily condition of the formulation (1). With the same set of 
*

ij
u  (i.e. * * ij ij

ij ij
u v wλ= − ), the second order sufficient condition 

check is trivial, because the Hessian matrices of the corresponding 

Lagrangian duals are identical. If the solution ( *

1

c
Λ , * *

1( )c c
N Λ ) 

satisfies the 2nd order sufficient conditions of formulation (2) then 

it must also satisfy the sufficient conditions of formulation (1). 

Therefore we have shown that the optimal solution of MC is also 

an optimal solution of MP.  Further to this, if the set of *

ijv  is 

unique and condition (6) is satisfied, then formulations (1) and (2) 

are equivalent. This can be proved by contradiction. If there exists 

another set of multipliers *

ijx  such that * * *( )ij ij

ij ij ijw x y vλ + = ≠  

for the formulation (1), where * 0ijx ≥  and * 0ijv ≥ . Suppose for 

any optimal solution ( *

2

c
Λ , * *

2( )c c
N Λ ) that corresponds to 

*

ij
x  and 

satisfies both the necessary and sufficient conditions of the 

formulation (1).  It is obvious that the multipliers * *( )ij ij

ij ij
y w xλ= +  

along with ( *

2

c
Λ , * *

2( )c c
N Λ ) satisfy (8). Moreover this solution 

must also satisfy the second order necessarily conditions of (2) as 

long as it satisfies these conditions for (1), since formulations (1) 

and (2) have the identical first order and second order optimality 

conditions. That implies *

ijy  is also a set of multipliers for (2). 

This contradicts with the claim that (2) has a unique set of 

multipliers. Therefore if (6) holds and the set of multipliers *

ij
v  is 

unique for (2), then (1) also have a unique set of multipliers *

iju  

such that * *( )ij ij

ij ij
w u vλ + = . And this shows the equivalence of 

the MP and the MC formulations.  Q.E.D. 

 

For the discussions in this article, the vector *
Λ   is assumed to be 

unique with respect to a given set of multipliers. Yet this 

requirement is not needed for the above proof to be valid (but 

then we may have multiple optimal solutions even if the set of 

multipliers is unique). Assume there exists a unique set of 

multipliers for the MC formulation and the corresponding *
Λ  is 

unique; the above theorem indicates that if the service charges are 

lower than some values (i.e. condition (6)), the MC and the MP 

formulations both give the same solution to the capacity allocation 

problem.  In other words, if the service charges are lower than a 

set of thresholds, formulating the SON capacity allocation 

problem as either the MC or the MP problem does not matter as 

this is the region such that MC and MP are equivalent. A question 
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one may ask is: what if the service charges are higher than the 

thresholds? The result for the question is presented in section 3.2. 

3.2 The MP and MC Formulations as 

Differentiated by the Service Charges 
If condition (9) holds for the service charges wij, then we shall 

show in this section that the MP formulation provides solution 

with strictly better performance than the MC formulation in terms 

of profit generation. Although some of the results obtained may 

look somewhat trivial, the formal investigation of the problem 

provides us with valuable insight into the relationship between the 

service charges and GoS guarantees which will be discussed in the 

section 4.  

*

0 (9)
ij ij

ij

v
w ij

λ
≤ < ∀

 

Note that though conditions (6) and (9) are somewhat 

complementary, they are in fact rather loose as there are “grey 

regions” which are not covered. These “grey regions” are the 

regions where 
*

0
ijij

ij

v
w

λ
≤ <  for some ij, and 

*

0
ij ij

ij

v
w

λ
≤ ≤  for 

the remaining ij. To tackle these regions, the study will involve 

the comparisons of the terms 1 ( )
s

ij ij

s

ij

R w
θ

λ
∈

= ∑
 and 2 *

s

s ij

ij

R v
θ∈

= ∑
. 

Our results indicate that if there exists at least one 1

sR  that is larger 

than 2

sR   for some link s, then the MP formulation will give 

solution that generates more profit, otherwise the MP and MC 

formulations gives solutions that generates the same profit. The 

detailed analysis of these cases requires more careful treatment 

which needs significantly more space, these results will be 

included in a future paper as mentioned earlier. The result 

provided here is a simplified version based on the condition (9). 

Before we present the main results, again we first need a lemma. 

This lemma establishes the relation between the optimal capacities 

allocated and the magnitude of service charges. 

 

Lemma 2: 

Consider equation (10), where cs is a positive constant. Assume 

that the link traffic intensities, *
Λ , are fixed. If v1, v2 are two 

vectors whose elements are indexed by ij (i.e. v1=[ 1

ijv ]T, v2=[ 2

ijv ]T), 

then if 1

ijv > 2

ijv > 0  for all ij, and
1

v

s
N and

2
v

s
N  both exist then we 

have
1

v

s
N >

2
v

s
N , where 

1
v

s
N  and 

2
v

s
N  are the values of Ns

v in (10) 

that correspond to the vectors v1and v2 respectively. 
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Proof: 

Substituting (4) into (10) we have:  
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From the proof of lemma 1, It is known that ( , )v

s s

v
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 is strictly 

decreasing and continuous for fixed λs, moreover it is also known 

that f2
ij(.) are non-negative constant functions with respect to y

sN . 

So the expression 
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continuous and strictly decreasing in v

sN . As a result for a 

constant cs, the larger the function
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 will be required to satisfy the 

equality condition of expression (11), this therefore requires a 

larger v

sN value. It is easy to see that if 1

ijv > 2

ijv  > 0 for all ij, the 

function 1
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, so if

1
v

s
N  and

2
v

s
N both exist then 

1
v

s
N > 2

v

s
N . Q.E.D. 

 

With lemma 2, we can now continue with our main theorem of 

this section. 

 

Theorem 2: 

Assume the link traffic intensities at optimality, *
Λ , are the same 

for the MC and MP formulations. When condition (9) holds, the 

MP formulation delivers solution with strictly better performance 

than the MC formulation in terms of profit. 

 

Proof: 

Note that when condition (9) holds, 
*

iju  in (7) are all zero at 

optimality, this is due to the theorem 3 in section 4 and the 

complementary slackness condition. Now expression (7) can be 

written as (12) 

*
( )( ) (12)

s

ijij ij

s p
ij s

B
c w

Nθ

λ
∈

−∂
=

∂
∑

 

From the expressions (8) and (12) and also lemma 2, it is easy to 

verify that when condition (9) holds the optimal capacity allocated 

by MP is strictly larger than that of MC on all links. To show the 

profit generated by the solution of MP formulation is strictly 

larger if condition (9) holds, we rewrite (9) as 
*

*0
ij ij

ijij

v
x w

λ
≤ + =

, 

where * 0
ij

x >  for all ij. We substitute this into (12) and rearrange 

the terms we have (13) 

* *

* *
( )( ) ( )( ) (13)

s s

ij ijij

s ij ijp p
ij ijs s

B B
c v x

N Nθ θ

λ
∈ ∈

−∂ −∂
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∂ ∂
∑ ∑

we substitute the optimal solution of MC (i.e. *c
N ) into the RHS 

of (13) and we get (14), 
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* *

* *
( )( ) ( )( ) (14)

s s

ij ijij

ij ijc c
ij ijs s

B B
v x

N Nθ θ

λ
∈ ∈

−∂ −∂
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expression (14) denotes the marginal profit from the link s at the 

allocated capacity of *c
N , and it can be further modified to (15)  

*

*
( )( ) (15)

s

ijij

s ij c
ij s

B
c x

Nθ

λ
∈

−∂
+

∂
∑

 

from the proof of lemma 1, we know that the 2nd term of the 

expression (15) is strictly positive, therefore expression (15) 

suggests that at the optimality of MC formulation (i.e. *c
N ), 

marginal reward is larger than marginal cost on the links, which 

implies that additional profit can be generated if extra capacities 

are allocated. Therefore when (9) holds, the MP formulation 

provides strictly better performance in terms of profit generation. 

Q.E.D. 

 

The result of theorem 2 is somewhat trivial, because after all, the 

MP formulation is to maximize the profit, but from the analysis in 

theorem 2, we can gain the addition insight that the solutions of 

the MC formulation offer worse profit than that of the MP 

formulation because the MC formulation merely allocates the 

minimum amount of capacities to satisfy the GoS requirements. 

Additional profit that could have been gained from the high 

reward connections is lost.  The main conclusion from sub-

sections 3.1 and 3.2 is that the MP formulation offers no worse 

performance than the MC formulation in all scenarios; when 

rewards are low and the costs are the major concern, the MP 

formulation minimizes the cost, when the rewards are high 

enough, the MP formulation switch to maximize the profit. 

Therefore it is sensible to design the SON network using the MP 

formulation. If the MP formulation is chosen, it can be further 

shown that the multipliers *

ij
v  in (9) act as a set of threshold prices 

for the service so that the operator would be happy to deliver 

adequate level of GoS even if he is not constrained to do so. We 

shall elaborate this in the following section. 

 

4. THE PRICE OF OFFERING GOS: AN 

OPERATOR’S PERSPECTIVE 
In this section we assume that the SON operator regards the profit 

as the primary metric for the network performance. The following 

theorem formally shows that the multipliers *

ij
v  act as a form of 

threshold for service charges in the MP formulation.  

 

Theorem 3: 

Assume that OD-pair blocking probabilities are strictly decreasing 

functions of allocated capacities. If (9) holds then the solution of 

MP formulation will deliver lower blockings than that of the MC 

formulation. Moreover all the GoS constraints in (1) will be non-

binding at optimality, and the optimal solution for (1) will be the 

same as its unconstrained counterpart.  

 

Proof: 

if (9) holds then
*( )

s s

ij ij

ij

ij ij

w v
θ θ

λ
∈ ∈

>∑ ∑
, by lemma 2, we have *p

N > *cN ,     

where *pN  is the capacity vector that satisfy (7). Since 

*p
N > *c

N , the GoS offered by *p
N  must be better than that 

being offered by *c
N . It is known that all the GoS constraints are 

satisfied by the allocation *cN , so it must be satisfied by *p
N . 

Since all the GoS requirements are satisfied at the optimal 

solution of (1) without the need of having the GoS constraints if 

(9) holds, so the solution of (1) remains the same even if all the 

GoS constraints are relaxed. Q.E.D. 

 

Assume that the MC formulation has a unique set of multipliers
*

ijv . 

For the sake of discussion we define a set of threshold values 
ij

w%  

in (16): 

*
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ijij

ij

v
w

λ
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If the service charges wij are less than the ijw% for all ij, then from 

theorem 1, the MP and MC formulations are equivalent, and the 

multipliers 
*

iju  in (7) will be positive. From the complementary 

slackness conditions, the MP formulation will deliver a solution 

with tight GoS constraints. It can also be seen from theorem 3 that 

if the service charges wij are larger than ijw% , the MP formulation 

will deliver GoS service levels better than that are being required 

by the GoS constraints.  The set of ijw% acts as a threshold set for 

the GoS service levels. In other words, the values ijw%  can be 

interpreted as the minimum service prices that drive the network 

operator to offer the required level of GoS when they are not 

constrained to offer any GoS guarantee. This set of ijw%  provide 

interesting cost information in the context of providing GoS 

guarantees. The thresholds in (16) are derived from the 

multipliers *

ij
v , which are well known metrics that quantify the 

prices of the GoS constraints: the cost objective in (2) can be 

improved by *

ij
v  units if the corresponding GoS constraint is 

relaxed by one unit. So, intuitively this is also the amount of 

reward the users of the OD pair ij should bring to the network so 

as to enjoy the GoS.  

 

5. AN ILLUSTRATION EXAMPLE 
Consider a simple three-node SON network as shown in figure 1. 

Assume that there are three Poisson streams of traffic in the 

network, and the offered traffic intensities for the three 

independent streams are λAB=10 per unit time, λCB =15 per unit 

time, λAC =20 per unit time. To make the discussion simple, all 

the traffic streams are routed through direct links (i.e. direct links 

AB, CB and AC). Without loss of generality the mean holding 

times of the traffic are assume to be identically distributed with 

unit mean. The costs for leasing one unit of bandwidths for one 

unit of time are 5 units, 6 units and 7 units respective for the links 

AB, CB, and AC, and the allocated capacities are assumed to be 
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integral values. Assume that GoS requirements for all the streams 

are 0.1 (i..e.10% probability of blocking)), this value is 

deliberately made large so as to facilitate easy comparison. The 

multipliers
*

AB
v ,

*

CB
v  and 

*

AC
v  are found to be 182, 267 and 372 

respectively (which translates to service charges of 18.2, 17.8 and 

18.6). To illustrate theorem 1, we deliberately set the service 

charges to be (10, 10, 10) for the streams AB,CB and AC. 

Condition (6) is satisfied under this set of service charges. Table 1 

summarizes the results obtained. We can see that, under these 

service charges, the MP and MC formulations do give the same 

allocated capacities even though the objective values are different,  

which confirms the results in theorem 1. 

 

 

Figure 1. A simple SON network.  

 

Table 1.  Capacity allocation results for low service charge  

Service charges 

(10,10,10) 
MP formulation MC formulation 

GoS  

(λAB, λCB, λAC) 
(0.084, 0.086, 0.085) (0.084, 0.086, 0.085) 

Allocated capacities 

on links 

(AB, CB ,AC) 

(13, 18, 23) (13, 18, 23) 

Objective value 77.65 -334 

 

To illustrate theorem 2, we set the service-charge vector to be 

(200, 200, 200). Table 2 summarizes the results obtained. The 

profit rate improvement of the MP over the MC is 596.24.  The 

MP formulation delivers better performance over the MC 

formulation in this case. This is consistent with the results proved 

in theorem 2. 

Table 2. Capacity allocation results for high service charge  

Service charges 

(200,200,200) 
MP formulation MC formulation 

GoS  

(λAB, λCB, λAC) 
(0.0037,0.0029,0.0034) (0.084,0.086,0.085) 

Allocated capacities 

on links 

(AB, CB ,AC) 

(19, 26, 32) (13, 18, 23) 

Expected Profit rate 8495.34 7899.10 

 

Since the solutions are rounded up from the real-valued optimal 

solutions, the GoS constraints are not tight even for the MC 

formulation, but note that in table 2 when the service charges 

satisfy (9), the solution of the MP formulation indeed offers lower 

blocking probabilities than that of the MC formulation and this 

illustrates the results in theorem 3. 

6. CONCLUSIONS AND FUTURE WORKS 
We studied a class of Service Overlay Network (SON) capacity 

allocation problem with GoS constraints. By using the set of 

Lagrange multipliers in the MC formulation, we showed the 

condition such that the MP and MC formulations are equivalent. 

Moreover we also showed the condition such that the two 

formulations are different. It is particular interesting to note that 

when the service charges are low the MP formulation minimizes 

the cost/investment in realizing the SON networks by providing 

minimum level of resources to meet the GoS constraints. When 

the service charges are high enough, however, the MP formulation 

automatically takes advantage of that and switches to maximize 

the profit in realizing the SON network. This phenomenon 

suggests that MP formulation adapts well to the different ranges 

of parameters in the SON design problem and is attractive to be 

employed as the dimensioning formulation. By employing the MP 

formulation in the SON capacity allocation problem, we are able 

to quantify the prices of offering GoS in the SON. An interesting 

fact is that regardless that the MP formulation is being employed; 

the aforesaid GoS prices are related to the set of Lagrange 

multipliers of the MC formulation. Major efforts are being spent 

to refine the results obtained regarding the relationship of the MP 

and MC formulations when the MC formulation has multiple 

optimal solutions, the possible extension to the cases where 

heterogeneous blockings are present is also being studied. 

Moreover we are also investigating the extensions of the results to 

the more general multi-rate cases. Most of the new results will be 

included in a more comprehensive future paper. 
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